Previous Issue
Volume 12, April
 
 

Microorganisms, Volume 12, Issue 5 (May 2024) – 180 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
18 pages, 4546 KiB  
Article
Facial Skin Microbiome Composition and Functional Shift with Aging
by Allison Garlet, Valerie Andre-Frei, Nicolas Del Bene, Hunter James Cameron, Anita Samuga, Vimal Rawat, Philipp Ternes and Sabrina Leoty-Okombi
Microorganisms 2024, 12(5), 1021; https://doi.org/10.3390/microorganisms12051021 (registering DOI) - 18 May 2024
Abstract
The change in the skin microbiome as individuals age is only partially known. To provide a better understanding of the impact of aging, whole-genome sequencing analysis was performed on facial skin swabs of 100 healthy female Caucasian volunteers grouped by age and wrinkle [...] Read more.
The change in the skin microbiome as individuals age is only partially known. To provide a better understanding of the impact of aging, whole-genome sequencing analysis was performed on facial skin swabs of 100 healthy female Caucasian volunteers grouped by age and wrinkle grade. Volunteers’ metadata were collected through questionnaires and non-invasive biophysical measurements. A simple model and a biological statistical model were used to show the difference in skin microbiota composition between the two age groups. Taxonomic and non-metric multidimensional scaling analysis showed that the skin microbiome was more diverse in the older group (≥55 yo). There was also a significant decrease in Actinobacteria, namely in Cutibacterium acnes, and an increase in Corynebacterium kroppenstedtii. Some Streptococcus and Staphylococcus species belonging to the Firmicutes phylum and species belonging to the Proteobacteria phylum increased. In the 18–35 yo younger group, the microbiome was characterized by a significantly higher proportion of Cutibacterium acnes and Lactobacillus, most strikingly, Lactobacillus crispatus. The functional analysis using GO terms revealed that the young group has a higher significant expression of genes involved in biological and metabolic processes and in innate skin microbiome protection. The better comprehension of age-related impacts observed will later support the investigation of skin microbiome implications in antiaging protection. Full article
(This article belongs to the Special Issue Microbiota in Human Health and Disease)
Show Figures

Figure 1

19 pages, 11216 KiB  
Article
Role of Probiotics in Gut Microbiome and Metabolome in Non-Alcoholic Fatty Liver Disease Mouse Model: A Comparative Study
by Tian Wu, Zheng Zeng and Yanyan Yu
Microorganisms 2024, 12(5), 1020; https://doi.org/10.3390/microorganisms12051020 (registering DOI) - 17 May 2024
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver condition worldwide. Numerous studies conducted recently have demonstrated a connection between the dysbiosis of the development of NAFLD and gut microbiota. Rebuilding a healthy gut ecology has been proposed as a strategy [...] Read more.
Non-alcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver condition worldwide. Numerous studies conducted recently have demonstrated a connection between the dysbiosis of the development of NAFLD and gut microbiota. Rebuilding a healthy gut ecology has been proposed as a strategy involving the use of probiotics. The purpose of this work is to investigate and compare the function of probiotics Akkermansia muciniphila (A. muciniphila) and VSL#3 in NAFLD mice. Rodent NAFLD was modeled using a methionine choline-deficient diet (MCD) with/without oral probiotic delivery. Subsequently, qPCR, histological staining, and liver function tests were conducted. Mass spectrometry-based analysis and 16S rDNA gene sequencing were used to investigate the liver metabolome and gut microbiota. We found that while both A. muciniphila and VSL#3 reduced hepatic fat content, A. muciniphila outperformed VSL#3. Furthermore, probiotic treatment restored the β diversity of the gut flora and A. muciniphila decreased the abundance of pathogenic bacteria such as Ileibacterium valens. These probiotics altered the metabolism in MCD mice, especially the glycerophospholipid metabolism. In conclusion, our findings distinguished the role of A. muciniphila and VSL#3 in NAFLD and indicated that oral-gavage probiotics remodel gut microbiota and improve metabolism, raising the possibility of using probiotics in the cure of NAFLD. Full article
(This article belongs to the Special Issue Probiotics, Prebiotics, and Gut Microbes)
14 pages, 749 KiB  
Article
Efficiency of Virucidal Disinfectants on Wood Surfaces in Animal Husbandry
by Martin J. Oettler, Franz J. Conraths, Uwe Roesler, Sven Reiche, Timo Homeier-Bachmann and Nicolai Denzin
Microorganisms 2024, 12(5), 1019; https://doi.org/10.3390/microorganisms12051019 - 17 May 2024
Abstract
The aim of this study was to test the inactivation of viruses on germ carriers of different types of wood using a disinfectant in order to assess the biosafety of wood as a building material in animal husbandry. The laboratory disinfectant efficacy tests [...] Read more.
The aim of this study was to test the inactivation of viruses on germ carriers of different types of wood using a disinfectant in order to assess the biosafety of wood as a building material in animal husbandry. The laboratory disinfectant efficacy tests were based on German testing guidelines and current European standards. Five different types of wood germ carriers, i.e., spruce (Picea abies), pine (Pinus sylvestris), poplar (Populus sp.), beech (Fagus sylvatica) and Douglas fir (Pseudotsuga menziesii), were inoculated with enveloped or non-enveloped viruses and then treated with one of three different disinfectants. The results revealed that intact, fine-sawn timber with a low roughness depth can be effectively inactivated. Peracetic acid proved to be the most effective disinfectant across all tests. Regardless of the pathogen and the type of wood, a concentration of 0.1% of the pure substance at a temperature of 10 °C and an exposure time of one hour can be recommended. At a temperature of −10 °C, a concentration of 0.75% is recommended. The basic chemicals formic acid and glutaraldehyde demonstrated only limited effectiveness overall. The synergistic effects of various wood components on the inactivation of viruses offer potential for further investigation. Disinfectant tests should also be conclusively verified in field trials to ensure that the results from standardised laboratory tests can be transferred to real stable conditions. Full article
(This article belongs to the Special Issue Disinfection and Sterilization of Microorganisms)
17 pages, 5358 KiB  
Article
Rapid Identification of Brucella Genus and Species In Silico and On-Site Using Novel Probes with CRISPR/Cas12a
by Yan Zhang, Yufei Lyu, Dongshu Wang, Meijie Feng, Sicheng Shen, Li Zhu, Chao Pan, Xiaodong Zai, Shuyi Wang, Yan Guo, Shujuan Yu, Xiaowei Gong, Qiwei Chen, Hengliang Wang, Yuanzhi Wang and Xiankai Liu
Microorganisms 2024, 12(5), 1018; https://doi.org/10.3390/microorganisms12051018 - 17 May 2024
Abstract
Human brucellosis caused by Brucella is a widespread zoonosis that is prevalent in many countries globally. The high homology between members of the Brucella genus and Ochrobactrum spp. often complicates the determination of disease etiology in patients. The efficient and reliable identification and [...] Read more.
Human brucellosis caused by Brucella is a widespread zoonosis that is prevalent in many countries globally. The high homology between members of the Brucella genus and Ochrobactrum spp. often complicates the determination of disease etiology in patients. The efficient and reliable identification and distinction of Brucella are of primary interest for both medical surveillance and outbreak purposes. A large amount of genomic data for the Brucella genus was analyzed to uncover novel probes containing single-nucleotide polymorphisms (SNPs). GAMOSCE v1.0 software was developed based on the above novel eProbes. In conjunction with clinical requirements, an RPA-Cas12a detection method was developed for the on-site determination of B. abortus and B. melitensis by fluorescence and lateral flow dipsticks (LFDs). We demonstrated the potential of these probes for rapid and accurate detection of the Brucella genus and five significant Brucella species in silico using GAMOSCE. GAMOSCE was validated on different Brucella datasets and correctly identified all Brucella strains, demonstrating a strong discrimination ability. The RPA-Cas12a detection method showed good performance in detection in clinical blood samples and veterinary isolates. We provide both in silico and on-site methods that are convenient and reliable for use in local hospitals and public health programs for the detection of brucellosis. Full article
(This article belongs to the Section Microbial Biotechnology)
18 pages, 12881 KiB  
Article
Sodium Polyoxotungstate Inhibits the Replication of Influenza Virus by Blocking the Nuclear Import of vRNP
by Zhuogang Li, Yuanyuan Duan, Yang Yu, Yue Su, Mingxin Zhang, Yarou Gao, Lefang Jiang, Haonan Zhang, Xiaoqin Lian, Xingjian Zhu, Jiaxin Ke, Qun Peng and Xulin Chen
Microorganisms 2024, 12(5), 1017; https://doi.org/10.3390/microorganisms12051017 - 17 May 2024
Abstract
Both pandemic and seasonal influenza are major health concerns, causing significant mortality and morbidity. Current influenza drugs primarily target viral neuraminidase and RNA polymerase, which are prone to drug resistance. Polyoxometalates (POMs) are metal cation clusters bridged by oxide anions. They have exhibited [...] Read more.
Both pandemic and seasonal influenza are major health concerns, causing significant mortality and morbidity. Current influenza drugs primarily target viral neuraminidase and RNA polymerase, which are prone to drug resistance. Polyoxometalates (POMs) are metal cation clusters bridged by oxide anions. They have exhibited potent anti-tumor, antiviral, and antibacterial effects. They have remarkable activity against various DNA and RNA viruses, including human immunodeficiency virus, herpes simplex virus, hepatitis B and C viruses, dengue virus, and influenza virus. In this study, we have identified sodium polyoxotungstate (POM-1) from an ion channel inhibitor library. In vitro, POM-1 has been demonstrated to have potent antiviral activity against H1N1, H3N2, and oseltamivir-resistant H1N1 strains. POM-1 can cause virion aggregation during adsorption, as well as endocytosis. However, the aggregation is reversible; it does not interfere with virus adsorption and endocytosis. Our results suggest that POM-1 exerts its antiviral activity by inhibiting the nuclear import of viral ribonucleoprotein (vRNP). This distinct mechanism of action, combined with its wide range of efficacy, positions POM-1 as a promising therapeutic candidate for influenza treatment and warrants further investigation. Full article
(This article belongs to the Section Antimicrobial Agents and Resistance)
Show Figures

Figure 1

19 pages, 8889 KiB  
Article
Divergence within the Taxon ‘Candidatus Phytoplasma asteris’ Confirmed by Comparative Genome Analysis of Carrot Strains
by Rafael Toth, Anna-Marie Ilic, Bruno Huettel, Bojan Duduk and Michael Kube
Microorganisms 2024, 12(5), 1016; https://doi.org/10.3390/microorganisms12051016 - 17 May 2024
Abstract
Phytoplasmas are linked to diseases in hundreds of economically important crops, including carrots. In carrots, phytoplasmosis is associated with leaf chlorosis and necrosis, coupled with inhibited root system development, ultimately leading to significant economic losses. During a field study conducted in Baden-Württemberg (Germany), [...] Read more.
Phytoplasmas are linked to diseases in hundreds of economically important crops, including carrots. In carrots, phytoplasmosis is associated with leaf chlorosis and necrosis, coupled with inhibited root system development, ultimately leading to significant economic losses. During a field study conducted in Baden-Württemberg (Germany), two strains of the provisional taxon ‘Candidatus Phytoplasma asteris’ were identified within a carrot plot. For further analysis, strains M8 and M33 underwent shotgun sequencing, utilising single-molecule-real-time (SMRT) long-read sequencing and sequencing-by-synthesis (SBS) paired-end short-read sequencing techniques. Hybrid assemblies resulted in complete de novo assemblies of two genomes harboring circular chromosomes and two plasmids. Analyses, including average nucleotide identity and sequence comparisons of established marker genes, confirmed the phylogenetic divergence of ‘Ca. P. asteris’ and a different assignment of strains to the 16S rRNA subgroup I-A for M33 and I-B for M8. These groups exhibited unique features, encompassing virulence factors and genes, associated with the mobilome. In contrast, pan-genome analysis revealed a highly conserved gene set related to metabolism across these strains. This analysis of the Aster Yellows (AY) group reaffirms the perception of phytoplasmas as bacteria that have undergone extensive genome reduction during their co-evolution with the host and an increase of genome size by mobilome. Full article
Show Figures

Figure 1

22 pages, 7000 KiB  
Article
Exploring Gut Microbiota Alterations with Trimethoprim-Sulfamethoxazole and Dexamethasone in a Humanized Microbiome Mouse Model
by George B. H. Green, Alexis N. Cox-Holmes, Olivia Backan, Olivia Valbak, Anna Claire E. Potier, Dongquan Chen, Casey D. Morrow, Christopher D. Willey and Braden C. McFarland
Microorganisms 2024, 12(5), 1015; https://doi.org/10.3390/microorganisms12051015 - 17 May 2024
Abstract
Along with the standard therapies for glioblastoma, patients are commonly prescribed trimethoprim-sulfamethoxazole (TMP-SMX) and dexamethasone for preventing infections and reducing cerebral edema, respectively. Because the gut microbiota impacts the efficacy of cancer therapies, it is important to understand how these medications impact the [...] Read more.
Along with the standard therapies for glioblastoma, patients are commonly prescribed trimethoprim-sulfamethoxazole (TMP-SMX) and dexamethasone for preventing infections and reducing cerebral edema, respectively. Because the gut microbiota impacts the efficacy of cancer therapies, it is important to understand how these medications impact the gut microbiota of patients. Using mice that have been colonized with human microbiota, this study sought to examine how TMP-SMX and dexamethasone affect the gut microbiome. Two lines of humanized microbiota (HuM) Rag1−/− mice, HuM1Rag and HuM2Rag, were treated with either TMP-SMX or dexamethasone via oral gavage once a day for a week. Fecal samples were collected pre-treatment (pre-txt), one week after treatment initiation (1 wk post txt), and three weeks post-treatment (3 wk post txt), and bacterial DNA was analyzed using 16S rRNA-sequencing. The HuM1Rag mice treated with TMP-SMX had significant shifts in alpha diversity, beta diversity, and functional pathways at all time points, whereas in the HuM2Rag mice, it resulted in minimal changes in the microbiome. Likewise, dexamethasone treatment resulted in significant changes in the microbiome of the HuM1Rag mice, whereas the microbiome of the HuM2Rag mice was mostly unaffected. The results of our study show that routine medications used during glioblastoma treatment can perturb gut microbiota, with some microbiome compositions being more sensitive than others, and these treatments could potentially affect the overall efficacy of standard-of-care therapy. Full article
(This article belongs to the Special Issue Gut Microbiota and Precise Modulation)
Show Figures

Figure 1

30 pages, 1875 KiB  
Review
Probiotics in the New Era of Human Milk Oligosaccharides (HMOs): HMO Utilization and Beneficial Effects of Bifidobacterium longum subsp. infantis M-63 on Infant Health
by Chyn Boon Wong, Huidong Huang, Yibing Ning and Jinzhong Xiao
Microorganisms 2024, 12(5), 1014; https://doi.org/10.3390/microorganisms12051014 - 17 May 2024
Abstract
A healthy gut microbiome is crucial for the immune system and overall development of infants. Bifidobacterium has been known to be a predominant species in the infant gut; however, an emerging concern is the apparent loss of this genus, in particular, Bifidobacterium longum [...] Read more.
A healthy gut microbiome is crucial for the immune system and overall development of infants. Bifidobacterium has been known to be a predominant species in the infant gut; however, an emerging concern is the apparent loss of this genus, in particular, Bifidobacterium longum subsp. infantis (B. infantis) in the gut microbiome of infants in industrialized nations, underscoring the importance of restoring this beneficial bacterium. With the growing understanding of the gut microbiome, probiotics, especially infant-type human-residential bifidobacteria (HRB) strains like B. infantis, are gaining prominence for their unique ability to utilize HMOs and positively influence infant health. This article delves into the physiology of a probiotic strain, B. infantis M-63, its symbiotic relationship with HMOs, and its potential in improving gastrointestinal and allergic conditions in infants and children. Moreover, this article critically assesses the role of HMOs and the emerging trend of supplementing infant formulas with the prebiotic HMOs, which serve as fuel for beneficial gut bacteria, thereby emulating the protective effects of breastfeeding. The review highlights the potential of combining B. infantis M-63 with HMOs as a feasible strategy to improve health outcomes in infants and children, acknowledging the complexities and requirements for further research in this area. Full article
(This article belongs to the Special Issue Probiotics, Prebiotics, and Gut Microbes)
Show Figures

Graphical abstract

20 pages, 355 KiB  
Review
A Review: Microbes and Their Effect on Growth Performance of Litopenaeus vannamei (White Leg Shrimps) during Culture in Biofloc Technology System
by Bilal Raza, Zhongming Zheng, Jinyong Zhu and Wen Yang
Microorganisms 2024, 12(5), 1013; https://doi.org/10.3390/microorganisms12051013 - 17 May 2024
Abstract
In the modern era of Aquaculture, biofloc technology (BFT) systems have attained crucial attention. This technology is used to reduce water renewal with the removal of nitrogen and to provide additional feed. In BFT, microorganisms play a crucial role due to their complex [...] Read more.
In the modern era of Aquaculture, biofloc technology (BFT) systems have attained crucial attention. This technology is used to reduce water renewal with the removal of nitrogen and to provide additional feed. In BFT, microorganisms play a crucial role due to their complex metabolic properties. Pathogens can be controlled through multiple mechanisms using probiotics, which can promote host development and enhance the quality of the culture environment. During culturing in a biofloc technology system, the supplementation of microalgae and its accompanying bacteria plays a beneficial role in reducing nitrogenous compounds. This enhances water quality and creates favorable environmental conditions for specific bacterial groups, while simultaneously reducing the dependency on carbon sources with higher content. The fluctuations in the bacterial communities of the intestine are closely associated with the severity of diseases related to shrimp and are used to evaluate the health status of shrimp. Overall, we will review the microbes associated with shrimp culture in BFT and their effects on shrimp growth. We will also examine the microbial impacts on the growth performance of L. vannamei in BFT, as well as the close relationship between probiotics and the intestinal microbes of L. vannamei. Full article
(This article belongs to the Special Issue Microbial Ecology and Sustainable Aquaculture)
15 pages, 5567 KiB  
Article
Bacillus siamensis Improves the Immune Status and Intestinal Health of Weaned Piglets by Improving Their Intestinal Microbiota
by Huawei Liu, Xinyu Liu, Haiyang Liu, Jiaqi Tang, Wei He, Tianqi Xu, Baojing Cheng, Baoming Shi and Jianchun Han
Microorganisms 2024, 12(5), 1012; https://doi.org/10.3390/microorganisms12051012 - 17 May 2024
Abstract
Previous studies on the early interference of gut microbiota by Bacillus siamensis (B. siamensis) in weaned piglets are rarely reported, and the present trial is a preliminary study. This experiment was conducted to investigate the effects of B. siamensis supplementation on [...] Read more.
Previous studies on the early interference of gut microbiota by Bacillus siamensis (B. siamensis) in weaned piglets are rarely reported, and the present trial is a preliminary study. This experiment was conducted to investigate the effects of B. siamensis supplementation on the growth performance, serum biochemistry, immune response, fecal short-chain fatty acids and microbiota of weaned piglets. Sixty weaned piglets were randomly divided into a control group (CON) and a B. siamensis group (BS), which were fed a basal diet and the basal diet supplemented with 5 × 1010 CFU B. siamensis per kg, respectively. Each group had 3 replicates and 10 piglets per replicate. The trial lasted for 28 days. The results showed that B. siamensis significantly increased the serum growth hormone (GH) and insulin-like growth factor (IGF) in piglets. Compared with the CON group, the levels of serum immunoglobulin and inflammatory factors in the BS group were significantly improved. In addition, the serum concentrations of zonulin and endotoxin (ET) in the BS group were lower. The dietary addition of B. siamensis significantly increased fecal short-chain fatty acid (SCFA) levels in piglets. Notably, B. siamensis improved the microbial composition by increasing beneficial genera, including Weissella, Lachnospiraceae_NK4A136_group and Bifidobacterium, and decreasing pathogenic genera, including Pantoea, Fusobacterium and Gemella, in piglet feces. Correlation analysis showed that the benefits of dietary B. siamensis supplementation were closely related to its improved microbial composition. In summary, the addition of B. siamensis can improve the immunity function, inflammatory response, gut permeability and SCFA levels of weaned piglets, which may be achieved through the improvement of their microbiota. Full article
(This article belongs to the Section Gut Microbiota)
Show Figures

Figure 1

14 pages, 1224 KiB  
Article
In-Host Flat-like Quasispecies: Characterization Methods and Clinical Implications
by Josep Gregori, Sergi Colomer-Castell, Marta Ibañez-Lligoña, Damir Garcia-Cehic, Carolina Campos, Maria Buti, Mar Riveiro-Barciela, Cristina Andrés, Maria Piñana, Alejandra González-Sánchez, Francisco Rodriguez-Frias, Maria Francesca Cortese, David Tabernero, Ariadna Rando-Segura, Tomás Pumarola, Juan Ignacio Esteban, Andrés Antón and Josep Quer
Microorganisms 2024, 12(5), 1011; https://doi.org/10.3390/microorganisms12051011 - 17 May 2024
Abstract
The repeated failure to treat patients chronically infected with hepatitis E (HEV) and C (HCV) viruses, despite the absence of resistance-associated substitutions (RAS), particularly in response to prolonged treatments with the mutagenic agents of HEV, suggests that quasispecies structure may play a crucial [...] Read more.
The repeated failure to treat patients chronically infected with hepatitis E (HEV) and C (HCV) viruses, despite the absence of resistance-associated substitutions (RAS), particularly in response to prolonged treatments with the mutagenic agents of HEV, suggests that quasispecies structure may play a crucial role beyond single point mutations. Quasispecies structured in a flat-like manner (referred to as flat-like) are considered to possess high average fitness, occupy a significant fraction of the functional genetic space of the virus, and exhibit a high capacity to evade specific or mutagenic treatments. In this paper, we studied HEV and HCV samples using high-depth next-generation sequencing (NGS), with indices scoring the different properties describing flat-like quasispecies. The significance of these indices was demonstrated by comparing the values obtained from these samples with those from acute infections caused by respiratory viruses (betacoronaviruses, enterovirus, respiratory syncytial viruses, and metapneumovirus). Our results revealed that flat-like quasispecies in HEV and HCV chronic infections without RAS are characterized by numerous low-frequency haplotypes with no dominant one. Surprisingly, these low-frequency haplotypes (at the nucleotide level) exhibited a high level of synonymity, resulting in much lower diversity at the phenotypic level. Currently, clinical approaches for managing flat-like quasispecies are lacking. Here, we propose methods to identifying flat-like quasispecies, which represents an essential initial step towards exploring alternative treatment protocols for viruses resistant to conventional therapies. Full article
Show Figures

Figure 1

12 pages, 1623 KiB  
Article
Use of Lactoperoxidase Inhibitory Effects to Extend the Shelf Life of Meat and Meat Products
by Filip Beňo, Adéla Velková, Filip Hruška and Rudolf Ševčík
Microorganisms 2024, 12(5), 1010; https://doi.org/10.3390/microorganisms12051010 - 17 May 2024
Abstract
Lactoperoxidase (LP) is an important enzyme of the salivary and mammary glands. It has been proven to increase the shelf life of raw milk by inhibiting the growth of bacteria, especially Listeria monocytogenes, Escherichia coli, Staphylococcus aureus, and Pseudomonas spp. [...] Read more.
Lactoperoxidase (LP) is an important enzyme of the salivary and mammary glands. It has been proven to increase the shelf life of raw milk by inhibiting the growth of bacteria, especially Listeria monocytogenes, Escherichia coli, Staphylococcus aureus, and Pseudomonas spp. The aim of this work was to verify the use of LP to extend the shelf life of meat products. In vitro experiments showed inhibitory effects on the selected bacteria (Listeria innocua (ATCC 33090), Staphylococcus saprophyticus (CP054440.1), and Pseudomonas fluorescens (ATCC 13525) due to a prolongation of the lag phase of growth curves. A lower increase in viable counts (p < 0.05) was also found by testing pork cubes’ surface treated with LP solution (5%) + L. innocua and stored for 7 days at 15 °C. LP has also been studied at concentrations of 0.25 and 0.50% in meat products (pork ham and pâté) during refrigerated storage (4 °C for 28 days). Lower viable counts were observed throughout the storage experiment, especially for 0.50% LP (p < 0.05). Meat products containing LP also showed lower levels of oxidation (MAD) (p < 0.05). According to these results, LP could extend the shelf life of a wider range of products. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Figure 1

16 pages, 720 KiB  
Review
Residents or Tourists: Is the Lactating Mammary Gland Colonized by Residential Microbiota?
by Ruomei Xu, Grace McLoughlin, Mark Nicol, Donna Geddes and Lisa Stinson
Microorganisms 2024, 12(5), 1009; https://doi.org/10.3390/microorganisms12051009 - 17 May 2024
Abstract
The existence of the human milk microbiome has been widely recognized for almost two decades, with many studies examining its composition and relationship to maternal and infant health. However, the richness and viability of the human milk microbiota is surprisingly low. Given that [...] Read more.
The existence of the human milk microbiome has been widely recognized for almost two decades, with many studies examining its composition and relationship to maternal and infant health. However, the richness and viability of the human milk microbiota is surprisingly low. Given that the lactating mammary gland houses a warm and nutrient-rich environment and is in contact with the external environment, it may be expected that the lactating mammary gland would contain a high biomass microbiome. This discrepancy raises the question of whether the bacteria in milk come from true microbial colonization in the mammary gland (“residents”) or are merely the result of constant influx from other bacterial sources (“tourists”). By drawing together data from animal, in vitro, and human studies, this review will examine the question of whether the lactating mammary gland is colonized by a residential microbiome. Full article
(This article belongs to the Section Microbiomes)
Show Figures

Figure 1

11 pages, 420 KiB  
Article
Epidemiological Study of Pathogens in Spontaneous Bacterial Peritonitis in 2017–2024—A Preliminary Report of the University Hospital in South-Eastern Poland
by Jolanta Gruszecka and Rafał Filip
Microorganisms 2024, 12(5), 1008; https://doi.org/10.3390/microorganisms12051008 - 17 May 2024
Abstract
Spontaneous Bacterial Peritonitis (SBP) is a serious complication and a common cause of death in patients with liver cirrhosis. Between January 2017 and March 2024, a retrospective study was conducted involving 302 patients (>18 years old) with ascites treated at a tertiary referral [...] Read more.
Spontaneous Bacterial Peritonitis (SBP) is a serious complication and a common cause of death in patients with liver cirrhosis. Between January 2017 and March 2024, a retrospective study was conducted involving 302 patients (>18 years old) with ascites treated at a tertiary referral center in south-eastern Poland. Microbiological analysis of the ascitic fluids was performed in all patients. The presence of microorganisms was found in samples from 17 patients, and 21 pathogens were isolated, including 15 Gram-positive bacteria and 6 Gram-negative bacteria. Staphylococcus epidermidis, MRCNS (methicillin-resistant coagulase-negative staphylococci, resistant to all beta-lactam antibiotics: penicillins, penicillins with beta-lactamase inhibitor, cephalosporins and carbapenems) was the main pathogen detected (19.05%, 4/21), followed by Enterococcus faecalis (9.52%, 2/21), Enterococcus faecium (9.52%, 2/21), Staphylococcus haemolyticus, MRCNS (4.76%, 1/21), Streptococcus mitis (9.52%, 2/21), Streptococcus parasanguinis (9.52%, 2/21), Micrococcus luteus (4.76%, 1/21) and Bacillus spp. (4.76%, 1/21). The following Gram-negative bacteria were also found in the specimens examined: Escherichia coli, ESBL (extended-spectrum β-lactamase producing E. coli) (4.76%, 1/21), Escherichia coli (4.76%, 1/21), Pseudomonas aeruginosa (4.76%, 1/21), Klebsiella oxytoca (9.52%, 2/21) and Sphingomonas paucimobilis (4.76%, 1/21). Gram-positive bacteria caused nosocomial infections in nine patients with SBP, Gram-negative bacteria caused nosocomial infections in two patients. In six patients with SBP, community-acquired infections caused by Gram-negative bacteria were found in three cases, Gram-positive bacteria in two cases, and in one case, community-acquired infection was caused by mixed Gram-positive and Gram-negative. Bacteria isolated from patients with hospital-acquired SBP showed higher drug resistance than those found in patients with non-hospital SBP. Bacterial infections in cirrhotic patients with complications may be responsible for their deteriorating health. Prompt intervention is critical to reducing mortality. Full article
Show Figures

Figure 1

17 pages, 2333 KiB  
Article
Abundance, Characterization and Diversity of Culturable Anoxygenic Phototrophic Bacteria in Manitoban Marshlands
by Katia Messner and Vladimir Yurkov
Microorganisms 2024, 12(5), 1007; https://doi.org/10.3390/microorganisms12051007 - 17 May 2024
Viewed by 216
Abstract
Marshes are an important ecosystem, acting as a biodiversity hotspot, a carbon sink and a bioremediation site, breaking down anthropogenic waste such as antibiotics, metals and fertilizers. Due to their participation in these metabolic activities and their capability to contribute to primary productivity, [...] Read more.
Marshes are an important ecosystem, acting as a biodiversity hotspot, a carbon sink and a bioremediation site, breaking down anthropogenic waste such as antibiotics, metals and fertilizers. Due to their participation in these metabolic activities and their capability to contribute to primary productivity, the microorganisms in such habitats have become of interest to investigate. Since Proteobacteria were previously found to be abundant and the waters are well aerated and organic-rich, this study on the presence of anoxygenic phototrophic bacteria, purple non-sulfur bacteria and aerobic anoxygenic phototrophs in marshes was initiated. One sample was collected at each of the seven Manitoban sites, and anoxygenic phototrophs were cultivated and enumerated. A group of 14 strains, which represented the phylogenetic diversity of the isolates, was physiologically investigated further. Aerobic anoxygenic phototrophs and purple non-sulfur bacteria were present at each location, and they belonged to the α- and β-Proteobacteria subphyla. Some were closely related to known heavy metal reducers (Brevundimonas) and xenobiotic decomposers (Novosphingobium and Sphingomonas). All were able to synthesize the photosynthetic complexes aerobically. This research highlights the diversity of and the potential contributions that anoxygenic phototrophs make to the essential functions taking place in wetlands. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

15 pages, 1553 KiB  
Article
Ticks and Tick-Borne Pathogens Circulating in Peri-Domestic Areas in Mainland Portugal
by Leonardo Moerbeck, Ricardo Parreira, Magdalena Szczotko, Gonçalo Seixas, Rita Velez, Małgorzata Dmitryjuk, Ana Sofia Santos, Ana Domingos and Sandra Antunes
Microorganisms 2024, 12(5), 1006; https://doi.org/10.3390/microorganisms12051006 - 16 May 2024
Viewed by 268
Abstract
Over the years, tick-borne pathogens (TBPs) have garnered significant interest due to their medical, veterinary and economic importance. Additionally, TBPs have drawn attention to how these microorganisms interact with their own vectors, increasing the risk to human and animal infection of emerging and [...] Read more.
Over the years, tick-borne pathogens (TBPs) have garnered significant interest due to their medical, veterinary and economic importance. Additionally, TBPs have drawn attention to how these microorganisms interact with their own vectors, increasing the risk to human and animal infection of emerging and reemerging zoonoses. In this sense, ticks, which are obligate hematophagous ectoparasites, have a key role in maintaining and transmitting TBPs among humans and animals. The aim of this study was to assess the prevalence of neglected TBPs in mainland Portugal, namely Anaplasma spp., Babesia spp., Ehrlichia spp. and Neoehrlichia mikurensis. DNA fragments were detected in questing ticks collected from five different ecological areas under investigation. To the best of the authors’ knowledge, this study reports new worldwide findings, including B. bigemina infecting Ixodes frontalis, Ixodes ricinus and Rhipicephalus sanguineus sensu lato. Additionally, it presents new findings in Portugal of N. mikurensis infecting I. ricinus and of presumably Wolbachia endosymbionts being detected in I. ricinus. Overall, there were 208 tick samples that were negative for all screened TBPs. The results herein obtained raise concerns about the circulation of neglected TBPs in mainland Portugal, especially in anthropophilic ticks, highlighting the importance of adopting a One Health perspective. Full article
(This article belongs to the Special Issue The One Health Challenge: Zoonotic Parasites)
Show Figures

Figure 1

16 pages, 2836 KiB  
Article
Pre-Bleaching Coral Microbiome Is Enriched in Beneficial Taxa and Functions
by Laís F. O. Lima, Amanda T. Alker, Megan M. Morris, Robert A. Edwards, Samantha J. de Putron and Elizabeth A. Dinsdale
Microorganisms 2024, 12(5), 1005; https://doi.org/10.3390/microorganisms12051005 - 16 May 2024
Viewed by 134
Abstract
Coral reef health is tightly connected to the coral holobiont, which is the association between the coral animal and a diverse microbiome functioning as a unit. The coral holobiont depends on key services such as nitrogen and sulfur cycling mediated by the associated [...] Read more.
Coral reef health is tightly connected to the coral holobiont, which is the association between the coral animal and a diverse microbiome functioning as a unit. The coral holobiont depends on key services such as nitrogen and sulfur cycling mediated by the associated bacteria. However, these microbial services may be impaired in response to environmental changes, such as thermal stress. A perturbed microbiome may lead to coral bleaching and disease outbreaks, which have caused an unprecedented loss in coral cover worldwide, particularly correlated to a warming ocean. The response mechanisms of the coral holobiont under high temperatures are not completely understood, but the associated microbial community is a potential source of acquired heat-tolerance. Here we investigate the effects of increased temperature on the taxonomic and functional profiles of coral surface mucous layer (SML) microbiomes in relationship to coral–algal physiology. We used shotgun metagenomics in an experimental setting to understand the dynamics of microbial taxa and genes in the SML microbiome of the coral Pseudodiploria strigosa under heat treatment. The metagenomes of corals exposed to heat showed high similarity at the level of bacterial genera and functional genes related to nitrogen and sulfur metabolism and stress response. The coral SML microbiome responded to heat with an increase in the relative abundance of taxa with probiotic potential, and functional genes for nitrogen and sulfur acquisition. Coral–algal physiology significantly explained the variation in the microbiome at taxonomic and functional levels. These consistent and specific microbial taxa and gene functions that significantly increased in proportional abundance in corals exposed to heat are potentially beneficial to coral health and thermal resistance. Full article
(This article belongs to the Special Issue Marine Microbial Diversity: Focus on Corals)
Show Figures

Figure 1

29 pages, 2902 KiB  
Review
Exploring the Toxin-Mediated Mechanisms in Clostridioides difficile Infection
by Evdokia Pourliotopoulou, Theodoros Karampatakis and Melania Kachrimanidou
Microorganisms 2024, 12(5), 1004; https://doi.org/10.3390/microorganisms12051004 - 16 May 2024
Viewed by 251
Abstract
Clostridioides difficile infection (CDI) is the leading cause of nosocomial antibiotic-associated diarrhea, and colitis, with increasing incidence and healthcare costs. Its pathogenesis is primarily driven by toxins produced by the bacterium C. difficile, Toxin A (TcdA) and Toxin B (TcdB). Certain strains [...] Read more.
Clostridioides difficile infection (CDI) is the leading cause of nosocomial antibiotic-associated diarrhea, and colitis, with increasing incidence and healthcare costs. Its pathogenesis is primarily driven by toxins produced by the bacterium C. difficile, Toxin A (TcdA) and Toxin B (TcdB). Certain strains produce an additional toxin, the C. difficile transferase (CDT), which further enhances the virulence and pathogenicity of C. difficile. These toxins disrupt colonic epithelial barrier integrity, and induce inflammation and cellular damage, leading to CDI symptoms. Significant progress has been made in the past decade in elucidating the molecular mechanisms of TcdA, TcdB, and CDT, which provide insights into the management of CDI and the future development of novel treatment strategies based on anti-toxin therapies. While antibiotics are common treatments, high recurrence rates necessitate alternative therapies. Bezlotoxumab, targeting TcdB, is the only available anti-toxin, yet limitations persist, prompting ongoing research. This review highlights the current knowledge of the structure and mechanism of action of C. difficile toxins and their role in disease. By comprehensively describing the toxin-mediated mechanisms, this review provides insights for the future development of novel treatment strategies and the management of CDI. Full article
(This article belongs to the Special Issue Recent Advances in Clostridioides difficile Infection)
Show Figures

Figure 1

21 pages, 2232 KiB  
Article
Whole Genome Sequence Analysis of Listeria monocytogenes Isolates Obtained from the Beef Production Chain in Gauteng Province, South Africa
by James Gana, Nomakorinte Gcebe, Rian Edward Pierneef, Yi Chen, Rebone Moerane and Abiodun Adewale Adesiyun
Microorganisms 2024, 12(5), 1003; https://doi.org/10.3390/microorganisms12051003 - 16 May 2024
Viewed by 171
Abstract
The study used whole-genome sequencing (WGS) and bioinformatics analysis for the genomic characterization of 60 isolates of Listeria monocytogenes obtained from the beef production chain (cattle farms, abattoirs, and retail outlets) in Gauteng province, South Africa. The sequence types (STs), clonal complexes (CCs), [...] Read more.
The study used whole-genome sequencing (WGS) and bioinformatics analysis for the genomic characterization of 60 isolates of Listeria monocytogenes obtained from the beef production chain (cattle farms, abattoirs, and retail outlets) in Gauteng province, South Africa. The sequence types (STs), clonal complexes (CCs), and the lineages of the isolates were determined using in silico multilocus sequence typing (MLST). We used BLAST-based analyses to identify virulence and antimicrobial genes, plasmids, proviruses/prophages, and the CRISPR-Cas system. The study investigated any association of the detected genes to the origin in the beef production chain of the L. monocytogenes isolates. Overall, in 60 isolates of Listeria monocytogenes, there were seven STs, six CCs, forty-four putative virulence factors, two resistance genes, one plasmid with AMR genes, and three with conjugative genes, one CRISPR gene, and all 60 isolates were positive for proviruses/prophages. Among the seven STs detected, ST204 (46.7%) and ST2 (21.7%) were the most prominent, with ST frequency varying significantly (p < 0.001). The predominant CC detected were CC2 (21.7%) and CC204 (46.7%) in lineages I and II, respectively. Of the 44 virulence factors detected, 26 (across Listeria Pathogenicity Islands, LIPIs) were present in all the isolates. The difference in the detection frequency varied significantly (p < 0.001). The two AMR genes (fosX and vga(G)) detected were present in all 60 (100%) isolates of L. monocytogenes. The only plasmid, NF033156, was present in three (5%) isolates. A CRISPR-Cas system was detected in six (10%), and all the isolates carried proviruses/prophages. The source and sample type significantly affected the frequencies of STs and virulence factors in the isolates of L. monocytogenes. The presence of fosX and vga(G) genes in all L. monocytogenes isolates obtained from the three industries of the beef production chain can potentially cause therapeutic implications. Our study, which characterized L. monocytogenes recovered from the three levels in the beef production chain, is the first time genomics was performed on this type of data set in the country, and this provides insights into the health implications of Listeria. Full article
Show Figures

Figure 1

15 pages, 1523 KiB  
Article
Real-Time PCR (qtPCR) to Discover the Fate of Plant Growth-Promoting Rhizobacteria (PGPR) in Agricultural Soils
by Ilenia Iosa, Caterina Agrimonti and Nelson Marmiroli
Microorganisms 2024, 12(5), 1002; https://doi.org/10.3390/microorganisms12051002 - 16 May 2024
Viewed by 151
Abstract
To optimize the application of plant growth-promoting rhizobacteria (PGPR) in field trials, tracking methods are needed to assess their shelf life and to determine the elements affecting their effectiveness and their interactions with plants and native soil microbiota. This work developed a real-time [...] Read more.
To optimize the application of plant growth-promoting rhizobacteria (PGPR) in field trials, tracking methods are needed to assess their shelf life and to determine the elements affecting their effectiveness and their interactions with plants and native soil microbiota. This work developed a real-time PCR (qtPCR) method which traces and quantifies bacteria when added as microbial consortia, including five PGPR species: Burkholderia ambifaria, Bacillus amyloliquefaciens, Azotobacter chroococcum, Pseudomonas fluorescens, and Rahnella aquatilis. Through a literature search and in silico sequence analyses, a set of primer pairs which selectively tag three bacterial species (B. ambifaria, B. amyloliquefaciens and R. aquatilis) was retrieved. The primers were used to trace these microbial species in a field trial in which the consortium was tested as a biostimulant on two wheat varieties, in combination with biochar and the mycorrhizal fungus Rhizophagus intraradices. The qtPCR assay demonstrated that the targeted bacteria had colonized and grown into the soil, reaching a maximum of growth between 15 and 20 days after inoculum. The results also showed biochar had a positive effect on PGPR growth. In conclusion, qtPCR was once more an effective method to trace the fate of supplied bacterial species in the consortium when used as a cargo system for their delivery. Full article
Show Figures

Figure 1

11 pages, 7420 KiB  
Communication
Differential Epigenetic Regulation in Uninfected and Tuberculosis–Human Immunodeficiency Virus Co-Infected Patients
by Katlego Mamabolo, Reubina Wadee, Yvonne Perner, Pumza Magangane, Sanelisiwe Thinasonke Duze and Musa Marimani
Microorganisms 2024, 12(5), 1001; https://doi.org/10.3390/microorganisms12051001 - 16 May 2024
Viewed by 192
Abstract
This study aimed to compare the degree of epigenetic modifications between a TB-HIV co-infected cohort and uninfected subjects. Formalin-fixed paraffin-embedded (FFPE) tissues were retrieved from 45 TB-HIV co-infected and 45 control individuals. Real-time PCR was applied to compare the level of expression of [...] Read more.
This study aimed to compare the degree of epigenetic modifications between a TB-HIV co-infected cohort and uninfected subjects. Formalin-fixed paraffin-embedded (FFPE) tissues were retrieved from 45 TB-HIV co-infected and 45 control individuals. Real-time PCR was applied to compare the level of expression of genes involved in epigenetic regulation. The protein multiplex assay was used to assess the degree of protein modification. DNA sequencing was used to determine the evolutionary relationships between the infecting HIV and Mtb strains. Our results indicated a significant increase in the expression of the five candidate genes in the patients with TB-HIV relative to the control cohort. A sharp increase in the degree of histone methylation, acetylation and phosphorylation was observed in TB-HIV co-infected patients. The phylogenetic analysis classified the strains into three distinct HIV clusters and five Mtb clusters. The disparities in the expression profiles of our candidate genes between the TB-HIV cohort and non-TB-HIV group highlights the important role played by various TB and HIV strains in regulating the host gene expression landscape. Full article
Show Figures

Figure 1

8 pages, 377 KiB  
Brief Report
Specific Mycobacterium tuberculosis Strain Circulating in Prison Revealed by Cost-Effective Amplicon Sequencing
by Joaquín Hurtado, María Noel Bentancor, Paula Laserra, Cecilia Coitinho and Gonzalo Greif
Microorganisms 2024, 12(5), 999; https://doi.org/10.3390/microorganisms12050999 - 15 May 2024
Viewed by 234
Abstract
This scientific study focuses on tuberculosis (TB) within prison settings, where persons deprived of liberty (PDL) face significantly higher rates of the disease compared to the general population. The research employs the low-cost amplicon sequencing of Mycobacterium tuberculosis strains, aiming first to identify [...] Read more.
This scientific study focuses on tuberculosis (TB) within prison settings, where persons deprived of liberty (PDL) face significantly higher rates of the disease compared to the general population. The research employs the low-cost amplicon sequencing of Mycobacterium tuberculosis strains, aiming first to identify specific lineages and also to detect mutations associated with drug resistance. The method involves multiplex amplification, DNA extraction, and sequencing, providing valuable insights into TB dynamics and resistance-mutation profiles within the prison system at an affordable cost. The study identifies a characteristic lineage (X) circulating among PDLs in the penitentiary system in Uruguay, absent in the general population, and notes its prevalence at prison entry. No high-confidence mutations associated with drug resistance were found. The findings underscore the importance of molecular epidemiology in TB control, emphasizing the potential for intra-prison transmissions and the need for broader studies to understand strain dynamics. Full article
(This article belongs to the Special Issue Mycobacterial Tuberculosis Pathogenesis and Vaccine Development)
Show Figures

Figure 1

17 pages, 2704 KiB  
Article
Improving Surfactin Production in Bacillus subtilis 168 by Metabolic Engineering
by Zihao Guo, Jiuyu Sun, Qinyuan Ma, Mengqi Li, Yamin Dou, Shaomei Yang and Xiuzhen Gao
Microorganisms 2024, 12(5), 998; https://doi.org/10.3390/microorganisms12050998 - 15 May 2024
Viewed by 171
Abstract
Surfactin is widely used in the petroleum extraction, cosmetics, biopharmaceuticals and agriculture industries. It possesses antibacterial and antiviral activities and can reduce interfacial tension. Bacillus are commonly used as production chassis, but wild-type Bacillus subtilis 168 cannot synthesise surfactin. In this study, the [...] Read more.
Surfactin is widely used in the petroleum extraction, cosmetics, biopharmaceuticals and agriculture industries. It possesses antibacterial and antiviral activities and can reduce interfacial tension. Bacillus are commonly used as production chassis, but wild-type Bacillus subtilis 168 cannot synthesise surfactin. In this study, the phosphopantetheinyl transferase (PPTase) gene sfp* (with a T base removed) was overexpressed and enzyme activity was restored, enabling B. subtilis 168 to synthesise surfactin with a yield of 747.5 ± 6.5 mg/L. Knocking out ppsD and yvkC did not enhance surfactin synthesis. Overexpression of predicted surfactin transporter gene yfiS increased its titre to 1060.7 ± 89.4 mg/L, while overexpression of yerP, ycxA and ycxA-efp had little or negative effects on surfactin synthesis, suggesting YfiS is involved in surfactin efflux. By replacing the native promoter of the srfA operon encoding surfactin synthase with three promoters, surfactin synthesis was significantly reduced. However, knockout of the global transcriptional regulator gene codY enhanced the surfactin titre to 1601.8 ± 91.9 mg/L. The highest surfactin titre reached 3.89 ± 0.07 g/L, with the yield of 0.63 ± 0.02 g/g DCW, after 36 h of fed-batch fermentation in 5 L fermenter. This study provides a reference for further understanding surfactin synthesis and constructing microbial cell factories. Full article
(This article belongs to the Special Issue Bacterial Engineering and Metabolism Regulation)
Show Figures

Figure 1

24 pages, 9531 KiB  
Article
Study of the Impact of the Parasitic Microalgae Coccomyxa parasitica on the Health of Bivalve Modiolus kurilensis
by Ayna V. Tumas, Veronika A. Slatvinskaya, Vadim V. Kumeiko and Yulia N. Sokolnikova
Microorganisms 2024, 12(5), 997; https://doi.org/10.3390/microorganisms12050997 - 15 May 2024
Viewed by 153
Abstract
The invasion of bivalves by parasitic microalgae Coccomyxa is widespread and causes pathologies and dysfunctions of the organs, especially in the most valuable products: the mantle and the muscle. The pathogenesis of the disease remains completely unknown. In this study, based on a [...] Read more.
The invasion of bivalves by parasitic microalgae Coccomyxa is widespread and causes pathologies and dysfunctions of the organs, especially in the most valuable products: the mantle and the muscle. The pathogenesis of the disease remains completely unknown. In this study, based on a macroscopic examination of Modiolus kurilensis and microalgae count in each infected individual, four stages of disease development with characteristic pathognomonic symptoms were described. During the progression of the disease, the concentration of alkaline phosphatase, glucose, calcium, hemolytic and agglutinating activities, number of basophils, eosinophils, phagocytes, and cells with reactive oxygen species increased in the hemolymph, while number of agranulocytes, cells with lysosomes, dead hemocytes, total protein concentration, as well as the weight of mollusks decreased. In the nephridia and digestive gland, necrosis, invasion of Nematopsis sp., hemocyte infiltration, and fibrosis increased. The ratio of changed tubules and occurrence of granulocytomas increased in the digestive gland, while the base membrane, nephrocytes and concretions changed in the nephridia. This study helps establish the variability of these parameters under normal conditions and their alteration during the disease. Moreover, these findings can be used for veterinary monitoring of the state of bivalves in natural and aquaculture populations. Full article
(This article belongs to the Special Issue Microorganisms and Diseases Associated with Aquatic Animals 2.0)
14 pages, 2543 KiB  
Article
Comparative In Vitro Killing by Pradofloxacin in Comparison to Ceftiofur, Enrofloxacin, Florfenicol, Marbofloxacin, Tildipirosin, Tilmicosin and Tulathromycin against Bovine Respiratory Bacterial Pathogens
by Joseph M. Blondeau and Shantelle D. Fitch
Microorganisms 2024, 12(5), 996; https://doi.org/10.3390/microorganisms12050996 - 15 May 2024
Viewed by 152
Abstract
Pradofloxacin is the newest of the veterinary fluoroquinolones to be approved for use in animals—initially companion animals and most recently food animals. It has a broad spectrum of in vitro activity, working actively against Gram-positive/negative, atypical and some anaerobic microorganisms. It simultaneously targets [...] Read more.
Pradofloxacin is the newest of the veterinary fluoroquinolones to be approved for use in animals—initially companion animals and most recently food animals. It has a broad spectrum of in vitro activity, working actively against Gram-positive/negative, atypical and some anaerobic microorganisms. It simultaneously targets DNA gyrase (topoisomerase type II) and topoisomerase type IV, suggesting a lower propensity to select for antimicrobial resistance. The purpose of this study was to determine the rate and extent of bacterial killing by pradofloxacin against bovine strains of Mannheimia haemolytica and Pasteurella multocida, in comparison with several other agents (ceftiofur, enrofloxacin, florfenicol, marbofloxacin, tildipirosin, tilmicosin and tulathromycin) using four clinically relevant drug concentrations: minimum inhibitory and mutant prevention drug concentration, maximum serum and maximum tissue drug concentrations. At the maximum serum and tissue drug concentrations, pradofloxacin killed 99.99% of M. haemolytica cells following 5 min of drug exposure (versus growth to 76% kill rate for the other agents) and 94.-1−98.6% of P. multocida following 60−120 min of drug exposure (versus growth to 98.6% kill rate for the other agents). Statistically significant differences in kill rates were seen between the various drugs tested depending on drug concentration and time of sampling after drug exposure. Full article
(This article belongs to the Special Issue Bacterial Infections and Antibiotic Resistance in Veterinary Medicine)
18 pages, 1269 KiB  
Article
Increasing Rate of Fatal Streptococcus pyogenes Bacteriemia—A Challenge for Prompt Diagnosis and Appropriate Therapy in Real Praxis
by Vaclava Adamkova, Vanda Gabriela Adamkova, Gabriela Kroneislova, Jan Zavora, Marie Kroneislova, Michal Huptych and Helena Lahoda Brodska
Microorganisms 2024, 12(5), 995; https://doi.org/10.3390/microorganisms12050995 - 15 May 2024
Viewed by 157
Abstract
Streptococcus pyogenes, group A streptococci (GAS) bacteriaemia, is a life-threatening infection with high mortality, requiring fast diagnosis together with the use of appropriate antibiotic therapy as soon as possible. Our study analysed data from 93 patients with GAS bacteraemia at the General [...] Read more.
Streptococcus pyogenes, group A streptococci (GAS) bacteriaemia, is a life-threatening infection with high mortality, requiring fast diagnosis together with the use of appropriate antibiotic therapy as soon as possible. Our study analysed data from 93 patients with GAS bacteraemia at the General University Hospital in Prague between January 2006 and March 2024. In the years 2016–2019 there was an increase in GAS bacteraemia. Mortality in the period 2006–2019 was 21.9%; in the period 2020–2024, the mortality increased to 41.4%, p = 0.08. At the same time, in the post-2020 period, the time from hospital admission to death was reduced from 9.5 days to 3 days. A significant predictor of worse outcome in this period was high levels of procalcitonin, >35.1 µg/L (100% sensitivity and 82.35% specificity), and lactate, >5 mmol/L (90.91% sensitivity and 91.67% specificity). Myoglobin was a significant predictor in both compared periods, the AUC was 0.771, p = 0.044, and the AUC was an even 0.889, p ≤ 0.001, respectively. All isolates of S. pyogenes were susceptible to penicillin, and resistance to clindamycin was 20.3% from 2006–2019 and 10.3% in 2020–2024. Appropriate therapy was initiated in 89.1%. and 96.6%, respectively. We hypothesise that the increase in mortality after 2020 might be due to a decrease in the immune status of the population. Full article
(This article belongs to the Special Issue Bacteremia and Sepsis)
20 pages, 668 KiB  
Article
Assessment of the Safety and Probiotic Properties of Enterococcus faecium B13 Isolated from Fermented Chili
by Jingmin Xiao, Cai Chen, Zhuxian Fu, Shumin Wang and Fan Luo
Microorganisms 2024, 12(5), 994; https://doi.org/10.3390/microorganisms12050994 - 15 May 2024
Viewed by 176
Abstract
Enterococcus faecium B13, selected from fermentation chili, has been proven to promote animal growth by previous studies, but it belongs to opportunistic pathogens, so a comprehensive evaluation of its probiotic properties and safety is necessary. In this study, the probiotic properties and safety [...] Read more.
Enterococcus faecium B13, selected from fermentation chili, has been proven to promote animal growth by previous studies, but it belongs to opportunistic pathogens, so a comprehensive evaluation of its probiotic properties and safety is necessary. In this study, the probiotic properties and safety of B13 were evaluated at the genetic and phenotype levels in vitro and then confirmed in vivo. The genome of B13 contains one chromosome and two plasmids. The average nucleotide identity indicated that B13 was most closely related to the fermentation-plant-derived strain. The strain does not carry the major virulence genes of the clinical E. faecium strains but contains aac(6′)-Ii, ant (6)-Ia, msrC genes. The strain had a higher tolerance to acid at pH 3.0, 4.0, and 0.3% bile salt and a 32.83% free radical DPPH clearance rate. It can adhere to Caco-2 cells and reduce the adhesion of E. coli to Caco-2 cells. The safety assessment revealed that the strain showed no hemolysis and did not exhibit gelatinase, ornithine decarboxylase, lysine decarboxylase, or tryptophanase activity. It was sensitive to twelve antibiotics but was resistant to erythromycin, rifampicin, tetracycline, doxycycline, and minocycline. Experiments in vivo have shown that B13 can be located in the ileum and colon and has no adverse effects on experiment animals. After 28 days of feeding, B13 did not remarkable change the α-diversity of the gut flora or increase the virulence genes. Our study demonstrated that E. faecium B13 may be used as a probiotic candidate. Full article
(This article belongs to the Section Antimicrobial Agents and Resistance)
13 pages, 1180 KiB  
Article
The Role of Bacteria in Acute Oak Decline in South-West Poland
by Miłosz Tkaczyk and Katarzyna Sikora
Microorganisms 2024, 12(5), 993; https://doi.org/10.3390/microorganisms12050993 - 15 May 2024
Viewed by 208
Abstract
The process of multifactorial oak disease has been of interest to scientists from all over the world for many years. Recently, a new phenomenon has been added to the model related to oak decline, acute oak dieback, which causes oak decline and was [...] Read more.
The process of multifactorial oak disease has been of interest to scientists from all over the world for many years. Recently, a new phenomenon has been added to the model related to oak decline, acute oak dieback, which causes oak decline and was first described in the UK. This study presents research on this phenomenon in the area of the largest oak stand complex in Poland, the so-called Krotoszyn Plateau. This work was carried out in two stages. In the first stage, 54 trees were tested for the presence of bacteria using molecular biology (real-time PCR). Subsequently, a tissue fragment was taken for inoculation from the trees in which the presence of B. goodwinii and G. quercinecans bacteria was confirmed. The isolates obtained were used to test Koch’s postulates and for biochemical analyses for Polish strains. In addition, the results obtained were also compared with the presence of A. biguttatus, which is considered a bacterial vector, which, in turn, confirmed that the bacteria responsible for the AOD phenomenon can also be present in trees not inhabited by this insect. The results obtained confirmed the presence of bacteria and their potential to cause necrosis in oaks, which fits into the model of the spiral disease that has been causing mass mortality of oaks in this naturally and economically valuable area since the 1980s. Full article
(This article belongs to the Special Issue Phytopathogens: Detection and Control)
Show Figures

Figure 1

15 pages, 965 KiB  
Article
Impact of Plant Oil Supplementation on Lipid Production and Fatty Acid Composition in Cunninghamella elegans TISTR 3370
by Surasak Khankhum, Karnjana Khamkaew, Hua Li, Chuenjit Prakitchaiwattana and Sirithon Siriamornpun
Microorganisms 2024, 12(5), 992; https://doi.org/10.3390/microorganisms12050992 - 15 May 2024
Viewed by 181
Abstract
The Cunninghamella genus has been utilized for the production of PUFA-rich lipids. Therefore, we investigate the impact of plant oil supplementation in the culture medium (soybean oil, rice bran oil, and perilla oil), selected based on their different fatty acid predominant, on lipid [...] Read more.
The Cunninghamella genus has been utilized for the production of PUFA-rich lipids. Therefore, we investigate the impact of plant oil supplementation in the culture medium (soybean oil, rice bran oil, and perilla oil), selected based on their different fatty acid predominant, on lipid production and fatty acid composition in C. elegans (TISTR 3370). All oils significantly boosted fungal growth, each influencing distinct patterns of lipid accumulation within the cells. The cells exhibited distinct patterns of lipid accumulation, forming intracellular lipid bodies, influenced by the different oils. Monounsaturated fatty acids (MUFAs) were found to be the most abundant, followed by polyunsaturated fatty acids (PUFAs) and saturated fatty acids (SFAs) in the fungal lipid cultures. Oleic acid was identified as the primary MUFA, while palmitic acid was the predominant SFA in perilla oil supplements. Remarkably, perilla oil supplement provided the highest total lipid production with arachidonic acid being exclusively detected. The percentage of PUFAs ranged from 12% in the control to 33% in soybean oil, 32% in rice bran oil, and 61% in perilla oil supplements. These findings offer valuable opportunities for advancing biotechnological applications in lipid production and customization, with implications for food and nutrition as well as pharmaceuticals and cosmetics. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Figure 1

19 pages, 5115 KiB  
Article
Secreted Metabolites from Pseudomonas, Staphylococcus, and Borrelia Biofilm: Modulation of Immunogenicity by a Nutraceutical Enzyme and Botanical Blend
by Dina Cruickshank, Debby E. Hamilton, Ifeanyi Iloba and Gitte S. Jensen
Microorganisms 2024, 12(5), 991; https://doi.org/10.3390/microorganisms12050991 - 15 May 2024
Viewed by 282
Abstract
Bacterial biofilms are hardy, adaptable colonies, evading immune recognition while triggering and sustaining inflammation. The goals for this study were to present a method for testing the immunogenicity of secreted metabolites from pathogenic biofilm and to document whether biofilm treated with a nutraceutical [...] Read more.
Bacterial biofilms are hardy, adaptable colonies, evading immune recognition while triggering and sustaining inflammation. The goals for this study were to present a method for testing the immunogenicity of secreted metabolites from pathogenic biofilm and to document whether biofilm treated with a nutraceutical enzyme and botanical blend (NEBB) showed evidence of reprogrammed bacterial metabolism, potentially becoming more recognizable to the immune system. We screened immune-modulating properties of metabolites from established biofilm from Pseudomonas aeruginosa (Pa), Stapholycoccus simulans (Ss), and Borrelia burgdorferi (Bb). Secreted metabolites significantly increased the cytokine production by human peripheral blood mononuclear cells, including Interleukin-1-beta (IL-1β), Interleukin-6 (IL-6), macrophage inflammatory protein-1-alpha (MIP-1α), tumor necrosis factor-alpha (TNF-α), interleukin-1 receptor antagonist (IL-1ra), and interleukin-10 (IL-10). Pa metabolites triggered the most robust increase in IL-1β, whereas Bb metabolites triggered the most robust increase in IL-10. NEBB-disrupted biofilm produced metabolites triggering altered immune modulation compared to metabolites from untreated biofilm. Metabolites from NEBB-disrupted biofilm triggered increased MIP-1α levels and reduced IL-10 levels, suggesting a reduced ability to suppress the recruitment of phagocytes compared to untreated biofilm. The results suggest that nutraceutical biofilm disruption offers strategies for inflammation management in chronic infectious illnesses. Further clinical studies are warranted to evaluate clinical correlations in infected human hosts. Full article
(This article belongs to the Special Issue Research on Natural Products against Pathogens)
Show Figures

Figure 1

Previous Issue
Back to TopTop