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Abstract: The extensive usage of wireless sensor networks (WSNs) has led to the 

development of many power- and energy-efficient routing protocols. Cooperative routing 

in WSNs can improve performance in these types of networks. In this paper we discuss the 

existing proposals and we propose a routing algorithm for wireless sensor networks called 

Power Efficient Location-based Cooperative Routing with Transmission Power-upper-limit 

(PELCR-TP). The algorithm is based on the principle of minimum link power and aims to 

take advantage of nodes cooperation to make the link work well in WSNs with a low 

transmission power. In the proposed scheme, with a determined transmission power upper 

limit, nodes find the most appropriate next nodes and single-relay nodes with the proposed 

algorithm. Moreover, this proposal subtly avoids non-working nodes, because we add a 

Bad nodes Avoidance Strategy (BAS). Simulation results show that the proposed algorithm 

with BAS can significantly improve the performance in reducing the overall link power, 

enhancing the transmission success rate and decreasing the retransmission rate. 
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1. Introduction 

Cooperative routing has been identified as an effective and useful method of reducing the negative 

effects of fading in Wireless Sensor Networks (WSNs). WSNs have numerous potential applications, 

e.g., environmental monitoring, mineral survey, traffic control and disaster response. In practical 

applications, a set of QoS requirements (e.g., bandwidth, transmission delay and packet loss rate) on 

network performance must be satisfied. However, due to the dynamic topology, time-varying wireless 

channel, and severe constraints on power supply, quality of service (QoS) provisioning is challenging 

in WSNs [1,2]. 

The power awareness issue is the primary concern within the domain of WSNs. As most power 

dissipation occurs during communication [3], routing is an important part in improving WSNs’ QoS. 

In the same hardware conditions, a reasonable routing protocol can not only improve the quality of 

data transmission, but also save power and energy consumption so as to extend sensors’ life-time. 

For TCP/IP protocol suite in IP based architectures routing is a relevant part. Therefore, the quality 

of its process will affect the efficiency of the entire Internet network. Classical routing protocols in 

WSNs have been widely developed during these last years. In Reference [4], its authors provide an 

exhaustive survey on energy-efficient routing protocols for WSN as well as their classification. In 

Reference [5], authors present a specific classification of existent Location-based Protocols, which is 

the focus of this paper. In Reference [6] a survey on clustering routing protocols in WSNs is presented 

concluding a comparison of the existent ones. In Reference [7] they present a classification depending 

on network structure presenting a comparison of features and goals of data routing approaches. 

The development trend of routing protocols in WSNs is that the routing protocol should save energy 

and power as much as possible [8,9]. What is more, it is expected to balance the amount of information 

transmitted by a node and at the same time to avoid reducing of the QoS. Another important aspect is 

that routing protocols must have security implemented, but this is out-of the scope of this work. 

There still exist challenges for developing routing protocols in WSNs due to the three  

following reasons: 

 Smaller coverage: mainly in short-distance communication, the general communication range 

is a few meters to tens of meters, so the need of transmission power is low. Because the sending 

power, which is the largest part of the entire transmission power consumption in wireless nodes, is 

growing exponentially with increasing distance, IEEE 802.15.4 protocol is fundamentally 

determined as a low-power agreement. The sending power in IEEE 802.15.4 is generally 

recommended between −3 dbm–10 dbm. With low power transmission it is difficult to ensure the 

quality of the transmission in a complex network environment. However, the research and 

development of high-power devices suitable for WSNs still takes longer. 

 Large number of sensor nodes: it is difficult to build a global addressing scheme for large 

number of sensors without the high overhead maintenance. Thus traditional IP-based protocols 
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may not be applied in WSNs. In WSNs getting data is more important than knowing the identifiers 

for what every node in the networks must be self-organized as the ad hoc deployment [10]. The 

keynote of a routing in WSNs is to establish an automatic communication mechanism for each 

node instead of a central deployment. 

 Topology changes: they are a practical problem that occurs when nodes artificially or naturally 

fail or move. In case of topology changes, usually the new topology will not be timely informed to 

each node in the networks. This is seriously harmful to address -memory mode-based networks. 

This encounters nodes to have autonomous adaptability to failures and changes in the phenomena 

without any external intervention [11]. 

New ideas on routing in WSNs, such as cooperative routing algorithms can be used to solve the 

problems above to some extent. It is for that reason that they draw more and more attention in  

WSN research. 

In WSNs, multipath fading is a great challenge [12,13]. Because of serious fading, destination 

nodes cannot judge the signal sent by source nodes in fading channels. In this case, in order to ensure 

the success of the transmission, the transmission power must be increased, which is difficult in WSNs 

due to the fact most nodes are battery powered and one of the main design challenges in wireless 

sensor networks (WSNs) is coping with resource constraints placed on individual sensor devices [14]. 

However, cooperation diversity is one of the ways to address decline in a favorable channel [15,16]. In 

recent years, more and more people began to pay attention to and research cooperative routing 

algorithms in WSNs. Because cooperative links can mitigate fading, achieve high spectral efficiency 

and improve transmission capacity for wireless networks by means of spatial diversity, and their 

realization is easier than that of the multiple-input multiple-output (MIMO) technique for small mobile 

terminals, it is theoretically possible to better adapt to the common WSNs where the node power is 

relatively low. 

Transmit or receive diversity in cooperative routing is realized through the virtual multi-antenna 

array which is formed by several or all single-antennas in a network sharing each other’s signal, so the 

basic idea of cooperation routing is that every node will have one or more cooperative relay nodes 

helping communication together when it is to send data to another. Each node will not only exploit its 

own spatial channel but also cooperative relay node’s and as a result gain an additional certain spatial 

diversity. This inherent spatial diversity enables nodes to cooperate their communication for successful 

delivery to a destination [17]. The basic procedure of cooperation routing is that the source node sends 

a data to every node in its communication area at one time taking advantage of the broadcast nature of 

the wireless channel. Then, same of the receiving nodes working as the relay nodes will send the signal 

which has been processed to the destination node [18]. Finally, the destination node incorporates the 

signals sent by the source node and relay nodes according to certain rules. 

At present, most cooperative routing are based on the purpose of improving the system performance 

on the transmission quality and efficiency. For cooperative routing research, relay node selection 

problem is the most important issue [19]. Currently, according to the purposes and the methods of 

selecting the relay node, the typical cooperative routing protocols in wireless networks can be divided 

into: cooperative routing protocol based on the channel quality, energy-based cooperative routing 

protocol, the opportunity cooperative routing protocols, distributed cooperative routing protocol, 



Sensors 2013, 13 6451 

 

 

location based cooperative routing protocols, and leapfrogging strategy [20,21]. Table 1 presents the 

classification and comparison of cooperative routing protocols taking into account the most relevant 

advantages and disadvantages of each type. 

Table 1. Classification and comparison of cooperative routing protocols. 

Type Advantages Disadvantages 

Channel quality-based 
No multi-node resource  

allocation problems 

Gain incremental decreases with 

the increasing of the number of relay 

nodes while the link cost increases 

Energy-based 

Simultaneously reduce power  

consumption and energy consumption  

without no loss of QoS 

Little coexistence between the 

efficiency of the overall link power 

and the fairness among nodes 

Opportunity 
Ability to respond to random  

changes on network topology 

Hard to ensure the selected path 

with feasible minimum power, 

energy consumption, and path length 

Distributed 
Suitable for Ad Hoc networks and 

WSNs without a central information node 

Challenge in getting  

nodes location information 

Location based 
No need of the central node  

and a global location information table 

Uneven distribution of the  

workload among nodes; Cannot cope 

with topology changes 

Leapfrogging 

strategy 
Good response to the link interruption 

Not suitable for  

multi-cooperation networks 

Cooperative routing protocols based on the channel quality give full consideration to the wireless 

network’s multi-channel characteristics. By taking into account the channel and routing selections, 

they make the relatively idle channel to take on more tasks during data transfer and thus reduce the 

transmission delay; by reducing the co-channel interference they will increase the network throughput [22]. 

The channel quality is indicated by the Channel Quality Indicator (CQI) which is specifically defined 

according to the actual situation, for example, signal-to-noise ratio (SNR), signal to interference plus 

noise ratio (SINR), signal and noise distortion ratio (SNDR), etc. 

Energy-based cooperative routing protocols are designed to complete the data transmission with 

minimum energy consumption. In the MAC layer, the protocols avoid conflicts and duplication of data 

transmission by controlling the opening and hibernation states of the sending node and cooperative 

nodes thereby reducing energy consumption; in the network layer, the protocols through the  

optimal choice of the next hop node and cooperative nodes achieve the whole link energy 

minimization [23–26]. 

Opportunity cooperative routing protocols are used in the networks which do not need whole paths 

between source node and destination node. They used the encounter opportunities caused by the nodes 

movement to achieve the data transmission. They are self-organizing networks with delay and split 

tolerance. The opportunity network, whose nodes are not unified deployed, is different from the 

traditional multi-hop wireless network. Network size and nodes’ initial positions have not been pre-set 

and the path between the source node and the destination node cannot be determined in advance. 
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Distributed cooperative routing protocols are different from the centralized routing protocol ones 

according to the ways of calculating and expressing control information. In selection of distributed 

routing nodes, the control information exchange between the nodes and the calculation of the path 

from the source node to the destination node is completed by each node independently, rather than by a 

central node. 

Location based cooperative routing protocols assume that nodes know their location information 

as well as that of the surrounding nodes. Sending nodes use this location information as the basis of the 

selection of next nodes and relay nodes and for forwarding the data to the target area in accordance 

with a certain strategy, depending on the network structure [27,28]. 

Leapfrogging strategy is an improvement based on the traditional cooperative mechanism. It 

works in the case where the decoding of the data packet is unsuccessful at the next-hop node even after 

repeated retransmissions. To ensure the successful transmission of data packets, cooperative node 

which successfully received and decoded data packets will be as sending node to leapfrog the next-hop 

node which does not work well. 

The remainder of the paper is organized as follows: Section 2 explains the basics of location-based 

cooperative routing. Then, Section 3 describes the related work. Moreover, Section 4 defines the 

network model of the proposed algorithm. We explain our scheme, Power-efficiency Location-based 

Cooperative Routing with Sensor Power-upper-limit, in detailed in Section 5. In Section 6, we list the 

calculation method of the simulation parameters, whereas in Section 7 we present our simulation 

results. Finally, Section 8 summarizes our conclusions. 

2. Location-Based Cooperative Routing 

Location-based routing has been widely hailed as the most promising approach to generally scalable 

wireless routing. It can enable data-directed transmission without establishing a global link state-based 

routing table which may cause data flooding in the entire network. It can save energy and reduce the 

nodes’ memory demand by only storing the neighbor state information, which has good network 

scalability and robustness [27–29]. In our study, we fully combined the advantages of cooperative- and 

location-based routing protocols. 

Figure 1 shows how the location-based cooperative routing works by means of an example. In this 

case source node 1 just needs to know the location of destination node 3 and the nodes 2, 4 and 6 in its 

transmission range. Firstly, node 1 will determine node 2 as the next hop node and secondly node 1 

needs to choose whether node 4 or node 6 are the relay node. By a given mechanism of competition, 

node 1, for example, chooses node 4 as the relay node and then sends the data packet to node 2 which 

replaces node 1 as the source node and will do the same procedures as node 1 to send the data packet 

to node 3. A Request to Send/Clear to Send (RTS/CTS) handshake mechanism is used to cope with the 

“Hidden Stations” problem provided by IEEE 802.15.4. The “Hidden Stations” is a situation where 

station A and C send data to station B at the same time as A and C are not aware of each other's 

behavior and this causes a data conflict. Firstly, A sends RTS to B to inform B the transmission. When 

B receives the RTS from A, it will send CTS to all the stations in its transmission range to state that all 

the stations sending data to B should pause, except A. The data transmission will not begin until the 
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handshake consummation to avoid conflicts when multiple non-visible transmission stations send a 

signal to the same receiving station. A retransmission request (RREQ) is sent by the data-receiving 

station to the data-sending station to require a retransmission when the data-receiving station cannot 

receive or decode the data packet in order to recover error messages in one transmission. In a message 

exchange network, a message is divided into several data blocks which are called data packets. A data 

packet will also contain the address information of the sender and receiver. These packets are then 

transmitted in one or more network along different paths, and reassembled at the destination. The 

broadcast nature of this networks means the signals sent by the transmitter can be received by all 

receivers that located within transmission ranges. That is the key on these types of algorithms. 

Figure 1. Location-based cooperative routing. 

 

3. Related Work 

Related studies about cooperative routing in WSNs. have seen some progress during recent years. A 

Multi-agent Reinforcement Learning-based multi-hop mesh Cooperative Communication mechanism 

for wireless sensor networks (MRL-CC) [1], is a protocol with a multi-hop mesh cooperative structure. 

In this structure each node is implemented with coding and transmission schemes and the cooperative 

mechanism using a multi-agent reinforcement learning algorithm which defines the cooperative partner 

assignments. In the network, by considering the interactions among each other, cooperative nodes 

serve as multiple agents that can learn the optimal policy cooperatively by using locally observed 

network information and limited information exchange for reliable data disseminations. Table 2 

summarizes main features of some relevant cooperative routing protocols found in the literature, and 

highlights the advantages and disadvantages of them. 

A QoS support adaptive relay selection scheme for cooperative communications (QoS-RSCC) 

investigates cooperative communications for QoS provisioning in wireless sensor networks (WSNs) [2]. 

In QoS-RSCC, based on a multi-agent reinforcement learning algorithm, each node has an optimal 

relay selected from multiple relaying candidates according to packet outage probability and channel 

efficiency, which are part of the QoS requirements. 
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Table 2. Comparison of cooperative routing protocols. 

Routing 

Algorithm 
Features Advantages Disadvantages 

LCRP 

Enables cooperative relaying in an  

on-demand manner, and takes into 

account both location and channel state 

information for next-hop selection 

 Reduces the number of 

transmissions required to 

reach a destination 

 Saves energy and increase the 

network lifetime 

 It does not consider the scenario that 

topology mutation 

RRP 

Uses the cooperative nodes within the 

transmission range as buffers to cope 

with path breakage 

 Improves robustness while 

achieving considerable energy 

efficiency 

 It is not good at reducing the 

transmission delay 

CARP 

Stable routing routes and takes 

advantage of cooperative-aided data 

transmission 

 Increases the operational 

routes lifetime 

 Increases packet delivery ratio 

with advanced SNR 

 It needs more transmission power 

ECRP 

A minimum energy multi-nodes 

cooperative path is constructed by the 

cooperative transmission of neighboring 

nodes and comparison of total power 

consumption 

 Improves energy-saving 

performance greatly 
 It needs a good channel environment 

MRL-CC 

Multiple agents can cooperatively learn 

the optimal policy by using locally 

observed network information and 

limited information exchange 

 The network system is more 

stable; 

 The ability to reduce the delay 

at higher network traffic load 

 The uniformity of the load among the 

nodes to be improved 

QoS-RSCC 

The optimal relay selection policy is 

learned collaboratively by the routers 

from a series of trial-and-error 

interactions with the dynamic network, 

without the needs of prior knowledge  

of the network model and centralized 

control 

 Steady reduction in delay. 

 Cooperative diversity gain 

with channel utilization 

efficiency 

 It needs a good channel environment 

PC-CORP 

Combines the region-based routing, 

rendezvous scheme, sleep discipline and 

cooperative communication to model 

data forwarding by cross layer design  

in WSN 

 Strong stability in response to 

topology changes 

 Requires higher transmission power 

when the number of nodes is large 

STBCs 

Multi- relay strategy where the selected 

multiple nodes act as multiple 

transmitting and receiving antennas 

 Higher throughput and similar 

delay in high SNR 

environments 

 The total energy consumption of the 

system is high 

DEAR 

All the intermediate nodes will consume 

their energy at similar rate, which 

maximizes network lifetime 

 Fairness among nodes. 

 Lifetime is greatly prolonged 

 Requires the precise location of the 

nodes which need more energy 
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A novel geographic routing protocol (LCRP) that incorporates cooperative relaying and leapfrogging 

is proposed in Reference [29]. The concept of leapfrogging circumvention is proposed for poor radio 

channel conditions and aims to significantly reduce the number of retransmissions. This protocol 

scheme does not insist on successfully decoding a data packet at the next hop node with a sufficient 

number of retransmissions. Instead, it considers that there may be nodes that are further advanced 

towards the destination node than the next-hop node among the relay nodes which have successfully 

decoded the data packet in response to a RREQ from the next-hop node after the initial retransmission. 

In the condition of energy-constrained WSNs such an approach can potentially increase the network 

lifetime, yet the selections of next hop nodes and leapfrogging nodes have not been proposed in detail. 

Robust Cooperative Routing Protocol (RRP) [30] is a cross-layer robust routing protocol based on 

node cooperation among nearby nodes for unreliable mobile WSNs. Different from the traditional 

routing protocols, in RRP there are several robust paths expanded from an intended path. Inside these 

robust paths, a reliable path is selected for packet delivery. For each packet, the robust routing protocol 

is capable of selecting the best path in a wide zone. Utilizing path diversity in the robust path, the 

intended path can easier cope with the varying topology based on the path quality, and as a 

consequence, the robustness against path breakage is improved. 

Cooperative-Aided Routing Protocol (CARP) [31] in mobile ad-hoc WSNs consists of two parts as 

follows. The first part is to increase the operational lifetime of network by means of the decision of 

routing routes based on the route stability according to the mobility of mobile nodes; and the second 

part is to increase packet delivery ratio with advanced Signal-to-Noise Ratio (SNR) focusing on the 

data forwarding via the cooperative-aided routes. 

Power Control based Cooperative Opportunistic Routing Protocol (PC-CORP) [32] for WSNs can 

ensure better data forwarding efficiency in an energy efficient manner by providing robustness to 

random network connectivity variations. This protocol combines the cooperative communication, sleep 

discipline, rendezvous scheme, and region-based routing based on a realistic radio model to model data 

forwarding by cross layer design in WSNs. In addition, Additive Increase Multiplicative Decrease 

Power Control (AIMD-PC), a lightweight transmission power control algorithm, is introduced to 

improve the forwarding efficiency performance and increase the robustness of the routing protocol 

utilizing the relay nodes’ cooperation. The performance of PC-COPR is satisfying QoS requirements 

of application by means of investigating simulation from the perspectives of adaptation to variations in 

network connectivity. 

An energy efficient cooperative routing scheme with space diversity called Space-Time Block 

Codes (STBCs) protocol [33], based on space-time bloc codes as well as the link quality, is established 

to improve the throughput and enhance power efficiency. In this solution, the cooperation utilizes a 

multiple-relay strategy as the selected multiple nodes act as multiple transmitting and receiving 

antennas. Power efficiency is enhanced by utilizing the full diversity available from the orthogonal 

STBC which can overcome multipath fading. The protocol outperforms the other two in low SNR 

environments and provides higher throughput and similar delays in high SNR environments compared 

with the traditional single-relay strategy and the single receiving diversity routing methods. 

Energy-efficient Cooperative Routing Protocol (ECRP) [34,35] is a distributive implementation of 

the cooperative routing protocol. In this protocol, under the assumption that nodes can know the 

relative location of neighboring nodes, a minimal energy multi-nodes cooperative route can be found 
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by the cooperative transmission of neighboring nodes and comparison of total power consumption. 

The basic form is to implement the distributive routing scheme on cooperative clusters with RREQ 

packets additionally carrying route power consumption information. There is a 30%–50% energy 

saving compared with traditional non-cooperative routing. At the same time, by trading off a little 

decline in energy-efficiency when using the selection strategy of cooperative nodes, the control 

expense and complexity of computation can fortunately be reduced. 

In Reference [36], a Distance-based Energy Aware Routing (DEAR) algorithm is proposed to 

ensure energy efficiency and energy balancing. This algorithm is based on the theoretical analysis of 

different energy and traffic models. Simulation results show that compared to other routing algorithms, 

the DEAR algorithm can reduce the energy consumption for all sensor nodes and balance the energy 

distribution so network lifetime is greatly prolonged. 

Most of the works mentioned have not taken into account the nodes’ upper power limit that may 

exist for limited energy supplies and equipment strength practical application and how the networks 

perform at such conditions. Moreover, they also did not give much thought to the topology mutation 

caused by unknown bad nodes (that stop working due to energy exhaustion or damage). 

In order to take advantage of the low link power and high channel gain of the cooperative routing  

in WSNs so that nodes can work better under extremely low power conditions, we propose a  

routing algorithm called Power Efficient Location-based Cooperative Routing with Transmission  

Power-upper-limit (PELCR-TP). Node location information analysis and selection policy based on the 

RTS/CTS handshaking mechanism is the core part of the algorithm. The main idea of the algorithm is 

that each node uses its transmit power upper limit as its transmit power in order to ensure enough 

transmission distance in case of low power. In this case, the transmission distance and the outage 

probability will mutually influence each other, both of which can be calculated knowing the lowest 

link power, and then the sending node will use the calculated transmission distance as the basis for 

selecting the location of the next hop node. The algorithm adopts a single cooperative node strategy, 

and the cooperative link ensures to maintain a relatively low outage probability even in a long 

transmission distance scenario. In addition, the algorithm further includes a bad node avoidance 

strategy. The cooperative node will not drop packets until the transmission of this hop success so that  

it can replace the next node to continue transmission when the next hop node cannot receive or  

decode packets. 

The crucial idea of our work is to abandon the outage probability threshold which has usually been 

settled in some other algorithms and make outage probability as a factor in the equations when 

calculation the hop nodes’ locations. This change makes the nodes’ selections more optimum and the 

application range broader. 

The contribution of our work is providing an algorithm which can work stably and power-efficiently 

with extremely low sending power. This algorithm can make WSNs awake in bad environments, for 

example, eco-system detection, deep-water probe, micro-sensor in military, etc. We will demonstrate 

that the proposed protocol can work stably, is power-efficient with extremely low sending power and 

works in “bad” environments so that we consider node density less than 0.003/m
2
, node power upper 

limit less than 0.00005 W, and a pass loss index of more than 3.5. 
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4. Network Model 

The cooperative model used for this study takes a single cooperative node mode which means that 

for each hop there are only one relay node and one next hop node to transmit to. The model includes 

two basic link models, direct link model and cooperative link model, with some basic assumptions as 

described below. The transmission will automatically choose the cooperative link model when there is 

an appropriate relay node meeting the requirements; otherwise, a direct link model will be used. 

4.1. Basic Assumptions 

In order to evaluate the proposed algorithm, some basic assumptions are made. We assume that 

there are no two nodes located at the same position. All sensor nodes are equipped with the same radio 

transceiver. Moreover, each node only knows its own location information, power limit and channel 

environment parameters. Through RTS/CTS mechanism only respective location information can be 

transmitted between nodes, so each node just follows its own parameters to calculate and select the 

next hop node and relay node. Therefore, for each sending node, it seems that each subsequent node is 

just like itself. 

The basis of the above assumptions is that usually the quality of the channel and the merits of the 

environment are not prone to change. That means that the changes in the propagation environment are 

usually smooth. Here we have chosen the path loss exponent k as the indicator representing merits of 

the network. 

We use Unit Disk Graph communication model for analysis. In this model, any two nodes i and j 

can reliably communicate with each other if and only if: 

|i j| ≤ R (1) 

where |i j| is the Euclidean distance between i and j and R is the maximum transmission range 

Each node in WSNs has a unique node identification number and all the links between nodes are 

bidirectional, i.e., if there is a communication link from node i to j, there is also one from j to i. 

4.2. Direct Link Model 

The Direct link model is shown in Figure 2. The link (S, D) is composed of the sending node S and 

the receiving node D: 

Figure 2. Direct link model. 

 

The wireless channel between a sending node S and receiving node D can be expressed by θ and α, 

where θ is the phase-shift factor, and α is the gain factor which equals         
    , where k is the path 

loss exponent, and dS,D is the distance between the nodes. Assume that the channel attenuation 

coefficient hS,D is independent and identically distributed, and subject to a Gaussian distribution with 

zero mean and variance equal to 1. So for the direct link, the signal received at receiver D is: 

 

S D 
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            (2) 

where s(t) is the transmitted signal, and n(t) is the noise signal. 

4.3. Cooperative Link Model 

In the cooperative link model shown in Figure 3, link S-D establishes a collaborative sending mode. 

The collaborative link is formed by node S as a sender, node R as a cooperative node, and node D as a 

receiver. The process can be divided into two time slots. In the first time slot, the packet can be sent 

from source node S to forwarding node D and R directly. In the second time slot, the packet is sent 

through the relay node R to node D, and then the node D combines them. 

Figure 3. Cooperative link model 

 

Assuming that the receiver D both receives the data signals sent by S and the data signals relayed by 

R from S, and the transmission power Pt of each node is equal for all of them, then the signal received 

by receiver D is:  

                 
            (3) 

5. Pelcr-Tp Algorithm 

The PELCR-TP algorithm is a location based cooperative protocol. It consists of two parts, one of 

which is the selection of the next hop node and the other is the bad node avoidance strategy. This 

algorithm is based on the principle of minimum link power. For a transmission hop, we have [37]: 

   
         

  
      (4) 

where    is sending power,   
    is outage probability and d is the transmission distance. In case    is 

determined by the node power upper limit, d and   
    have a negative correlation. Within a restricted 

range, we can find the optimal relation between these two parameters so that the overall link power 

reaches a minimum, while ensuring the success rate of the transmission. The following section 

describes how to select the optimal distance d. 

5.1. Direct Link 

For direct transmission between node S and D, the total power is [38]:  

     =    + 2   (5) 

 

S D 

R 
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where    is the power consumed by the transmitter and 2   counts a sending and a receiving power 

consumed. If the sending power has reached the maximum, the total direct power according to 

Equation (4) is then:  

     =   
    + 2   (6) 

where   
    is the power upper limit of node S. The outage probability for this transmission is: 

  
    

         

  
   

   (7)  

As a statistical value, we can use the outage probability indirectly to indicate the expected sending 

times, n, in a hop as follows: 

n =
 

    
   =

 

  
  
       

  
     

 
(8) 

As the node S just knows its own parameter information (  
   , k) and the location information of 

nodes who participate in the RTS/CTS within the transmission range, it must assume henceforth other 

hop conditions are equal to this hop. So in its view, the transmission distance of each hop, d, it is the 

same. L is the distance between S and D, so the total times, m, of hops is: 

  
 

 
 (9) 

Consequently, the total power of the link calculated by node S is:  

                =      
 

  
  
       

  
     

 
 

 
 

(10) 

Let: 

         (11) 

and: 

B=
         

  
    (12) 

then: 

      =A/(d-B    )  (13) 

We take the first derivative of       with respect to d, and let        , at which time        

reaches the only minimum value. That is: 

      
  = −A[1−B (k+1)d

k
]/         2

 = 0 (14) 

And then we obtain the ideal transmission distance of this hop:  

d= 
 

       

 
=
 

 

  
       

  
         

  
(15) 
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Next-hop node’s selection in direct link, shown in Figure 4, is realized by the RTS/CTS 

handshaking mechanism. Nodes’ competition for the next hop node will use the back off time as the 

indicator. The back off time before the node Gi replies CTS1 message can be formulated as: 

             
      
 

 

 

        
       

 
 
 

    (16) 

where dGi,Di is the distance between the node Gi and the ideal next-hop node Di, d is the ideal distance, 

R (0 ≤ R ≤ 1) is a random number, ω (0 ≤ ω ≤ 1) is the balance factor, θi is the angle between Gi and 

the destination node D with Di as the vertex, and T0 is the maximum waiting time of node Gi before it 

forwards the message. The node whose back off time is the least will win the competition and become 

the next hop node. For more details readers are referred to a previous study [39]. 

Figure 4. Next hop node selection. 

 

5.2. Cooperative Link 

5.2.1. Next Hop Node Selection 

Different from direct transmission, the outage probability of cooperative transmission is a 

comprehensive result. It is affected by the relay node R’s location, next hop node's location and the 

transmission power and so on [40]. For a single relay transmission, the determination of the location of 

the ideal relay node is based on the location of next hop node which, however, is unfortunately 

unknown, so the location of R must be assumed when S has to calculate d. Furthermore, it should 

assume R’s parameter information (  
   , k) as well. 

Like in direct transmission, S will assume that R has the same situation as S do that they have the 

same parameter information (  
   , k) and thereby R’s expected ideal transmission distance is  

also d [41]. In order to ensure the successful transmission, R must be within the sending radius of S, 

and D must be in the emission radius of R, so R should be in the red area shown in Figure 5. We 

choose the most ‘remote’ point for both S and D shown in Figure 3 as the assumed location of R. In 

this case the location of assumed R is the worst one in this area for relay so that hereafter wherever the 

final selected R actually is in the area it may competent to relay. 
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Figure 5. Assumption of the relay node position. 

 

We assume that the sending and receiving processes are independent for every node. So for each 

group of sending and receiving processes the outage probability can be calculated according to 

Equation (7). For cooperative transmission, an entire hop should contain three groups of sending and 

receiving processes: S to D, S to R and R to D. Among these three, S to R then R to D is a continuous 

process, so the outage probability of an entire hop,       
   , can be calculated as follows: 

      
        

             
           

      (17) 

where     
   and     

    are the outage probabilities from   to   and   to  . As   assumed that 

  =  =  
    and     =    =    =d, according to Equation (7) we have     

         
        

    
         

  
     . So we can simplify the       

    as: 

      
    

         

  
   

    
          

 

  
        

          
 

  
        

                  

 

(18) 

where: 

B = 
         

  
    (19) 

And the expected sending times, n, of a hop is: 

n = 
 

        
    

 = 
 

                  
 (20) 

In a packet cooperative transmission hop, at the first time slot according to the network model 

described in Section 4, source node S broadcasts the data packet to the selected next hop forwarding 

node D and the selected relay node R in its communication area. Then at the second time slot, relay 

node R broadcasts the data packet received just recently to node D for data combination. Hence the 

power consumption contains two times the sending power limit, 2 sending power and 3receiving 

power. Consequently, the total power of an entire cooperative hop is: 

       = 2    
    + 5   (21) 

According to Equation (10), like in direct transmission, the total power of the link calculated by 

node S is: 

 

S 

R 

D d 

d 
d 
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                  =        
 

                  
 

 

 
 (22) 

Let: 

            (23) 

then: 

       = AA/(                        ) (24) 

We take the first derivative of        with respect to d, and let        . Then:  

      
  = −AA[1−                                  ]/ 

                          2
=0 

(25) 

However, Equation (25) is a transcendental equation that has no analytical solutions, so each 

sending node needs iterative computation. Within the values range of the actual situations, this 

equation must have positive roots among which the one nearest to zero is what we seek, so we use an 

iterative approach, whose initial value is zero, in accordance with a certain gradual step. The 

computation complexity of this method is linear order to d. However, empirically, subject to certain 

situations, the values of d are often in a small range, which makes the computation complexity nearly a 

constant order. Therefore we could ignore the extra power and time consumption caused by the 

iterative calculation [42]. More work is needed to be done to find a suitable approximate analytical 

solution in future research. 

When determining the ideal next hop node, S will assume that R is located at the point shown in 

Figure 5 in order to ensure the transmission. However, the ideal relay node is not at that point. It can be 

derivation from Equations (7), (17) and (22) that, when the next hop node has been selected, if R is 

located in the mid-point between S and D,       
    and        are both the least, so we choose a mid-point 

between S and Das for the location of the ideal relay node and we use this ideal relay location as a 

reference for the selection of the actual relay node [43]. 

Next-hop node’s and relay node’s selection, shown in Figure 6, is realized by a RTS/CTS handshaking 

mechanism [44]. The nodes competition mechanism is the same as that mentioned in Section 5.1. 

Figure 6. Relay node selection. 
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5.2.2. Bad Node Avoidance Strategy (BAS) 

As shown in Figure 7, the source node S broadcasts the data packet to the selected next hop 

forwarding node D1 and the selected relay node R1. In this process, when S or R1 send the data packet, 

they will start retransmission timers to account for the event that the node D1 cannot successfully 

decode the combined data packet. When the node D1 could successfully decode the combined data 

packet from the node S and R1, it will send an acknowledgement packet (ACK) to S and D1, otherwise, 

it issues a RREQ to the node S and node R1. For S and R1, if the timers end without receiving the ACK 

or they receive the RREQ (that cancels the timer), both of them will start counters to record the Times 

of Transmission Failure (TTF) and the process will proceed again. However, if the times of 

transmission failure are more than one (TTF > 1), the forwarding node D1 is believed to be a failed 

node. The node S will stop sending data packets and node R1 will replace node D1 as the forwarding 

node and continue the next hop transmission as shown in red line, so that it can reduce the times of 

retransmission to D1. Figure 8 shows the flow chart of bad node avoidance strategy algorithm 

implemented in the proposed protocol. 

Figure 7. Bad node avoidance strategy. 

 

Figure 8. Flow chart of bad node avoidance strategy. 
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6. Performance Evaluation 

We chose three parameters: total link power, transmission success rate and retransmission rate 

respectively; as the algorithm performance evaluation indicators [45]. Correspondingly, the average 

total power of an entire link is chosen to test the pros and cons of the algorithm based on the principle 

of minimum link power; transmission success rate is an indicator that reflects the algorithm’s stability, 

reliability and scope of applications; and finally retransmission rate is calculated to test the algorithm’s 

ability to respond to harsh transmission environments and bad nodes. 

Total link power 

The total link power,       
      

, for an entire link in PELCR-TP algorithm is: 

      
                                      

   
                      

                   

  
                                               

(26) 

where    ,    ,     and     are, respectively, the total times of first-time transmission of direct hops, 

retransmission of direct hops, first-time transmission of relay hops and retransmission of relay hops. 

Transmission success rate 

The transmission success rate,      , reflecting the reliability of a link, is a kind of statistics 

calculated from multiple simulations. When the packet could be sent successfully from a source node 

to the destination, we record link success once, otherwise, link error once. The transmission success 

rate       is: 

     = 
     

           
 (27) 

where       is the total times of link success and      is the total times of link error. 

Retransmission rate 

Retransmission rate,         , is the ratio of the times of retransmission to the times of the total 

transmission. This kind of statistics calculated from multiple simulations is an indicator used to test the 

performance of “bad node” avoidance strategy: 

        = 
       

               
 (28) 

7. Simulation Results 

7.1. Simulation Environment 

In the proposed WSNs simulation environment, nodes are randomly distributed in a 500 × 500 

rectangular plane area; the antenna type is omnidirectional; we use complex Gaussian white noise 

which variance is N0 = −70 dBm; the signal bandwidth B = 1 MHz; balance factor ω = 0.78; forward 

angle region θ = 60°, the maximum waiting time T0 = 200  s in Equation (16). All the parameters 
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above are according to the previous study [39] and the IEEE 802.15.4 protocol [46]. The source node 

will be located at coordinate (100, 100) and destination node at (400, 400), and then we create routes, 

taking the average of 1,000 different networks as the final simulation results. 

When path loss k does not change as a control condition variable, in order to more realistically 

simulate the actual transmission environment, it is distributed as a fixed curved surface in the 

simulation area, which is shown in Figure 9 and described as: 

  
 

 
 
 

   
        

 

   
      

 

   
          (29) 

where (x, y) are the coordinate of the area. In this area, the average k is 3 according to the IEEE 

802.15.4 protocol for low power networks. And a maxima peak exists at about (350, 250) while a 

minima peak at about (150, 250) in order to create a worse transmission environment area and a better 

one respectively to show how the algorithm works at poor and fine environments. 

Figure 9. Distribution diagram of k in the simulation region. 

 

According to the IEEE 802.15.4 protocol, the sending power of a node is recommended from  

−3 dBm to 10 dBm. However, in order to test our algorithm in an extremely low power as the final 

aim, after multi-times simulation we get a matching sending power condition that when the sending 

power upper limit does not change as a control condition variable it is 0.0001 w (−10 dBm) for each 

node. When the bad node rate does not change as a control condition variable its value is 0.1 to all 

nodes. When the node density does not change as a control condition variable its value is 0.005. 

7.2. Total Link Power 

Figures 10–12, respectively, show the comparison of the total link power of PELCR-TP  

algorithm with and without BAS, and PLCR algorithm at different node density, path loss index and 

bad node rate. 
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Figure 10. Link power vs. Node density. 

 

Figure 11. Link power vs. Path loss index. 

 

Figure 12. Link power vs. Bad node rate. 
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These figures show that at the same abscissa the total link power of PELCR-TP algorithm with and 

without BAS are both much lower than that of PLCR algorithm. That indicates in the whole variation 

range of node density, path loss index and bad node rate in this simulation, the PELCR-TP algorithm is 

much more adaptable and power-efficient. It can be seen that BAS can slightly reduce the total link 

power for PELCR-TP as it can overcome the “transfer resistance” and thereby reduce the total link 

power, which may be caused by avoiding multiple retransmissions to a bad node with poor ability to 

receive and decode. This part will be discussed in Section 7.4. 

Figure 10 shows the impact of different node density on total link power of the three algorithms. 

With the increase of node density, the total link power of three kinds of routing algorithms reduce 

gradually, which may be caused by the fact that the next hop nodes are more and more close to the 

ideal next node. For PELCR-TP with and without BAS, the total link power reduces quickly in the 

range of node density from 0.002/m
2
 to 0.008/m

2
, while very slowly when higher than 0.008/m

2
, which 

indicates the PELCR-TP algorithm has the ability to determine the appropriate next node without 

being influenced by the node density even when the density is still low. On contrast, the total link 

power of PLCR is continuously reducing, whose curves’s undulation is also caused by the low node 

density in which condition there is a significantly uncertainty of the distance between nodes. 

Figure 11 shows the impact of different path loss index on total link power of the three algorithms. 

With the increasing of path loss index, the total link power of three kinds of routing algorithms 

increase exponentially as the sending power is proportional to the d
k
, where d is the transmission 

distance. The slope of the increasing total link power of PLCR algorithm with path loss index is much 

sharper than that of both PELCR-TP algorithms with and without BAS. That indicates that PELCR-TP 

algorithm is more suitable in poor transmission environment whose path loss index is relatively high. 

Figure 12 shows the impact of different bad node rate on total link power of the three algorithms. 

With the increasing of bad node rate, the total link power of three kinds of routing algorithms increase 

gradually for the increasing of the retransmission times caused by “bad nodes”. 

In summary, though the node density and power upper limit value are relatively low, as well the 

path loss index and the bad node rate are relatively high, which means the transmission condition is 

relatively poor, PELCR-TP algorithm has a more outstanding performance in the saving power 

consumption than PLCR algorithm. In addition, the BAS can contribute to link power saving to a 

certain extent. 

7.3. Transmission Success Rate 

Figures 13–16, respectively, show the comparison of the transmission success rate of PELCR-TP 

algorithm with and without BAS, and PLCR algorithm at different node density, power upper limit, 

path loss index and bad node rate. 

It can be seen from Figures 13–16 that in the vast majority of the range of the abscissas, the 

transmission success rate of PELCR-TP algorithm with and without BAS are both much higher and 

more stable than that of PLCR algorithm. The transmission success rate of PELCR-TP algorithm with 

BAS shows a very steady value approaching 1.0, a higher level than that without BAS. 
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Figure 13. Transmission success rate vs. Node density. 

 

Figure 14. Transmission success rate vs. Power upper limit. 

 

Figure 15. Transmission success rate vs. Path loss index. 
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Figure 16. Transmission success rate vs. Bad node rate. 

 

Figure 13 shows the impact of different node density on transmission success rate of the three 

algorithms. There is an obvious inflection point both in PELCR-TP with and without BAS when the 

node density is around 0.003/m
2
. When the density is larger than this point, the transmission success 

rate of PELCR-TP algorithm shows a stable and level trend, while a sharp drop when the density is 

smaller than that point. In addition the inflection point of PLCR appears around 0.008/m
2
. The sharp 

drop of transmission success rate occurs when the average maximum transmission distance nodes can 

provide in this condition is shorter than the average distance between the nodes, so the value of the 

inflection point can indirectly reflect the ability of an algorithm that the maximum transmission 

distance nodes can provide, which can be calculated from Equation (7). This indicates that compared 

with PLCR algorithm, PELCR-TP algorithm can transmit farther under the same conditions. 

The inflection points like in Figure 13 also appear in Figure 14, which is likewise caused by 

insufficient transmission distance according to Equation (7) when the sending power upper limit is 

very low. However, the difference is that for PELCR-TP algorithm without BAS there is a slope when 

power upper limit is larger than the inflection point. As this slope does not occur in PELCR-TP 

algorithm with BAS, it may be caused by the bad nodes’ influence. In addition, there is no obvious 

inflection point for PLCR algorithm. 

Figure 15 shows the impact of different path loss index on transmission success rate of the three 

algorithms. Only in the PELCR-TP algorithm with BAS an obvious inflection point appears where k is 

around 3.5. The reason for this point can be also attributed to the insufficient transmission distance 

according to Equation (7) when path loss index is high. The difference between PELCR-TP algorithm 

with and without BAS, that there is an obvious slope for the latter when k is smaller than 3.5, may 

indicate that when the power upper limit is low (0.0001 w) and path loss index is high, according to 

Equation (8), the outage probability for each hop will increase and create some “bad nodes”. Here we 

need to mention that when the path loss index is near 2.0, the transmission success rates of PELCR-TP 

algorithm with and without BAS, are almost equal and approaching 1.0. This phenomenon can be 

explained as follows: when the value of path loss index is near 2.0, the transmission environment is 

close to the ideal environment and the hop number in a whole link will be few, according to  

Equations (8) and (10); as the destination node cannot be set up as a bad node, it will reduce the ratio 
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of bad nodes in the entire link. This can also be used to explain the drop of transmission success rate of 

PLCR algorithm where k goes from 2.0 to 2.3. 

Figure 16 shows the impact of different bad node rates on transmission success rate of the three 

algorithms. Except for the PELCR-TP algorithm with BAS, the transmission success rates of both the 

other two algorithms have a negative linear relationship with bad node rate. In summary, when node 

density and sending power upper limit are relatively low, while path loss index and bad node rate are 

relatively high, the PELCR-TP algorithm with BAS seems more competent with a very stable and 

reliable performance in transmission success rate until the appearance of the inflection point. 

7.4. Retransmission Rate 

Figure 17 shows the comparison of the retransmission rate of PELCR-TP algorithm with and 

without BAS, and PLCR algorithm at different bad node rate. 

Figure 17. Retransmission rate vs. Bad node density. 

 

It can be seen from Figure 17 that with the increasing bad node rate the retransmission rates of the 

three algorithms increase. The slope of the PELCR-TP algorithm with BAS is much lower than that of 

both the PELCR-TP algorithm without BAS and PLCR algorithm, while the latter two have no 

obvious differences between each other. This indicates that in the transmission condition of this 

simulation, BAS effectively avoids multiple retransmissions to bad nodes and thereby reduces the 

retransmission rate, but the PELCR-TP algorithm itself does not affect the retransmission rate. 

7.5. Path Nodes 

Figure 18 randomly shows 10 path node results of the PELCR-TP algorithm with and without BAS, 

and the PLCR algorithm at different bad node rates from 1,000 simulations in which the power upper 

limit is 0.0001 w, bad note rate is 0.1 and the node density is 0.005. The source node and destination 

node are located at (250, 0) and (250, 500). The middle axis coincides with the line which represents  

k = 3. The area on the left of the middle axis is the region with a better transmission environment 

whose k is lower, while the other side is the region with a worse transmission environment whose k is 
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higher. The path nodes of the PELCR-TP algorithm with BAS are symmetrically distributed on both 

sides of the middle axis. On contrast, for the other two algorithms the path nodes on the left side of the 

middle axis are more than on the right. This indicates that the PELCR-TP algorithm with BAS can 

work well wherever k is higher or lower with the help of BAS. The path nodes of PLCR algorithm is 

more concentrated near the source node than that near the destination node, while the path nodes of 

PELCR-TP algorithm with and without BAS both have symmetrically vertical distributions. This 

means the new algorithm has more reliable performance with few failures. This figure visually displays 

the reliable performance of the PELCR-TP algorithm and the high adaptability BAS can provide. 

Figure 18. Pathways node maps. 

 

8. Conclusions and Future Work 

In this paper we propose a novel location-based cooperative routing algorithm for WSNs,  

named PELCR-TP, that takes advantage of the low link power and high channel gain of the 

cooperative routing in WSNs and make it work well in the case where the transmission power is really 

low. Node location information analysis and selection policy based on the RTS/CTS handshaking 

mechanism is the core part of the algorithm. The main idea of the algorithm is that each node uses its 

transmit power upper limit as its transmit power in order to ensure enough transmission distance in 

case of low energy. In this case, the transmission distance and the outage probability, both of which 

can be calculated under the lowest link power, will mutually influence each other, and then the sending 

node will use the calculated transmission distance as the basis for selecting the location of the next hop 

node. The algorithm adopts a single cooperative node strategy, and the cooperative link ensures  a 
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relatively low outage probability is maintained, even for a long transmission distance scenario. In 

addition, the algorithm further includes a bad node avoidance strategy. The cooperative node will not 

drop packets until the transmission of this hop success so that it can replace the next node to continue 

transmission when the next hop node cannot receive or decode packets. 

Simulation results show the following conclusions: firstly, when nodes’ transmission power upper 

limit is extremely low (i.e., 10
−5

 to 4 × 10
−4

) and the path loss index and bad node rate are relatively 

high, 2–4 and 0–0.2 respectively, PELCR-TP could significantly reduce the overall power and 

retransmission rate and enhance the transmission success rate, compared with PLCR, the algorithm 

proposed in a previous study. Secondly, the PELCR-TP algorithm shows a very stable performance 

over a fairly large range of conditions, as the transmission success rate is approaching 1.0 until an 

obvious inflection point appears. Thirdly, the retransmission rate will be lower and transmission 

success rate will be higher with Bad node Avoidance Strategy (BAS) than without. This shows that 

PELCR-TP algorithm with BAS can better adapt to the WSNs with low node density, small 

transmission power and bad transmission environment. 

As future work we expect to find a way to make this routing algorithm not only power-efficient, but 

also energy-efficient, for example, by some energy awareness strategies as proposed in Reference [47]. 

Other performance metrics such as coverage, QoS, or security will be taken into account and optimized 

by the way of, for instance, the proposals presented in [48–50]. What is more, we should research the 

approximate calculation of the transmission distance. Last but not least, we want to study the 

implementation when the routing algorithm adopts the multi-relay strategy. All above are aimed to 

improve the performance of WSNs. 
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