Latest Articles

Open AccessEditorial
Understanding the Snake Venom Metalloproteinases: An Interview with Jay Fox and José María Gutiérrez
Toxins 2017, 9(1), 33; doi:10.3390/toxins9010033 (registering DOI) -
Abstract
Jay W. Fox and José María Gutiérrez recently finished editing a Special Issue on the topic “Snake Venom Metalloproteinases” in Toxins. The Special Issue covers a wide range of topics, including the molecular evolution and structure of snake venom metalloproteinases (SVMPs), the
[...] Read more.
Jay W. Fox and José María Gutiérrez recently finished editing a Special Issue on the topic “Snake Venom Metalloproteinases” in Toxins. The Special Issue covers a wide range of topics, including the molecular evolution and structure of snake venom metalloproteinases (SVMPs), the mechanisms involved in the generation of diversity of SVMPs, the mechanism of action of SVMPs, and their role in the pathophysiology of envenomings, with implications for improving the therapy of envenomings. In this interview, we discussed with Jay W. Fox and José María Gutiérrez their research on the SVMPs and their perspectives on the future trends and challenges for studying snake venoms. Full article
Figures

Figure 1

Open AccessArticle
Near Real-Time Browsable Landsat-8 Imagery
Remote Sens. 2017, 9(1), 79; doi:10.3390/rs9010079 (registering DOI) -
Abstract
The successful launch and operation of Landsat-8 extends the remarkable 40-year acquisition of space-based land remote-sensing data. To respond quickly to emergency needs, real-time data are directly downlinked to 17 ground stations across the world on a routine basis. With a size of
[...] Read more.
The successful launch and operation of Landsat-8 extends the remarkable 40-year acquisition of space-based land remote-sensing data. To respond quickly to emergency needs, real-time data are directly downlinked to 17 ground stations across the world on a routine basis. With a size of approximately 1 Gb per scene, however, the standard level-1 product provided by these stations is not able to serve the general public. Users would like to browse the most up-to-date and historical images of their regions of interest (ROI) at full-resolution from all kinds of devices without the need for tedious data downloading, decompressing, and processing. This paper reports on the Landsat-8 automatic image processing system (L-8 AIPS) that incorporates the function of mask developed by United States Geological Survey (USGS), the pan-sharpening technique of spectral summation intensity modulation, the adaptive contrast enhancement technique, as well as the Openlayers and Google Maps/Earth compatible superoverlay technique. Operation of L-8 AIPS enables the most up-to-date Landsat-8 images of Taiwan to be browsed with a clear contrast enhancement regardless of the cloud condition, and in only one hour’s time after receiving the raw data from the USGS Level 1 Product Generation System (LPGS). For any ROI in Taiwan, all historical Landsat-8 images can also be quickly viewed in time series at full resolution (15 m). The debris flow triggered by Typhoon Soudelor (8 August 2015), as well as the barrier lake formed and the large-scale destruction of vegetation after Typhoon Nepartak (7 July 2016), are given as three examples of successful applications to demonstrate that the gap between the user’s needs and the existing Level-1 product from LPGS can be bridged by providing browsable images in near real-time. Full article
Figures

Open AccessArticle
Distinguishing Intensity Levels of Grassland Fertilization Using Vegetation Indices
Remote Sens. 2017, 9(1), 81; doi:10.3390/rs9010081 (registering DOI) -
Abstract
Monitoring the reaction of grassland canopies on fertilizer application is of major importance to enable a well-adjusted management supporting a sustainable production of the grass crop. Up to date, grassland managers estimate the nutrient status and growth dynamics of grasslands by costly and
[...] Read more.
Monitoring the reaction of grassland canopies on fertilizer application is of major importance to enable a well-adjusted management supporting a sustainable production of the grass crop. Up to date, grassland managers estimate the nutrient status and growth dynamics of grasslands by costly and time-consuming field surveys, which only provide low temporal and spatial data density. Grassland mapping using remotely-sensed Vegetation Indices (VIs) has the potential to contribute to solving these problems. In this study, we explored the potential of VIs for distinguishing five differently-fertilized grassland communities. Therefore, we collected spectral signatures of these communities in a long-term fertilization experiment (since 1941) in Germany throughout the growing seasons 2012–2014. Fifteen VIs were calculated and their seasonal developments investigated. Welch tests revealed that the accuracy of VIs for distinguishing these grassland communities varies throughout the growing season. Thus, the selection of the most promising single VI for grassland mapping was dependent on the date of the spectra acquisition. A random forests classification using all calculated VIs reduced variations in classification accuracy within the growing season and provided a higher overall precision of classification. Thus, we recommend a careful selection of VIs for grassland mapping or the utilization of temporally-stable methods, i.e., including a set of VIs in the random forests algorithm. Full article
Figures

Open AccessArticle
Assessing the Potential of Sentinel-2 and Pléiades Data for the Detection of Prosopis and Vachellia spp. in Kenya
Remote Sens. 2017, 9(1), 74; doi:10.3390/rs9010074 (registering DOI) -
Abstract
Prosopis was introduced to Baringo, Kenya in the early 1980s for provision of fuelwood and for controlling desertification through the Fuelwood Afforestation Extension Project (FAEP). Since then, Prosopis has hybridized and spread throughout the region. Prosopis has negative ecological impacts on biodiversity and
[...] Read more.
Prosopis was introduced to Baringo, Kenya in the early 1980s for provision of fuelwood and for controlling desertification through the Fuelwood Afforestation Extension Project (FAEP). Since then, Prosopis has hybridized and spread throughout the region. Prosopis has negative ecological impacts on biodiversity and socio-economic effects on livelihoods. Vachellia tortilis, on the other hand, is the dominant indigenous tree species in Baringo and is an important natural resource, mostly preferred for wood, fodder and charcoal production. High utilization due to anthropogenic pressure is affecting the Vachellia populations, whereas the well adapted Prosopis—competing for nutrients and water—has the potential to replace the native Vachellia vegetation. It is vital that both species are mapped in detail to inform stakeholders and for designing management strategies for controlling the Prosopis invasion. For the Baringo area, few remote sensing studies have been carried out. We propose a detailed and robust object-based Random Forest (RF) classification on high spatial resolution Sentinel-2 (ten meter) and Pléiades (two meter) data to detect Prosopis and Vachellia spp. for Marigat sub-county, Baringo, Kenya. In situ reference data were collected to train a RF classifier. Classification results were validated by comparing the outputs to independent reference data of test sites from the “Woody Weeds” project and the Out-Of-Bag (OOB) confusion matrix generated in RF. Our results indicate that both datasets are suitable for object-based Prosopis and Vachellia classification. Higher accuracies were obtained by using the higher spatial resolution Pléiades data (OOB accuracy 0.83 and independent reference accuracy 0.87–0.91) compared to the Sentinel-2 data (OOB accuracy 0.79 and independent reference accuracy 0.80–0.96). We conclude that it is possible to separate Prosopis and Vachellia with good accuracy using the Random Forest classifier. Given the cost of Pléiades, the free of charge Sentinel-2 data provide a viable alternative as the increased spectral resolution compensates for the lack of spatial resolution. With global revisit times of five days from next year onwards, Sentinel-2 based classifications can probably be further improved by using temporal information in addition to the spectral signatures. Full article
Figures

Open AccessFeature PaperEditorial
Measures of Spirituality/Religiosity—Description of Concepts and Validation of Instruments
Religions 2017, 8(1), 11; doi:10.3390/rel8010011 (registering DOI) -
Abstract Why do we need some more questionnaires to measure aspects of spirituality/religiosity when we already have so many well-tried instruments in use?[...] Full article
Open AccessReview
Phytomedicine in Joint Disorders
Nutrients 2017, 9(1), 70; doi:10.3390/nu9010070 (registering DOI) -
Abstract
Chronic joint inflammatory disorders such as osteoarthritis and rheumatoid arthritis have in common an upsurge of inflammation, and oxidative stress, resulting in progressive histological alterations and disabling symptoms. Currently used conventional medication (ranging from pain-killers to biological agents) is potent, but frequently associated
[...] Read more.
Chronic joint inflammatory disorders such as osteoarthritis and rheumatoid arthritis have in common an upsurge of inflammation, and oxidative stress, resulting in progressive histological alterations and disabling symptoms. Currently used conventional medication (ranging from pain-killers to biological agents) is potent, but frequently associated with serious, even life-threatening side effects. Used for millennia in traditional herbalism, medicinal plants are a promising alternative, with lower rate of adverse events and efficiency frequently comparable with that of conventional drugs. Nevertheless, their mechanism of action is in many cases elusive and/or uncertain. Even though many of them have been proven effective in studies done in vitro or on animal models, there is a scarcity of human clinical evidence. The purpose of this review is to summarize the available scientific information on the following joint-friendly medicinal plants, which have been tested in human studies: Arnica montana, Boswellia spp., Curcuma spp., Equisetum arvense, Harpagophytum procumbens, Salix spp., Sesamum indicum, Symphytum officinalis, Zingiber officinalis, Panax notoginseng, and Whitania somnifera. Full article
Figures

Open AccessArticle
Challenging the Forward Shock Model with the 80 Ms Follow up of the X-ray Afterglow of Gamma-Ray Burst 130427A
Galaxies 2017, 5(1), 6; doi:10.3390/galaxies5010006 (registering DOI) -
Abstract
GRB 130427A was the most luminous gamma-ray burst detected in the last 30 years. With an isotropic energy output of 8.5×1053 erg and redshift of 0.34, it combined very high energetics with a relative proximity to Earth in an unprecedented
[...] Read more.
GRB 130427A was the most luminous gamma-ray burst detected in the last 30 years. With an isotropic energy output of 8.5×1053 erg and redshift of 0.34, it combined very high energetics with a relative proximity to Earth in an unprecedented way. Sensitive X-ray observatories such as XMM-Newton and Chandra have detected the afterglow of this event for a record-breaking baseline longer than 80 million seconds. The light curve displays a simple power-law over more than three decades in time. In this presentation, we explore the consequences of this result for a few models put forward so far to interpret GRB 130427A, and more in general the implication of this outcome in the context of the standard forward shock model. Full article
Figures

Figure 1

Open AccessReview
Carbon Nanostructures for Tagging in Electrochemical Biosensing: A Review
C 2017, 3(1), 3; doi:10.3390/c3010003 (registering DOI) -
Abstract
Growing demand for developing ultrasensitive electrochemical bioassays has led to the design of numerous signal amplification strategies. In this context, carbon-based nanomaterials have been demonstrated to be excellent tags for greatly amplifying the transduction of recognition events and simplifying the protocols used in
[...] Read more.
Growing demand for developing ultrasensitive electrochemical bioassays has led to the design of numerous signal amplification strategies. In this context, carbon-based nanomaterials have been demonstrated to be excellent tags for greatly amplifying the transduction of recognition events and simplifying the protocols used in electrochemical biosensing. This relevant role is due to the carbon-nanomaterials’ large surface area, excellent biological compatibility and ease functionalization and, in some cases, intrinsic electrochemistry. These carbon-based nanomaterials involve well-known carbon nanotubes (CNTs) and graphene as well as the more recent use of other carbon nanoforms. This paper briefly discusses the advantages of using carbon nanostructures and their hybrid nanocomposites for amplification through tagging in electrochemical biosensing platforms and provides an updated overview of some selected examples making use of labels involving carbon nanomaterials, acting both as carriers for signal elements and as electrochemical tracers, applied to the electrochemical biosensing of relevant (bio)markers. Full article
Figures

Open AccessFeature PaperArticle
High Energy-Efficient Windows with Silica Aerogel for Building Refurbishment: Experimental Characterization and Preliminary Simulations in Different Climate Conditions
Buildings 2017, 7(1), 8; doi:10.3390/buildings7010008 (registering DOI) -
Abstract
The paper deals with the potential of high energy-efficient windows with granular silica aerogel for energy saving in building refurbishment. Different glazing systems were investigated considering two kinds of granular silica aerogel and different glass layers. Thermal transmittance and optical properties of the
[...] Read more.
The paper deals with the potential of high energy-efficient windows with granular silica aerogel for energy saving in building refurbishment. Different glazing systems were investigated considering two kinds of granular silica aerogel and different glass layers. Thermal transmittance and optical properties of the samples were measured and used in building simulations. The aerogel impact on heat transfer is remarkable, allowing a thermal transmittance of 1.0–1.1 W/(m2·K) with granular aerogel in interspace only 15 mm in thickness. A 63% reduction in U-value was achieved when compared to the corresponding conventional windows, together with a significant reduction (30%) in light transmittance. When assembled with a low-e glass, the U-value reduction was lower (31%), but a moderate reduction in light transmittance (about 10%) was observed for larger granules. Energy simulations for a case study in different climate conditions (hot, moderate, and cold) showed a reduction in energy demand both for heating and cooling for silica aerogel glazing systems, when compared to the conventional ones. The new glazings are a suitable solution for building refurbishment, thanks to low U-values and total solar transmittance, also in warm climate conditions. Full article
Figures

Figure 1

News & Announcements

Follow MDPI

loading...

Jobs in Research

Selected Special Issues

Selected Collections

Institutional Membership

Member institutes benefit from discounts and convenient payment options.

Feedback

We are keen to hear what you think about MDPI. To leave us your feedback, suggestions or questions please click here.

See what our authors and guest editors say about us.

About MDPI

MDPI.com is a platform for peer-reviewed, scientific open-access journals operated by MDPI AG, based in Basel, Switzerland. Additional offices are located in Beijing and Wuhan (China) as well as in Barcelona (Spain).

Back to Top