Previous Issue
Volume 14, April
 
 

Biomolecules, Volume 14, Issue 5 (May 2024) – 89 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
11 pages, 4615 KiB  
Communication
In Search of Better Peptide-(Derived from PD-L2)-Based Immune Checkpoint Inhibitors
by Boris Klebansky, Marina Backer, Vitaliy Gorbatyuk, Olga Vinogradova and Joseph Backer
Biomolecules 2024, 14(5), 597; https://doi.org/10.3390/biom14050597 (registering DOI) - 18 May 2024
Abstract
Current anti-cancer immune checkpoint therapy relies on antibodies that primarily target the PD-1/PD-L1(-L2) negative regulatory pathway. Although very successful in some cases for certain cancers, these antibodies do not help most patients who, presumably, should benefit from this type of therapy. Therefore, an [...] Read more.
Current anti-cancer immune checkpoint therapy relies on antibodies that primarily target the PD-1/PD-L1(-L2) negative regulatory pathway. Although very successful in some cases for certain cancers, these antibodies do not help most patients who, presumably, should benefit from this type of therapy. Therefore, an unmet clinical need for novel, more effective drugs targeting immune checkpoints remains. We have developed a series of high-potency peptide inhibitors interfering with PD-1/PD-L1(-L2) protein–protein interaction. Our best peptide inhibitors are 12 and 14 amino acids long and show sub-micromolar IC50 inhibitory activity in the in vitro assay. The positioning of the peptides within the PD-1 binding site is explored by extensive modeling. It is further supported by 2D NMR studies of PD-1/peptide complexes. These results reflect substantial progress in the development of immune checkpoint inhibitors using peptidomimetics. Full article
Show Figures

Figure 1

15 pages, 4181 KiB  
Article
PPARγ Antagonists Exhibit Antitumor Effects by Regulating Ferroptosis and Disulfidptosis
by Shiyu Zhang, Ying Wang, Junjie Gu, Yang Yang, Jing Liang, Yimei Wang, Ning Ji, Ming Liu, Yingxin Zhang, Silu Sun, Qianming Chen and Jing Li
Biomolecules 2024, 14(5), 596; https://doi.org/10.3390/biom14050596 (registering DOI) - 18 May 2024
Abstract
Oral squamous cell carcinoma (OSCC) stands as a prevalent subtype of head and neck squamous cell carcinoma, leading to disease recurrence and low survival rates. PPARγ, a ligand-dependent nuclear transcription factor, holds significance in tumor development. However, the role of PPARγ in the [...] Read more.
Oral squamous cell carcinoma (OSCC) stands as a prevalent subtype of head and neck squamous cell carcinoma, leading to disease recurrence and low survival rates. PPARγ, a ligand-dependent nuclear transcription factor, holds significance in tumor development. However, the role of PPARγ in the development of OSCC has not been fully elucidated. Through transcriptome sequencing analysis, we discovered a notable enrichment of ferroptosis-related molecules upon treatment with PPARγ antagonist. We subsequently confirmed the occurrence of ferroptosis through transmission electron microscopy, iron detection, etc. Notably, ferroptosis inhibitors could not completely rescue the cell death caused by PPARγ inhibitors, and the rescue effect was the greatest when disulfidptosis and ferroptosis inhibitors coexisted. We confirmed that the disulfidptosis phenotype indeed existed. Mechanistically, through qPCR and Western blotting, we observed that the inhibition of PPARγ resulted in the upregulation of heme oxygenase 1 (HMOX1), thereby promoting ferroptosis, while solute carrier family 7 member 11 (SLC7A11) was also upregulated to promote disulfidptosis in OSCC. Finally, a flow cytometry analysis of flight and multiplex immunohistochemical staining was used to characterize the immune status of PPARγ antagonist-treated OSCC tissues in a mouse tongue orthotopic transplantation tumor model, and the results showed that the inhibition of PPARγ led to ferroptosis and disulfidptosis, promoted the aggregation of cDCs and CD8+ T cells, and inhibited the progression of OSCC. Overall, our findings reveal that PPARγ plays a key role in regulating cell death in OSCC and that targeting PPARγ may be a potential therapeutic approach for OSCC. Full article
(This article belongs to the Special Issue Novel Molecules for Cancer Treatment 2.0)
Show Figures

Figure 1

18 pages, 1697 KiB  
Article
Detection and Analysis of Antidiarrheal Genes and Immune Factors in Various Shanghai Pig Breeds
by Jinyong Zhou, Fuqin Liu, Mengqian He, Jun Gao, Caifeng Wu, Yeqing Gan, Yi Bian, Jinliang Wei, Weijian Zhang, Wengang Zhang, Xuejun Han, Jianjun Dai and Lingwei Sun
Biomolecules 2024, 14(5), 595; https://doi.org/10.3390/biom14050595 - 17 May 2024
Abstract
The aim of this study was to identify effective genetic markers for the Antigen Processing Associated Transporter 1 (TAP1), α (1,2) Fucosyltransferase 1 (FUT1), Natural Resistance Associated Macrophage Protein 1 (NRAMP1), Mucin 4 (MUC4) and [...] Read more.
The aim of this study was to identify effective genetic markers for the Antigen Processing Associated Transporter 1 (TAP1), α (1,2) Fucosyltransferase 1 (FUT1), Natural Resistance Associated Macrophage Protein 1 (NRAMP1), Mucin 4 (MUC4) and Mucin 13 (MUC13) diarrhea-resistance genes in the local pig breeds, namely Shanghai white pigs, Fengjing pigs, Shawutou pigs, Meishan pigs and Pudong white pigs, to provide a reference for the characterization of local pig breed resources in Shanghai. Polymerase chain reaction–restriction fragment length polymorphism (PCR-RFLR) and sequence sequencing were applied to analyze the polymorphisms of the above genes and to explore the effects on the immunity of Shanghai local pig breeds in conjunction with some immunity factors. The results showed that both TAP1 and MUC4 genes had antidiarrheal genotype GG in the five pig breeds, AG and GG genotypes of the FUT1 gene were detected in Pudong white pigs, AA antidiarrheal genes of the NRAMP1 gene were detected in Meishan pigs, the AB type of the NRAMP1 gene was detected in Pudong white pigs, and antidiarrheal genotype GG of the MUC13 gene was only detected in Shanghai white pigs. The MUC13 antidiarrhea genotype GG was only detected in Shanghai white pigs. The TAP1 gene was moderately polymorphic in Shanghai white pigs, Fengjing pigs, Shawutou pigs, Meishan pigs and Pudong white pigs, among which TAP1 in Shanghai white pigs and Shawutou pigs did not satisfy the Hardy–Weinberg equilibrium. The FUT1 gene of Pudong white pigs was in a state of low polymorphism. NRAMP1 of Meishan pigs and Pudong white pigs was in a state of moderate polymorphism, which did not satisfy the Hardy–Weinberg equilibrium. The MUC4 genes of Shanghai white pigs and Pudong white pigs were in a state of low polymorphism, and the MUC4 genes of Fengjing pigs and Shawutou pigs were in a state of moderate polymorphism, and the MUC4 genes of Fengjing pigs and Pudong white pigs did not satisfy the Hardy–Weinberg equilibrium. The MUC13 gene of Shanghai white pigs and Pudong white pigs was in a state of moderate polymorphism. Meishan pigs had higher levels of IL-2, IL-10, IgG and TNF-α, and Pudong white pigs had higher levels of IL-12 than the other pigs. The level of interleukin 12 (IL-12) was significantly higher in the AA genotype of the MUC13 gene of Shanghai white pigs than in the AG genotype. The indicator of tumor necrosis factor alpha (TNF-α) in the AA genotype of the TAP1 gene of Fengjing pigs was significantly higher than that of the GG and AG genotypes. The indicator of IL-12 in the AG genotype of the Shawutou pig TAP1 gene was significantly higher than that of the GG genotype. The level of TNF-α in the AA genotype of the NRAMP1 gene of Meishan pigs was markedly higher than that of the AB genotype. The IL-2 level of the AG type of the FUT1 gene was obviously higher than that of the GG type of Pudong white pigs, the IL-2 level of the AA type of the MUC4 gene was dramatically higher than that of the AG type, and the IgG level of the GG type of the MUC13 gene was apparently higher than that of the AG type. The results of this study are of great significance in guiding the antidiarrhea breeding and molecular selection of Shanghai white pigs, Fengjing pigs, Shawutou pigs, Meishan pigs and Pudong white pigs and laying the foundation for future antidiarrhea breeding of various local pig breeds in Shanghai. Full article
(This article belongs to the Section Molecular Genetics)
23 pages, 6190 KiB  
Review
The Functional Significance of High Cysteine Content in Eye Lens γ-Crystallins
by Eugene Serebryany, Rachel W. Martin and Gemma R. Takahashi
Biomolecules 2024, 14(5), 594; https://doi.org/10.3390/biom14050594 - 17 May 2024
Abstract
Cataract disease is strongly associated with progressively accumulating oxidative damage to the extremely long-lived crystallin proteins of the lens. Cysteine oxidation affects crystallin folding, interactions, and light-scattering aggregation especially strongly due to the formation of disulfide bridges. Minimizing crystallin aggregation is crucial for [...] Read more.
Cataract disease is strongly associated with progressively accumulating oxidative damage to the extremely long-lived crystallin proteins of the lens. Cysteine oxidation affects crystallin folding, interactions, and light-scattering aggregation especially strongly due to the formation of disulfide bridges. Minimizing crystallin aggregation is crucial for lifelong lens transparency, so one might expect the ubiquitous lens crystallin superfamilies (α and βγ) to contain little cysteine. Yet, the Cys content of γ-crystallins is well above the average for human proteins. We review literature relevant to this longstanding puzzle and take advantage of expanding genomic databases and improved machine learning tools for protein structure prediction to investigate it further. We observe remarkably low Cys conservation in the βγ-crystallin superfamily; however, in γ-crystallin, the spatial positioning of Cys residues is clearly fine-tuned by evolution. We propose that the requirements of long-term lens transparency and high lens optical power impose competing evolutionary pressures on lens βγ-crystallins, leading to distinct adaptations: high Cys content in γ-crystallins but low in βB-crystallins. Aquatic species need more powerful lenses than terrestrial ones, which explains the high methionine content of many fish γ- (and even β-) crystallins. Finally, we discuss synergies between sulfur-containing and aromatic residues in crystallins and suggest future experimental directions. Full article
(This article belongs to the Special Issue Physiological and Pathological Functions of Crystallins)
Show Figures

Figure 1

17 pages, 6331 KiB  
Article
Reelin Regulates Developmental Desynchronization Transition of Neocortical Network Activity
by Mohammad I. K. Hamad, Obada Rabaya, Abdalrahim Jbara, Solieman Daoud, Petya Petrova, Bassam R. Ali, Mohammed Z. Allouh, Joachim Herz and Eckart Förster
Biomolecules 2024, 14(5), 593; https://doi.org/10.3390/biom14050593 - 17 May 2024
Abstract
During the first and second stages of postnatal development, neocortical neurons exhibit a wide range of spontaneous synchronous activity (SSA). Towards the end of the second postnatal week, the SSA is replaced by a more sparse and desynchronized firing pattern. The developmental desynchronization [...] Read more.
During the first and second stages of postnatal development, neocortical neurons exhibit a wide range of spontaneous synchronous activity (SSA). Towards the end of the second postnatal week, the SSA is replaced by a more sparse and desynchronized firing pattern. The developmental desynchronization of neocortical spontaneous neuronal activity is thought to be intrinsically generated, since sensory deprivation from the periphery does not affect the time course of this transition. The extracellular protein reelin controls various aspects of neuronal development through multimodular signaling. However, so far it is unclear whether reelin contributes to the developmental desynchronization transition of neocortical neurons. The present study aims to investigate the role of reelin in postnatal cortical developmental desynchronization using a conditional reelin knockout (RelncKO) mouse model. Conditional reelin deficiency was induced during early postnatal development, and Ca2+ recordings were conducted from organotypic cultures (OTCs) of the somatosensory cortex. Our results show that both wild type (wt) and RelncKO exhibited an SSA pattern during the early postnatal week. However, at the end of the second postnatal week, wt OTCs underwent a transition to a desynchronized network activity pattern, while RelncKO activity remained synchronous. This changing activity pattern suggests that reelin is involved in regulating the developmental desynchronization of cortical neuronal network activity. Moreover, the developmental desynchronization impairment observed in RelncKO was rescued when RelncKO OTCs were co-cultured with wt OTCs. Finally, we show that the developmental transition to a desynchronized state at the end of the second postnatal week is not dependent on glutamatergic signaling. Instead, the transition is dependent on GABAAR and GABABR signaling. The results suggest that reelin controls developmental desynchronization through GABAAR and GABABR signaling. Full article
(This article belongs to the Section Biological Factors)
Show Figures

Figure 1

20 pages, 23477 KiB  
Article
Dapagliflozin Improves Angiogenesis after Hindlimb Ischemia through the PI3K-Akt-eNOS Pathway
by Li Han, Guoxin Ye, Wenjing Su, Yuankang Zhu, Wenqi Wu, Liangshi Hao, Jing Gao, Zhen Li, Fang Liu and Junli Duan
Biomolecules 2024, 14(5), 592; https://doi.org/10.3390/biom14050592 - 16 May 2024
Viewed by 220
Abstract
Recently, the vascular protective effect of anti-diabetic agents has been receiving much attention. Sodium glucose cotransporter 2 (SGLT2) inhibitors had demonstrated reductions in cardiovascular (CV) events. However, the therapeutic effect of dapagliflozin on angiogenesis in peripheral arterial disease was unclear. This study aimed [...] Read more.
Recently, the vascular protective effect of anti-diabetic agents has been receiving much attention. Sodium glucose cotransporter 2 (SGLT2) inhibitors had demonstrated reductions in cardiovascular (CV) events. However, the therapeutic effect of dapagliflozin on angiogenesis in peripheral arterial disease was unclear. This study aimed to explore the effect and mechanism of dapagliflozin on angiogenesis after hindlimb ischemia. We first evaluated the effect of dapagliflozin on post-ischemic angiogenesis in the hindlimbs of rats. Laser doppler imaging was used to detect the hindlimb blood perfusion. In addition, we used immunohistochemistry to detect the density of new capillaries after ischemia. The relevant signaling pathways of dapagliflozin affecting post-ischemic angiogenesis were screened through phosphoproteomic detection, and then the mechanism of dapagliflozin affecting post-ischemic angiogenesis was verified at the level of human umbilical vein endothelial cells (HUVECs). After subjection to excision of the left femoral artery, all rats were randomly distributed into two groups: the dapagliflozin group (left femoral artery resection, receiving intragastric feeding with dapagliflozin (1 mg/kg/d), for 21 consecutive days) and the model group, that is, the positive control group (left femoral artery resection, receiving intragastric feeding with citric acid–sodium citrate buffer solution (1 mg/kg/d), for 21 consecutive days). In addition, the control group, that is the negative control group (without left femoral artery resection, receiving intragastric feeding with citric acid–sodium citrate buffer solution (1 mg/kg/d), for 21 consecutive days) was added. At day 21 post-surgery, the dapagliflozin-treatment group had the greatest blood perfusion, accompanied by elevated capillary density. The results showed that dapagliflozin could promote angiogenesis after hindlimb ischemia. Then, the ischemic hindlimb adductor-muscle tissue samples from three rats of model group and dapagliflozin group were taken for phosphoproteomic testing. The results showed that the PI3K-Akt-eNOS signaling pathway was closely related to the effect of dapagliflozin on post-ischemic angiogenesis. Our study intended to verify this mechanism from the perspective of endothelial cells. In vitro, dapagliflozin enhanced the tube formation, migration, and proliferation of HUVECs under ischemic and hypoxic conditions. Additionally, the dapagliflozin administration upregulated the expression of angiogenic factors phosphorylated Akt (p-Akt) and phosphorylated endothelial nitric oxide synthase (p-eNOS), as well as vascular endothelial growth factor A (VEGFA), both in vivo and in vitro. These benefits could be blocked by either phosphoinositide 3-kinase (PI3K) or eNOS inhibitor. dapagliflozin could promote angiogenesis after ischemia. This effect might be achieved by promoting the activation of the PI3K-Akt-eNOS signaling pathway. This study provided a new perspective, new ideas, and a theoretical basis for the treatment of peripheral arterial disease. Full article
Show Figures

Figure 1

13 pages, 5060 KiB  
Article
Fusion with ARRDC1 or CD63: A Strategy to Enhance p53 Loading into Extracellular Vesicles for Tumor Suppression
by Min Liu, Yu Zhang, Jianfeng He, Wanxi Liu, Zhexuan Li, Yiti Zhang, Ao Gu, Mingri Zhao, Mujun Liu and Xionghao Liu
Biomolecules 2024, 14(5), 591; https://doi.org/10.3390/biom14050591 - 16 May 2024
Viewed by 219
Abstract
Small extracellular vesicles (sEVs) have emerged as promising therapeutic agents and drug delivery vehicles. Targeted modification of sEVs and their contents using genetic modification strategies is one of the most popular methods. This study investigated the effects of p53 fusion with arrestin domain-containing [...] Read more.
Small extracellular vesicles (sEVs) have emerged as promising therapeutic agents and drug delivery vehicles. Targeted modification of sEVs and their contents using genetic modification strategies is one of the most popular methods. This study investigated the effects of p53 fusion with arrestin domain-containing protein 1 (ARRDC1) and CD63 on the generation of sEVs, p53 loading efficiency, and therapeutic efficacy. Overexpression of either ARRDC1–p53 (ARP) or CD63–p53 (CDP) significantly elevated p53 mRNA and protein levels. The incorporation of ARRDC1 and CD63 significantly enhanced HEK293T-sEV biogenesis, evidenced by significant increases in sEV-associated proteins TSG101 and LAMP1, resulting in a boost in sEV production. Importantly, fusion with ARRDC1 or CD63 substantially increased the efficiency of loading both p53 fusion proteins and its mRNA into sEVs. sEVs equipped with ARP or CDP significantly enhanced the enrichment of p53 fusion proteins and mRNA in p53-null H1299 cells, resulting in a marked increase in apoptosis and a reduction in cell proliferation, with ARP-sEVs demonstrating greater effectiveness than CDP-sEVs. These findings underscore the enhanced functionality of ARRDC1- and CD63-modified sEVs, emphasizing the potential of genetic modifications in sEV-based therapies for targeted cancer treatment. Full article
(This article belongs to the Topic Extracellular Vesicles in Cancer Diagnosis and Treatment)
Show Figures

Figure 1

17 pages, 1417 KiB  
Article
MedicalCLIP: Anomaly-Detection Domain Generalization with Asymmetric Constraints
by Liujie Hua, Yueyi Luo, Qianqian Qi and Jun Long
Biomolecules 2024, 14(5), 590; https://doi.org/10.3390/biom14050590 - 16 May 2024
Viewed by 171
Abstract
Medical data have unique specificity and professionalism, requiring substantial domain expertise for their annotation. Precise data annotation is essential for anomaly-detection tasks, making the training process complex. Domain generalization (DG) is an important approach to enhancing medical image anomaly detection (AD). This paper [...] Read more.
Medical data have unique specificity and professionalism, requiring substantial domain expertise for their annotation. Precise data annotation is essential for anomaly-detection tasks, making the training process complex. Domain generalization (DG) is an important approach to enhancing medical image anomaly detection (AD). This paper introduces a novel multimodal anomaly-detection framework called MedicalCLIP. MedicalCLIP utilizes multimodal data in anomaly-detection tasks and establishes irregular constraints within modalities for images and text. The key to MedicalCLIP lies in learning intramodal detailed representations, which are combined with text semantic-guided cross-modal contrastive learning, allowing the model to focus on semantic information while capturing more detailed information, thus achieving more fine-grained anomaly detection. MedicalCLIP relies on GPT prompts to generate text, reducing the demand for professional descriptions of medical data. Text construction for medical data helps to improve the generalization ability of multimodal models for anomaly-detection tasks. Additionally, during the text–image contrast-enhancement process, the model’s ability to select and extract information from image data is improved. Through hierarchical contrastive loss, fine-grained representations are achieved in the image-representation process. MedicalCLIP has been validated on various medical datasets, showing commendable domain generalization performance in medical-data anomaly detection. Improvements were observed in both anomaly classification and segmentation metrics. In the anomaly classification (AC) task involving brain data, the method demonstrated a 2.81 enhancement in performance over the best existing approach. Full article
Show Figures

Figure 1

20 pages, 4631 KiB  
Article
Gypenoside XVII Reduces Synaptic Glutamate Release and Protects against Excitotoxic Injury in Rats
by Cheng-Wei Lu, Tzu-Yu Lin, Kuan-Ming Chiu, Ming-Yi Lee and Su-Jane Wang
Biomolecules 2024, 14(5), 589; https://doi.org/10.3390/biom14050589 - 16 May 2024
Viewed by 141
Abstract
Excitotoxicity is a common pathological process in neurological diseases caused by excess glutamate. The purpose of this study was to evaluate the effect of gypenoside XVII (GP-17), a gypenoside monomer, on the glutamatergic system. In vitro, in rat cortical nerve terminals (synaptosomes), GP-17 [...] Read more.
Excitotoxicity is a common pathological process in neurological diseases caused by excess glutamate. The purpose of this study was to evaluate the effect of gypenoside XVII (GP-17), a gypenoside monomer, on the glutamatergic system. In vitro, in rat cortical nerve terminals (synaptosomes), GP-17 dose-dependently decreased glutamate release with an IC50 value of 16 μM. The removal of extracellular Ca2+ or blockade of N-and P/Q-type Ca2+ channels and protein kinase A (PKA) abolished the inhibitory effect of GP-17 on glutamate release from cortical synaptosomes. GP-17 also significantly reduced the phosphorylation of PKA, SNAP-25, and synapsin I in cortical synaptosomes. In an in vivo rat model of glutamate excitotoxicity induced by kainic acid (KA), GP-17 pretreatment significantly prevented seizures and rescued neuronal cell injury and glutamate elevation in the cortex. GP-17 pretreatment decreased the expression levels of sodium-coupled neutral amino acid transporter 1, glutamate synthesis enzyme glutaminase and vesicular glutamate transporter 1 but increased the expression level of glutamate metabolism enzyme glutamate dehydrogenase in the cortex of KA-treated rats. In addition, the KA-induced alterations in the N-methyl-D-aspartate receptor subunits GluN2A and GluN2B in the cortex were prevented by GP-17 pretreatment. GP-17 also prevented the KA-induced decrease in cerebral blood flow and arginase II expression. These results suggest that (i) GP-17, through the suppression of N- and P/Q-type Ca2+ channels and consequent PKA-mediated SNAP-25 and synapsin I phosphorylation, reduces glutamate exocytosis from cortical synaptosomes; and (ii) GP-17 has a neuroprotective effect on KA-induced glutamate excitotoxicity in rats through regulating synaptic glutamate release and cerebral blood flow. Full article
(This article belongs to the Section Natural and Bio-inspired Molecules)
Show Figures

Figure 1

11 pages, 1959 KiB  
Article
Cholesterol Oxime Olesoxime Assessed as a Potential Ligand of Human Cholinesterases
by Dora Kolić, Goran Šinko, Ludovic Jean, Mourad Chioua, José Dias, José Marco-Contelles and Zrinka Kovarik
Biomolecules 2024, 14(5), 588; https://doi.org/10.3390/biom14050588 - 15 May 2024
Viewed by 193
Abstract
Olesoxime, a cholesterol derivative with an oxime group, possesses the ability to cross the blood–brain barrier, and has demonstrated excellent safety and tolerability properties in clinical research. These characteristics indicate it may serve as a centrally active ligand of acetylcholinesterase (AChE) and butyrylcholinesterase [...] Read more.
Olesoxime, a cholesterol derivative with an oxime group, possesses the ability to cross the blood–brain barrier, and has demonstrated excellent safety and tolerability properties in clinical research. These characteristics indicate it may serve as a centrally active ligand of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), whose disruption of activity with organophosphate compounds (OP) leads to uncontrolled excitation and potentially life-threatening symptoms. To evaluate olesoxime as a binding ligand and reactivator of human AChE and BChE, we conducted in vitro kinetic studies with the active metabolite of insecticide parathion, paraoxon, and the warfare nerve agents sarin, cyclosarin, tabun, and VX. Our results showed that both enzymes possessed a binding affinity for olesoxime in the mid-micromolar range, higher than the antidotes in use (i.e., 2-PAM, HI-6, etc.). While olesoxime showed a weak ability to reactivate AChE, cyclosarin-inhibited BChE was reactivated with an overall reactivation rate constant comparable to that of standard oxime HI-6. Moreover, in combination with the oxime 2-PAM, the reactivation maximum increased by 10–30% for cyclosarin- and sarin-inhibited BChE. Molecular modeling revealed productive interactions between olesoxime and BChE, highlighting olesoxime as a potentially BChE-targeted therapy. Moreover, it might be added to OP poisoning treatment to increase the efficacy of BChE reactivation, and its cholesterol scaffold could provide a basis for the development of novel oxime antidotes. Full article
Show Figures

Figure 1

10 pages, 665 KiB  
Article
A Practical Guide for the Quality Evaluation of Fluobodies/Chromobodies
by Urša Štrancar, Claudia D’Ercole, Lucia Cikatricisová, Mirna Nakić, Matteo De March and Ario de Marco
Biomolecules 2024, 14(5), 587; https://doi.org/10.3390/biom14050587 - 15 May 2024
Viewed by 182
Abstract
Background: Fluorescent proteins (FPs) are pivotal reagents for flow cytometry analysis or fluorescent microscopy. A new generation of immunoreagents (fluobodies/chromobodies) has been developed by fusing recombinant nanobodies to FPs. Methods: We analyzed the quality of such biomolecules by a combination of gel filtration [...] Read more.
Background: Fluorescent proteins (FPs) are pivotal reagents for flow cytometry analysis or fluorescent microscopy. A new generation of immunoreagents (fluobodies/chromobodies) has been developed by fusing recombinant nanobodies to FPs. Methods: We analyzed the quality of such biomolecules by a combination of gel filtration and SDS-PAGE to identify artefacts due to aggregation or material degradation. Results: In the SDS-PAGE run, unexpected bands corresponding to separate fluobodies were evidenced and characterized as either degradation products or artefacts that systematically resulted in the presence of specific FPs and some experimental conditions. The elimination of N-terminal methionine from FPs did not impair the appearance of FP fragments, whereas the stability and migration characteristics of some FP constructs were strongly affected by heating in loading buffer, which is a step samples undergo before electrophoretic separation. Conclusions: In this work, we provide explanations for some odd results observed during the quality control of fluobodies and summarize practical suggestions for the choice of the most convenient FPs to fuse to antibody fragments. Full article
15 pages, 4253 KiB  
Article
SKGQA, a Peptide Derived from the ANA/BTG3 Protein, Cleaves Amyloid-β with Proteolytic Activity
by Yusuke Hatakawa, Rina Nakamura, Toshifumi Akizawa, Motomi Konishi, Akira Matsuda, Tomoyuki Oe, Motoaki Saito and Fumiaki Ito
Biomolecules 2024, 14(5), 586; https://doi.org/10.3390/biom14050586 - 15 May 2024
Viewed by 149
Abstract
Despite the extensive research conducted on Alzheimer’s disease (AD) over the years, no effective drug for AD treatment has been found. Therefore, the development of new drugs for the treatment of AD is of the utmost importance. We recently reported the proteolytic activities [...] Read more.
Despite the extensive research conducted on Alzheimer’s disease (AD) over the years, no effective drug for AD treatment has been found. Therefore, the development of new drugs for the treatment of AD is of the utmost importance. We recently reported the proteolytic activities of JAL-TA9 (YKGSGFRMI) and ANA-TA9 (SKGQAYRMA), synthetic peptides of nine amino acids each, derived from the Box A region of Tob1 and ANA/BTG3 proteins, respectively. Furthermore, two components of ANA-TA9, ANA-YA4 (YRMI) at the C-terminus end and ANA-SA5 (SKGQA) at the N-terminus end of ANA-TA9, exhibited proteolytic activity against amyloid-β (Aβ) fragment peptides. In this study, we identified the active center of ANA-SA5 using AEBSF, a serine protease inhibitor, and a peptide in which the Ser residue of ANA-SA5 was replaced with Leu. In addition, we demonstrate the proteolytic activity of ANA-SA5 against the soluble form Aβ42 (a-Aβ42) and solid insoluble form s-Aβ42. Furthermore, ANA-SA5 was not cytotoxic to A549 cells. These results indicate that ANA-SA5 is a promising Catalytide and a potential candidate for the development of new peptide drugs targeting Aβ42 for AD treatment. Full article
Show Figures

Figure 1

25 pages, 1055 KiB  
Review
Oncogenic Pathways and Targeted Therapies in Ovarian Cancer
by Carolina Lliberos, Gary Richardson and Antonella Papa
Biomolecules 2024, 14(5), 585; https://doi.org/10.3390/biom14050585 - 15 May 2024
Viewed by 168
Abstract
Epithelial ovarian cancer (EOC) is one of the most aggressive forms of gynaecological malignancies. Survival rates for women diagnosed with OC remain poor as most patients are diagnosed with advanced disease. Debulking surgery and platinum-based therapies are the current mainstay for OC treatment. [...] Read more.
Epithelial ovarian cancer (EOC) is one of the most aggressive forms of gynaecological malignancies. Survival rates for women diagnosed with OC remain poor as most patients are diagnosed with advanced disease. Debulking surgery and platinum-based therapies are the current mainstay for OC treatment. However, and despite achieving initial remission, a significant portion of patients will relapse because of innate and acquired resistance, at which point the disease is considered incurable. In view of this, novel detection strategies and therapeutic approaches are needed to improve outcomes and survival of OC patients. In this review, we summarize our current knowledge of the genetic landscape and molecular pathways underpinning OC and its many subtypes. By examining therapeutic strategies explored in preclinical and clinical settings, we highlight the importance of decoding how single and convergent genetic alterations co-exist and drive OC progression and resistance to current treatments. We also propose that core signalling pathways such as the PI3K and MAPK pathways play critical roles in the origin of diverse OC subtypes and can become new targets in combination with known DNA damage repair pathways for the development of tailored and more effective anti-cancer treatments. Full article
20 pages, 1112 KiB  
Review
Glyoxalase System in Breast and Ovarian Cancers: Role of MEK/ERK/SMAD1 Pathway
by Muhanad Alhujaily
Biomolecules 2024, 14(5), 584; https://doi.org/10.3390/biom14050584 - 15 May 2024
Viewed by 248
Abstract
The glyoxalase system, comprising GLO1 and GLO2 enzymes, is integral in detoxifying methylglyoxal (MGO) generated during glycolysis, with dysregulation implicated in various cancer types. The MEK/ERK/SMAD1 signaling pathway, crucial in cellular processes, influences tumorigenesis, metastasis, and angiogenesis. Altered GLO1 expression in cancer showcases [...] Read more.
The glyoxalase system, comprising GLO1 and GLO2 enzymes, is integral in detoxifying methylglyoxal (MGO) generated during glycolysis, with dysregulation implicated in various cancer types. The MEK/ERK/SMAD1 signaling pathway, crucial in cellular processes, influences tumorigenesis, metastasis, and angiogenesis. Altered GLO1 expression in cancer showcases its complex role in cellular adaptation and cancer aggressiveness. GLO2 exhibits context-dependent functions, contributing to both proapoptotic and antiapoptotic effects in different cancer scenarios. Research highlights the interconnected nature of these systems, particularly in ovarian cancer and breast cancer. The glyoxalase system’s involvement in drug resistance and its impact on the MEK/ERK/SMAD1 signaling cascade underscore their clinical significance. Furthermore, this review delves into the urgent need for effective biomarkers, exemplified in ovarian cancer, where the RAGE-ligand pathway emerges as a potential diagnostic tool. While therapeutic strategies targeting these pathways hold promise, this review emphasizes the challenges posed by context-dependent effects and intricate crosstalk within the cellular milieu. Insights into the molecular intricacies of these pathways offer a foundation for developing innovative therapeutic approaches, providing hope for enhanced cancer diagnostics and tailored treatment strategies. Full article
(This article belongs to the Section Biological Factors)
Show Figures

Figure 1

13 pages, 3334 KiB  
Article
Nerve Bundle Density and Expression of NGF and IL-1β Are Intra-Individually Heterogenous in Subtypes of Endometriosis
by Mahfuza Sreya, Dwayne R. Tucker, Jennifer Yi, Fahad T. Alotaibi, Anna F. Lee, Heather Noga and Paul J. Yong
Biomolecules 2024, 14(5), 583; https://doi.org/10.3390/biom14050583 - 15 May 2024
Viewed by 228
Abstract
Endometriosis is a gynecological disorder associated with local inflammation and neuroproliferation. Increased nerve bundle density has been attributed to increased expression of nerve growth factor (NGF) and interleukin–1β (IL-1β). Immunohistochemical analysis was carried out on 12 patients presenting with all three anatomic subtypes [...] Read more.
Endometriosis is a gynecological disorder associated with local inflammation and neuroproliferation. Increased nerve bundle density has been attributed to increased expression of nerve growth factor (NGF) and interleukin–1β (IL-1β). Immunohistochemical analysis was carried out on 12 patients presenting with all three anatomic subtypes of endometriosis (deep, superficial peritoneal, endometrioma) at surgery, with at least two surgically excised subtypes available for analysis. Immunolocalization for nerve bundle density around endometriosis using protein gene product 9.5 (PGP9.5), as well as NGF and IL-1β histoscores in endometriosis epithelium/stroma, was performed to evaluate differences in scores between lesions and anatomic subtypes per patient. Intra-individual heterogeneity in scores across lesions was assessed using the coefficient of variation (CV). The degree of score variability between subtypes was evaluated using the percentage difference between mean scores from one subtype to another subtype for each marker. PGP9.5 nerve bundle density was heterogenous across multiple subtypes of endometriosis, ranging from 50.0% to 173.2%, where most patients (8/12) showed CV ≥ 100%. The percentage difference in scores showed that PGP9.5 nerve bundle density and NGF and IL-1β expression were heterogenous between anatomic subtypes within the same patient. Based on these observations of intra-individual heterogeneity, we conclude that markers of neuroproliferation in endometriosis should be stratified by anatomic subtype in future studies of clinical correlation. Full article
(This article belongs to the Special Issue Molecular and Cell Biology in Endometriosis and Endometrial Cancer)
Show Figures

Figure 1

12 pages, 2016 KiB  
Communication
Comparative Analysis of Posiphen Pharmacokinetics across Different Species—Similar Absorption and Metabolism in Mouse, Rat, Dog and Human
by Maria L. Maccecchini and Diane R. Mould
Biomolecules 2024, 14(5), 582; https://doi.org/10.3390/biom14050582 - 15 May 2024
Viewed by 296
Abstract
Posiphen is a small molecule that exhibits neuroprotective properties by targeting multiple neurotoxic proteins involved in axonal transport, synaptic transmission, neuroinflammation, and cell death. Its broad-spectrum effects make it a promising candidate for treating neurodegenerative conditions, including Alzheimer’s and Parkinson’s diseases. Despite extensive [...] Read more.
Posiphen is a small molecule that exhibits neuroprotective properties by targeting multiple neurotoxic proteins involved in axonal transport, synaptic transmission, neuroinflammation, and cell death. Its broad-spectrum effects make it a promising candidate for treating neurodegenerative conditions, including Alzheimer’s and Parkinson’s diseases. Despite extensive investigation with animal models and human subjects, a comprehensive comparative analysis of Posiphen’s pharmacokinetics across studies remains elusive. Here, we address this gap by examining the metabolic profiles of Posiphen and its breakdown into two primary metabolites—N1 and N8—across species by measuring their concentrations in plasma, brain, and CSF using the LC-MS/MS method. While all three compounds effectively inhibit neurotoxic proteins, the N1 metabolite is associated with adverse effects. Our findings reveal the species-specific behavior of Posiphen, with both Posiphen and N8 being predominant in various species, while N1 remains a minor constituent, supporting the drug’s safety. Moreover, in plasma, Posiphen consistently showed fast clearance of all metabolites within 8 h in animal models and in human subjects, whereas in CSF or brain, the compound has an extended half-life of over 12 h. Combining all our human data and analyzing them by population pharmacokinetics showed that there are no differences between healthy volunteers, Alzheimer’s, and Parkinson’s patients. It also showed that Posiphen is absorbed and metabolized in a similar fashion across all animal species and human groups tested. These observations have critical implications for understanding the drug’s safety, therapeutic effect, and clinical translation. Full article
(This article belongs to the Special Issue Role of Amyloid Protein in Neurological Diseases)
Show Figures

Figure 1

15 pages, 3111 KiB  
Article
Novel Angiotensin-Converting Enzyme-Inhibitory Peptides Obtained from Trichiurus lepturus: Preparation, Identification and Potential Antihypertensive Mechanism
by Jiaming Cao, Boyuan Xiang, Baojie Dou, Jingfei Hu, Lei Zhang, Xinxin Kang, Mingsheng Lyu and Shujun Wang
Biomolecules 2024, 14(5), 581; https://doi.org/10.3390/biom14050581 - 15 May 2024
Viewed by 198
Abstract
Peptides possessing antihypertensive attributes via inhibiting the angiotensin-converting enzyme (ACE) were derived through the enzymatic degradation of Trichiurus lepturus (ribbonfish) using alkaline protease. The resulting mixture underwent filtration using centrifugation, ultrafiltration tubes, and Sephadex G-25 gels. Peptides exhibiting ACE-inhibitory properties and DPPH free-radical-scavenging [...] Read more.
Peptides possessing antihypertensive attributes via inhibiting the angiotensin-converting enzyme (ACE) were derived through the enzymatic degradation of Trichiurus lepturus (ribbonfish) using alkaline protease. The resulting mixture underwent filtration using centrifugation, ultrafiltration tubes, and Sephadex G-25 gels. Peptides exhibiting ACE-inhibitory properties and DPPH free-radical-scavenging abilities were isolated and subsequently purified via LC/MS-MS, leading to the identification of over 100 peptide components. In silico screening yielded five ACE inhibitory peptides: FAGDDAPR, QGPIGPR, IFPRNPP, AGFAGDDAPR, and GPTGPAGPR. Among these, IFPRNPP and AGFAGDDAPR were found to be allergenic, while FAGDDAPRR, QGPIGPR, and GPTGPAGP showed good ACE-inhibitory effects. IC50 values for the latter peptides were obtained from HUVEC cells: FAGDDAPRR (IC50 = 262.98 μM), QGPIGPR (IC50 = 81.09 μM), and GPTGPAGP (IC50 = 168.11 μM). Peptide constituents derived from ribbonfish proteins effectively modulated ACE activity, thus underscoring their therapeutic potential. Molecular docking and modeling corroborated these findings, emphasizing the utility of functional foods as a promising avenue for the treatment and prevention of hypertension, with potential ancillary health benefits and applications as substitutes for synthetic drugs. Full article
Show Figures

Figure 1

14 pages, 5847 KiB  
Article
Estetrol Inhibits Endometriosis Development in an In Vivo Murine Model
by Ana Sofia Zabala, Rocío Ayelem Conforti, María Belén Delsouc, Verónica Filippa, Maria Magdalena Montt-Guevara, Andrea Giannini, Tommaso Simoncini, Sandra Silvina Vallcaneras and Marilina Casais
Biomolecules 2024, 14(5), 580; https://doi.org/10.3390/biom14050580 - 15 May 2024
Viewed by 244
Abstract
Endometriosis is characterized by the growth of endometrial-like tissue outside the uterus, and it is associated with alterations in the expression of hormone receptors and inflammation. Estetrol (E4) is a weak estrogen that recently has been approved for contraception. We evaluated [...] Read more.
Endometriosis is characterized by the growth of endometrial-like tissue outside the uterus, and it is associated with alterations in the expression of hormone receptors and inflammation. Estetrol (E4) is a weak estrogen that recently has been approved for contraception. We evaluated the effect of E4 on the growth of endometriotic-like lesions and the expression of TNF-α, estrogen receptors (ERs), and progesterone receptors (PRs) in an in vivo murine model. Endometriosis was induced surgically in female C57BL/6 mice. E4 was delivered via Alzet pump (3 mg/kg/day) from the 15th postoperative day for 4 weeks. E4 significantly reduced the volume (p < 0.001) and weight (p < 0.05) of ectopic lesions. Histologically, E4 did not affect cell proliferation (PCNA immunohistochemistry) but it did increase cell apoptosis (TUNEL assay) (p < 0.05). Furthermore, it modulated oxidative stress (SOD, CAT, and GPX activity, p < 0.05) and increased lipid peroxidation (TBARS/MDA, p < 0.01). Molecular analysis showed mRNA (RT-qPCR) and protein (ELISA) expression of TNF-α decreased (p < 0.05) and mRNA expression of Esr2 reduced (p < 0.05), in contrast with the increased expression of Esr1 (p < 0.01) and Pgr (p < 0.05). The present study demonstrates for the first time that E4 limited the development and progression of endometriosis in vivo. Full article
(This article belongs to the Special Issue Cellular and Molecular Mechanisms of Endometriosis)
Show Figures

Figure 1

15 pages, 2014 KiB  
Article
BSA Binding and Aggregate Formation of a Synthetic Amino Acid with Potential for Promoting Fibroblast Proliferation: An In Silico, CD Spectroscopic, DLS, and Cellular Study
by Hayarpi Simonyan, Rosanna Palumbo, Satenik Petrosyan, Anna Mkrtchyan, Armen Galstyan, Ashot Saghyan, Pasqualina Liana Scognamiglio, Caterina Vicidomini, Marta Fik-Jaskólka and Giovanni N. Roviello
Biomolecules 2024, 14(5), 579; https://doi.org/10.3390/biom14050579 - 14 May 2024
Viewed by 369
Abstract
This study presents the chemical synthesis, purification, and characterization of a novel non-natural synthetic amino acid. The compound was synthesized in solution, purified, and characterized using NMR spectroscopy, polarimetry, and melting point determination. Dynamic Light Scattering (DLS) analysis demonstrated its ability to form [...] Read more.
This study presents the chemical synthesis, purification, and characterization of a novel non-natural synthetic amino acid. The compound was synthesized in solution, purified, and characterized using NMR spectroscopy, polarimetry, and melting point determination. Dynamic Light Scattering (DLS) analysis demonstrated its ability to form aggregates with an average size of 391 nm, extending to the low micrometric size range. Furthermore, cellular biological assays revealed its ability to enhance fibroblast cell growth, highlighting its potential for tissue regenerative applications. Circular dichroism (CD) spectroscopy showed the ability of the synthetic amino acid to bind serum albumins (using bovine serum albumin (BSA) as a model), and CD deconvolution provided insights into the changes in the secondary structures of BSA upon interaction with the amino acid ligand. Additionally, molecular docking using HDOCK software elucidated the most likely binding mode of the ligand inside the BSA structure. We also performed in silico oligomerization of the synthetic compound in order to obtain a model of aggregate to investigate computationally. In more detail, the dimer formation achieved by molecular self-docking showed two distinct poses, corresponding to the lowest and comparable energies, with one pose exhibiting a quasi-coplanar arrangement characterized by a close alignment of two aromatic rings from the synthetic amino acids within the dimer, suggesting the presence of π-π stacking interactions. In contrast, the second pose displayed a non-coplanar configuration, with the aromatic rings oriented in a staggered arrangement, indicating distinct modes of interaction. Both poses were further utilized in the self-docking procedure. Notably, iterative molecular docking of amino acid structures resulted in the formation of higher-order aggregates, with a model of a 512-mer aggregate obtained through self-docking procedures. This model of aggregate presented a cavity capable of hosting therapeutic cargoes and biomolecules, rendering it a potential scaffold for cell adhesion and growth in tissue regenerative applications. Overall, our findings highlight the potential of this synthetic amino acid for tissue regenerative therapeutics and provide valuable insights into its molecular interactions and aggregation behavior. Full article
(This article belongs to the Special Issue Protein Structure Prediction in Drug Discovery II)
Show Figures

Figure 1

12 pages, 1541 KiB  
Article
Effect of Flavonols of Aronia melanocarpa Fruits on Morphofunctional State of Immunocompetent Organs of Rats under Cyclophosphamide-Induced Immunosuppression
by Kseniya Bushmeleva, Alexandra Vyshtakalyuk, Dmitriy Terenzhev, Timur Belov, Evgeniy Nikitin and Vladimir Zobov
Biomolecules 2024, 14(5), 578; https://doi.org/10.3390/biom14050578 - 14 May 2024
Viewed by 314
Abstract
Aronia melanocarpa berries contain many compounds with potential benefits for human health. The food flavonoids quercetin and rutin, found in significant amounts in the fruits of A. melanocarpa, are known to have favourable effects on animal and human organisms. However, data on [...] Read more.
Aronia melanocarpa berries contain many compounds with potential benefits for human health. The food flavonoids quercetin and rutin, found in significant amounts in the fruits of A. melanocarpa, are known to have favourable effects on animal and human organisms. However, data on the effect of flavonols isolated from black chokeberry on immune functions during immunosuppression are not available in the literature. Thus, the aim of this study was to evaluate the effect of flavonol fraction isolated from A. melanocarpa fruits, in comparison with pure quercetin and rutin substances, on the dysfunctional state of rat thymus and spleen in immunodeficiency. The study was performed on Wistar rats. The animals were orally administered solutions of the investigated substances for 7 days: water, a mixture of quercetin and rutin and flavonol fraction of A. melanocarpa. For induction of immunosuppression, the animals were injected once intraperitoneally with cyclophosphamide. Substance administration was then continued for another 7 days. The results showed that under the influence of flavonols, there was a decrease in cyclophosphamide-mediated reaction of lipid peroxidation enhancement and stimulation of proliferation of lymphocytes of thymus and spleen in rats. At that, the effect of the flavonol fraction of aronia was more pronounced. Full article
Show Figures

Figure 1

21 pages, 2359 KiB  
Review
NEDD4 and NEDD4L: Ubiquitin Ligases Closely Related to Digestive Diseases
by Jiafan Xu, Wang Jiang, Tian Hu, Yan Long and Yueming Shen
Biomolecules 2024, 14(5), 577; https://doi.org/10.3390/biom14050577 - 13 May 2024
Viewed by 329
Abstract
Protein ubiquitination is an enzymatic cascade reaction and serves as an important protein post-translational modification (PTM) that is involved in the vast majority of cellular life activities. The key enzyme in the ubiquitination process is E3 ubiquitin ligase (E3), which catalyzes the binding [...] Read more.
Protein ubiquitination is an enzymatic cascade reaction and serves as an important protein post-translational modification (PTM) that is involved in the vast majority of cellular life activities. The key enzyme in the ubiquitination process is E3 ubiquitin ligase (E3), which catalyzes the binding of ubiquitin (Ub) to the protein substrate and influences substrate specificity. In recent years, the relationship between the subfamily of neuron-expressed developmental downregulation 4 (NEDD4), which belongs to the E3 ligase system, and digestive diseases has drawn widespread attention. Numerous studies have shown that NEDD4 and NEDD4L of the NEDD4 family can regulate the digestive function, as well as a series of related physiological and pathological processes, by controlling the subsequent degradation of proteins such as PTEN, c-Myc, and P21, along with substrate ubiquitination. In this article, we reviewed the appropriate functions of NEDD4 and NEDD4L in digestive diseases including cell proliferation, invasion, metastasis, chemotherapeutic drug resistance, and multiple signaling pathways, based on the currently available research evidence for the purpose of providing new ideas for the prevention and treatment of digestive diseases. Full article
Show Figures

Figure 1

12 pages, 1694 KiB  
Article
Apigenin Provides Structural Protection to Human Fibrinogen against Nitrosative Stress: Biochemical and Molecular Insights
by Aisha Farhana, Abdullah Alsrhani, Yusuf Saleem Khan, Mohammad Salahuddin, Mohammed Ubaidullah Sayeed and Zafar Rasheed
Biomolecules 2024, 14(5), 576; https://doi.org/10.3390/biom14050576 - 13 May 2024
Viewed by 270
Abstract
Background: Peroxynitrite (ONOO) is an oxidant linked with several human pathologies. Apigenin, a natural flavonoid known for its health benefits, remains unexplored in relation to ONOO effects. This study investigated the potential of apigenin to structurally protect fibrinogen, an essential [...] Read more.
Background: Peroxynitrite (ONOO) is an oxidant linked with several human pathologies. Apigenin, a natural flavonoid known for its health benefits, remains unexplored in relation to ONOO effects. This study investigated the potential of apigenin to structurally protect fibrinogen, an essential blood clotting factor, from ONOO-induced damage. Methods: Multi-approach analyses were carried out where fibrinogen was exposed to ONOO generation while testing the efficacy of apigenin. The role of apigenin against ONOO-induced modifications in fibrinogen was investigated using UV spectroscopy, tryptophan or tyrosine fluorescence, protein hydrophobicity, carbonylation, and electrophoretic analyses. Results: The findings demonstrate that apigenin significantly inhibits ONOO-induced oxidative damage in fibrinogen. ONOO caused reduced UV absorption, which was reversed by apigenin treatment. Moreover, ONOO diminished tryptophan and tyrosine fluorescence, which was effectively restored by apigenin treatment. Apigenin also reduced the hydrophobicity of ONOO-damaged fibrinogen. Moreover, apigenin exhibited protective effects against ONOO-induced protein carbonylation. SDS-PAGE analyses revealed that ONOOtreatment eliminated bands corresponding to fibrinogen polypeptide chains Aα and γ, while apigenin preserved these changes. Conclusions: This study highlights, for the first time, the role of apigenin in structural protection of human fibrinogen against peroxynitrite-induced nitrosative damage. Our data indicate that apigenin offers structural protection to all three polypeptide chains (Aα, Bβ, and γ) of human fibrinogen. Specifically, apigenin prevents the dislocation or breakdown of the amino acids tryptophan, tyrosine, lysine, arginine, proline, and threonine and also prevents the exposure of hydrophobic sites in fibrinogen induced by ONOO. Full article
Show Figures

Figure 1

20 pages, 1198 KiB  
Review
Chimeric Cell Therapies as a Novel Approach for Duchenne Muscular Dystrophy (DMD) and Muscle Regeneration
by Katarzyna Budzynska, Maria Siemionow, Katarzyna Stawarz, Lucile Chambily and Krzysztof Siemionow
Biomolecules 2024, 14(5), 575; https://doi.org/10.3390/biom14050575 - 13 May 2024
Viewed by 395
Abstract
Chimerism-based strategies represent a pioneering concept which has led to groundbreaking advancements in regenerative medicine and transplantation. This new approach offers therapeutic potential for the treatment of various diseases, including inherited disorders. The ongoing studies on chimeric cells prompted the development of Dystrophin-Expressing [...] Read more.
Chimerism-based strategies represent a pioneering concept which has led to groundbreaking advancements in regenerative medicine and transplantation. This new approach offers therapeutic potential for the treatment of various diseases, including inherited disorders. The ongoing studies on chimeric cells prompted the development of Dystrophin-Expressing Chimeric (DEC) cells which were introduced as a potential therapy for Duchenne Muscular Dystrophy (DMD). DMD is a genetic condition that leads to premature death in adolescent boys and remains incurable with current methods. DEC therapy, created via the fusion of human myoblasts derived from normal and DMD-affected donors, has proven to be safe and efficacious when tested in experimental models of DMD after systemic–intraosseous administration. These studies confirmed increased dystrophin expression, which correlated with functional and morphological improvements in DMD-affected muscles, including cardiac, respiratory, and skeletal muscles. Furthermore, the application of DEC therapy in a clinical study confirmed its long-term safety and efficacy in DMD patients. This review summarizes the development of chimeric cell technology tested in preclinical models and clinical studies, highlighting the potential of DEC therapy in muscle regeneration and repair, and introduces chimeric cell-based therapies as a promising, novel approach for muscle regeneration and the treatment of DMD and other neuromuscular disorders. Full article
(This article belongs to the Special Issue Skeletal Muscle Homeostasis and Regeneration)
Show Figures

Figure 1

17 pages, 910 KiB  
Review
A Survey of Deep Learning Methods for Estimating the Accuracy of Protein Quaternary Structure Models
by Xiao Chen, Jian Liu, Nolan Park and Jianlin Cheng
Biomolecules 2024, 14(5), 574; https://doi.org/10.3390/biom14050574 - 13 May 2024
Viewed by 222
Abstract
The quality prediction of quaternary structure models of a protein complex, in the absence of its true structure, is known as the Estimation of Model Accuracy (EMA). EMA is useful for ranking predicted protein complex structures and using them appropriately in biomedical research, [...] Read more.
The quality prediction of quaternary structure models of a protein complex, in the absence of its true structure, is known as the Estimation of Model Accuracy (EMA). EMA is useful for ranking predicted protein complex structures and using them appropriately in biomedical research, such as protein–protein interaction studies, protein design, and drug discovery. With the advent of more accurate protein complex (multimer) prediction tools, such as AlphaFold2-Multimer and ESMFold, the estimation of the accuracy of protein complex structures has attracted increasing attention. Many deep learning methods have been developed to tackle this problem; however, there is a noticeable absence of a comprehensive overview of these methods to facilitate future development. Addressing this gap, we present a review of deep learning EMA methods for protein complex structures developed in the past several years, analyzing their methodologies, data and feature construction. We also provide a prospective summary of some potential new developments for further improving the accuracy of the EMA methods. Full article
Show Figures

Figure 1

17 pages, 3702 KiB  
Review
Failure of Autophagy in Pompe Disease
by Hung Do, Naresh K. Meena and Nina Raben
Biomolecules 2024, 14(5), 573; https://doi.org/10.3390/biom14050573 - 13 May 2024
Viewed by 396
Abstract
Autophagy is an evolutionarily conserved lysosome-dependent degradation of cytoplasmic constituents. The system operates as a critical cellular pro-survival mechanism in response to nutrient deprivation and a variety of stress conditions. On top of that, autophagy is involved in maintaining cellular homeostasis through selective [...] Read more.
Autophagy is an evolutionarily conserved lysosome-dependent degradation of cytoplasmic constituents. The system operates as a critical cellular pro-survival mechanism in response to nutrient deprivation and a variety of stress conditions. On top of that, autophagy is involved in maintaining cellular homeostasis through selective elimination of worn-out or damaged proteins and organelles. The autophagic pathway is largely responsible for the delivery of cytosolic glycogen to the lysosome where it is degraded to glucose via acid α-glucosidase. Although the physiological role of lysosomal glycogenolysis is not fully understood, its significance is highlighted by the manifestations of Pompe disease, which is caused by a deficiency of this lysosomal enzyme. Pompe disease is a severe lysosomal glycogen storage disorder that affects skeletal and cardiac muscles most. In this review, we discuss the basics of autophagy and describe its involvement in the pathogenesis of muscle damage in Pompe disease. Finally, we outline how autophagic pathology in the diseased muscles can be used as a tool to fast track the efficacy of therapeutic interventions. Full article
Show Figures

Figure 1

22 pages, 3648 KiB  
Review
The Emerging Role of Ubiquitin-Specific Protease 36 (USP36) in Cancer and Beyond
by Meng-Yao Niu, Yan-Jun Liu, Jin-Jin Shi, Ru-Yi Chen, Shun Zhang, Chang-Yun Li, Jia-Feng Cao, Guan-Jun Yang and Jiong Chen
Biomolecules 2024, 14(5), 572; https://doi.org/10.3390/biom14050572 - 12 May 2024
Viewed by 295
Abstract
The balance between ubiquitination and deubiquitination is instrumental in the regulation of protein stability and maintenance of cellular homeostasis. The deubiquitinating enzyme, ubiquitin-specific protease 36 (USP36), a member of the USP family, plays a crucial role in this dynamic equilibrium by hydrolyzing and [...] Read more.
The balance between ubiquitination and deubiquitination is instrumental in the regulation of protein stability and maintenance of cellular homeostasis. The deubiquitinating enzyme, ubiquitin-specific protease 36 (USP36), a member of the USP family, plays a crucial role in this dynamic equilibrium by hydrolyzing and removing ubiquitin chains from target proteins and facilitating their proteasome-dependent degradation. The multifaceted functions of USP36 have been implicated in various disease processes, including cancer, infections, and inflammation, via the modulation of numerous cellular events, including gene transcription regulation, cell cycle regulation, immune responses, signal transduction, tumor growth, and inflammatory processes. The objective of this review is to provide a comprehensive summary of the current state of research on the roles of USP36 in different pathological conditions. By synthesizing the findings from previous studies, we have aimed to increase our understanding of the mechanisms underlying these diseases and identify potential therapeutic targets for their treatment. Full article
(This article belongs to the Special Issue Emerging Roles of Epigenetic Regulators in Inflammatory Diseases)
Show Figures

Figure 1

19 pages, 6791 KiB  
Article
Hypermethylation of the Gene Body in SRCIN1 Is Involved in Breast Cancer Cell Proliferation and Is a Potential Blood-Based Biomarker for Early Detection and a Poor Prognosis
by Hsieh-Tsung Shen, Chin-Sheng Hung, Clilia Davis, Chih-Ming Su, Li-Min Liao, Hsiu-Ming Shih, Kuan-Der Lee, Muhamad Ansar and Ruo-Kai Lin
Biomolecules 2024, 14(5), 571; https://doi.org/10.3390/biom14050571 - 12 May 2024
Viewed by 433
Abstract
Breast cancer is a leading cause of cancer mortality in women worldwide. Using the Infinium MethylationEPIC BeadChip, we analyzed plasma sample methylation to identify the SRCIN1 gene in breast cancer patients. We assessed SRCIN1-related roles and pathways for their biomarker potential. To [...] Read more.
Breast cancer is a leading cause of cancer mortality in women worldwide. Using the Infinium MethylationEPIC BeadChip, we analyzed plasma sample methylation to identify the SRCIN1 gene in breast cancer patients. We assessed SRCIN1-related roles and pathways for their biomarker potential. To verify the methylation status, quantitative methylation-specific PCR (qMSP) was performed on genomic DNA and circulating cell-free DNA samples, and mRNA expression analysis was performed using RT‒qPCR. The results were validated in a Western population; for this analysis, the samples included plasma samples from breast cancer patients from the USA and from The Cancer Genome Atlas (TCGA) cohort. To study the SRCIN1 pathway, we conducted cell viability assays, gene manipulation and RNA sequencing. SRCIN1 hypermethylation was identified in 61.8% of breast cancer tissues from Taiwanese patients, exhibiting specificity to this malignancy. Furthermore, its presence correlated significantly with unfavorable 5-year overall survival outcomes. The levels of methylated SRCIN1 in the blood of patients from Taiwan and the USA correlated with the stage of breast cancer. The proportion of patients with high methylation levels increased from 0% in healthy individuals to 63.6% in Stage 0, 80% in Stage I and 82.6% in Stage II, with a sensitivity of 78.5%, an accuracy of 90.3% and a specificity of 100%. SRCIN1 hypermethylation was significantly correlated with increased SRCIN1 mRNA expression (p < 0.001). Knockdown of SRCIN1 decreased the viability of breast cancer cells. SRCIN1 silencing resulted in the downregulation of ESR1, BCL2 and various cyclin protein expressions. SRCIN1 hypermethylation in the blood may serve as a noninvasive biomarker, facilitating early detection and prognosis evaluation, and SRCIN1-targeted therapies could be used in combination regimens for breast cancer patients. Full article
(This article belongs to the Special Issue DNA Methylation in Human Diseases)
Show Figures

Graphical abstract

23 pages, 4279 KiB  
Article
Disruption of Transmembrane Phosphatidylserine Asymmetry by HIV-1 Incorporated SERINC5 Is Not Responsible for Virus Restriction
by Gokul Raghunath, Elizabeth H. Abbott, Mariana Marin, Hui Wu, Judith Mary Reyes Ballista, Melinda A. Brindley and Gregory B. Melikyan
Biomolecules 2024, 14(5), 570; https://doi.org/10.3390/biom14050570 - 10 May 2024
Viewed by 264
Abstract
Host restriction factor SERINC5 (SER5) incorporates into the HIV-1 membrane and inhibits infectivity by a poorly understood mechanism. Recently, SER5 was found to exhibit scramblase-like activity leading to the externalization of phosphatidylserine (PS) on the viral surface, which has been proposed to be [...] Read more.
Host restriction factor SERINC5 (SER5) incorporates into the HIV-1 membrane and inhibits infectivity by a poorly understood mechanism. Recently, SER5 was found to exhibit scramblase-like activity leading to the externalization of phosphatidylserine (PS) on the viral surface, which has been proposed to be responsible for SER5’s antiviral activity. This and other reports that document modulation of HIV-1 infectivity by viral lipid composition prompted us to investigate the role of PS in regulating SER5-mediated HIV-1 restriction. First, we show that the level of SER5 incorporation into virions correlates with an increase in PS levels in the outer leaflet of the viral membrane. We developed an assay to estimate the PS distribution across the viral membrane and found that SER5, but not SER2, which lacks antiviral activity, abrogates PS asymmetry by externalizing this lipid. Second, SER5 incorporation diminished the infectivity of pseudoviruses produced from cells lacking a flippase subunit CDC50a and, therefore, exhibited a higher baseline level of surface-accessible PS. Finally, exogenous manipulation of the viral PS levels utilizing methyl-alpha-cyclodextrin revealed a lack of correlation between external PS and virion infectivity. Taken together, our study implies that the increased PS exposure to SER5-containing virions itself is not directly linked to HIV-1 restriction. Full article
Show Figures

Figure 1

23 pages, 1045 KiB  
Article
Risk and Resilience Variants in the Retinoic Acid Metabolic and Developmental Pathways Associated with Risk of FASD Outcomes
by Leo McKay, Berardino Petrelli, Molly Pind, James N. Reynolds, Richard F. Wintle, Albert E. Chudley, Britt Drögemöller, Abraham Fainsod, Stephen W. Scherer, Ana Hanlon-Dearman and Geoffrey G. Hicks
Biomolecules 2024, 14(5), 569; https://doi.org/10.3390/biom14050569 - 10 May 2024
Viewed by 314
Abstract
Fetal Alcohol Spectrum Disorder (FASD) is a common neurodevelopmental disorder that affects an estimated 2–5% of North Americans. FASD is induced by prenatal alcohol exposure (PAE) during pregnancy and while there is a clear genetic contribution, few genetic factors are currently identified or [...] Read more.
Fetal Alcohol Spectrum Disorder (FASD) is a common neurodevelopmental disorder that affects an estimated 2–5% of North Americans. FASD is induced by prenatal alcohol exposure (PAE) during pregnancy and while there is a clear genetic contribution, few genetic factors are currently identified or understood. In this study, using a candidate gene approach, we performed a genetic variant analysis of retinoic acid (RA) metabolic and developmental signaling pathway genes on whole exome sequencing data of 23 FASD-diagnosed individuals. We found risk and resilience alleles in ADH and ALDH genes known to normally be involved in alcohol detoxification at the expense of RA production, causing RA deficiency, following PAE. Risk and resilience variants were also identified in RA-regulated developmental pathway genes, especially in SHH and WNT pathways. Notably, we also identified significant variants in the causative genes of rare neurodevelopmental disorders sharing comorbidities with FASD, including STRA6 (Matthew–Wood), SOX9 (Campomelic Dysplasia), FDG1 (Aarskog), and 22q11.2 deletion syndrome (TBX1). Although this is a small exploratory study, the findings support PAE-induced RA deficiency as a major etiology underlying FASD and suggest risk and resilience variants may be suitable biomarkers to determine the risk of FASD outcomes following PAE. Full article
Show Figures

Figure 1

21 pages, 3662 KiB  
Review
The Third-Generation Sequencing Challenge: Novel Insights for the Omic Sciences
by Carmela Scarano, Iolanda Veneruso, Rosa Redenta De Simone, Gennaro Di Bonito, Angela Secondino and Valeria D’Argenio
Biomolecules 2024, 14(5), 568; https://doi.org/10.3390/biom14050568 - 10 May 2024
Viewed by 431
Abstract
The understanding of the human genome has been greatly improved by the advent of next-generation sequencing technologies (NGS). Despite the undeniable advantages responsible for their widespread diffusion, these methods have some constraints, mainly related to short read length and the need for PCR [...] Read more.
The understanding of the human genome has been greatly improved by the advent of next-generation sequencing technologies (NGS). Despite the undeniable advantages responsible for their widespread diffusion, these methods have some constraints, mainly related to short read length and the need for PCR amplification. As a consequence, long-read sequencers, called third-generation sequencing (TGS), have been developed, promising to overcome NGS. Starting from the first prototype, TGS has progressively ameliorated its chemistries by improving both read length and base-calling accuracy, as well as simultaneously reducing the costs/base. Based on these premises, TGS is showing its potential in many fields, including the analysis of difficult-to-sequence genomic regions, structural variations detection, RNA expression profiling, DNA methylation study, and metagenomic analyses. Protocol standardization and the development of easy-to-use pipelines for data analysis will enhance TGS use, also opening the way for their routine applications in diagnostic contexts. Full article
(This article belongs to the Section Molecular Genetics)
Show Figures

Graphical abstract

Previous Issue
Back to TopTop