Bacteremia and Sepsis

A special issue of Microorganisms (ISSN 2076-2607). This special issue belongs to the section "Medical Microbiology".

Deadline for manuscript submissions: closed (30 April 2024) | Viewed by 5696

Special Issue Editor


E-Mail Website
Guest Editor
Department of Infectious Diseases, Hospital Universitari de Bellvitge, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), University of Barcelona, Barcelona, Spain
Interests: antibiotics; infectious diseases; antimicrobials; infection; clinical microbiology; bacteremia; sepsis

Special Issue Information

Dear Colleagues,

Bacteremia and sepsis are serious medical conditions that arise from the presence of bacteria in the bloodstream. Bacteremia refers to the presence of bacteria in the blood, while sepsis is a potentially life-threatening condition that occurs when the body's response to an infection becomes harmful to its own tissues and organs.

Bacteria can enter the bloodstream through various means, such as via invasive medical procedures, infected wounds, or infections originating from other parts of the body. Bacteremia, by itself, may not always result in symptoms or complications. However, if left untreated, bacteria in the blood can multiply rapidly and trigger a systemic inflammatory response, leading to sepsis.

Dr. Miquel Pujol
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Microorganisms is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • bacteremia
  • sepsis
  • bloodstream infection
  • virulence factors
  • clinical microbiology
  • surveillance

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

18 pages, 3429 KiB  
Article
Increasing Rate of Fatal Streptococcus pyogenes Bacteriemia—A Challenge for Prompt Diagnosis and Appropriate Therapy in Real Praxis
by Vaclava Adamkova, Vanda Gabriela Adamkova, Gabriela Kroneislova, Jan Zavora, Marie Kroneislova, Michal Huptych and Helena Lahoda Brodska
Microorganisms 2024, 12(5), 995; https://doi.org/10.3390/microorganisms12050995 - 15 May 2024
Viewed by 382
Abstract
Streptococcus pyogenes, group A streptococci (GAS) bacteriaemia, is a life-threatening infection with high mortality, requiring fast diagnosis together with the use of appropriate antibiotic therapy as soon as possible. Our study analysed data from 93 patients with GAS bacteraemia at the General [...] Read more.
Streptococcus pyogenes, group A streptococci (GAS) bacteriaemia, is a life-threatening infection with high mortality, requiring fast diagnosis together with the use of appropriate antibiotic therapy as soon as possible. Our study analysed data from 93 patients with GAS bacteraemia at the General University Hospital in Prague between January 2006 and March 2024. In the years 2016–2019 there was an increase in GAS bacteraemia. Mortality in the period 2006–2019 was 21.9%; in the period 2020–2024, the mortality increased to 41.4%, p = 0.08. At the same time, in the post-2020 period, the time from hospital admission to death was reduced from 9.5 days to 3 days. A significant predictor of worse outcome in this period was high levels of procalcitonin, >35.1 µg/L (100% sensitivity and 82.35% specificity), and lactate, >5 mmol/L (90.91% sensitivity and 91.67% specificity). Myoglobin was a significant predictor in both compared periods, the AUC was 0.771, p = 0.044, and the AUC was an even 0.889, p ≤ 0.001, respectively. All isolates of S. pyogenes were susceptible to penicillin, and resistance to clindamycin was 20.3% from 2006–2019 and 10.3% in 2020–2024. Appropriate therapy was initiated in 89.1%. and 96.6%, respectively. We hypothesise that the increase in mortality after 2020 might be due to a decrease in the immune status of the population. Full article
(This article belongs to the Special Issue Bacteremia and Sepsis)
Show Figures

Figure 1

12 pages, 1467 KiB  
Article
Point-of-Care Method T2Bacteria®Panel Enables a More Sensitive and Rapid Diagnosis of Bacterial Blood Stream Infections and a Shorter Time until Targeted Therapy than Blood Culture
by Tamara Clodi-Seitz, Sebastian Baumgartner, Michael Turner, Theresa Mader, Julian Hind, Christoph Wenisch, Alexander Zoufaly and Elisabeth Presterl
Microorganisms 2024, 12(5), 967; https://doi.org/10.3390/microorganisms12050967 - 11 May 2024
Viewed by 502
Abstract
Background: Rapid diagnosis and identification of pathogens are pivotal for appropriate therapy of blood stream infections. The T2Bacteria®Panel, a culture-independent assay for the detection of Escherichia coli, Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, and [...] Read more.
Background: Rapid diagnosis and identification of pathogens are pivotal for appropriate therapy of blood stream infections. The T2Bacteria®Panel, a culture-independent assay for the detection of Escherichia coli, Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, and Pseudomonas aeruginosa in blood, was evaluated under real-world conditions as a point-of-care method including patients admitted to the internal medicine ward due to suspected blood stream infection. Methods: Patients were assigned to two groups (standard of care—SOC vs. T2). In the SOC group 2 × 2 blood culture samples were collected, in the T2 group the T2Bacteria®Panel was performed additionally for pathogen identification. Results: A total of 94 patients were included. Pathogens were detected in 19 of 50 patients (38%) in the T2 group compared to 16 of 44 patients (36.4%) in the SOC group. The median time until pathogen detection was significantly shorter in the T2 group (4.5 h vs. 60 h, p < 0.001), as well as the time until targeted therapy (antibiotic with the narrowest spectrum and maximal effectiveness) (6.4 h vs. 42.2 h, p = 0.043). Conclusions: The implementation of the T2Bacteria®Panel for patients with sepsis leads to an earlier targeted antimicrobial therapy resulting in earlier sufficient treatment and decreased excessive usage of broad-spectrum antimicrobials. Full article
(This article belongs to the Special Issue Bacteremia and Sepsis)
Show Figures

Figure 1

12 pages, 1997 KiB  
Communication
Optimization and Testing of a Commercial Viability PCR Protocol to Detect Escherichia coli in Whole Blood
by Kristi L. Jones, Federico Cunha, Segundo Casaro and Klibs N. Galvão
Microorganisms 2024, 12(4), 765; https://doi.org/10.3390/microorganisms12040765 - 10 Apr 2024
Viewed by 540
Abstract
Bacteremia, specifically if progressed to sepsis, poses a time-sensitive threat to human and animal health. Escherichia coli is a main causative agent of sepsis in humans. The objective was to evaluate a propidium monoazide (PMA)-based viability PCR (vPCR) protocol to detect and quantify [...] Read more.
Bacteremia, specifically if progressed to sepsis, poses a time-sensitive threat to human and animal health. Escherichia coli is a main causative agent of sepsis in humans. The objective was to evaluate a propidium monoazide (PMA)-based viability PCR (vPCR) protocol to detect and quantify live E. coli from whole blood. We optimized the protocol by adding a eukaryotic-specific lysis step prior to PMA exposure, then used spiking experiments to determine the lower limit of detection (LOD) and linear range of quantification. We also compared the vPCR quantification method to standard colony count of spiked inoculum. Lastly, we calculated percent viability in spiked samples containing 50% live cells or 0% live cells. The LOD was 102 CFU/mL for samples containing live cells only and samples with mixed live and heat-killed cells. The linear range of quantification was 102 CFU/mL to 108 CFU/mL (R2 of 0.997) in samples containing only live cells and 103 CFU/mL to 108 CFU/mL (R2 of 0.998) in samples containing live plus heat-killed cells. A Bland–Altman analysis showed that vPCR quantification overestimates compared to standard plate count of the spiked inoculum, with an average bias of 1.85 Log10 CFU/mL across the linear range when only live cells were present in the sample and 1.98 Log10 CFU/mL when live plus heat-killed cells were present. Lastly, percent viability calculations showed an average 89.5% viable cells for samples containing 50% live cells and an average 19.3% for samples containing 0% live cells. In summary, this optimized protocol can detect and quantify viable E. coli in blood in the presence of heat-killed cells. Additionally, the data presented here provide the groundwork for further development of vPCR to detect and quantify live bacteria in blood in clinical settings. Full article
(This article belongs to the Special Issue Bacteremia and Sepsis)
Show Figures

Figure 1

14 pages, 2517 KiB  
Article
Molecular Epidemiology, Antimicrobial Susceptibility, and Clinical Features of Methicillin-Resistant Staphylococcus aureus Bloodstream Infections over 30 Years in Barcelona, Spain (1990–2019)
by Daniel Antonio Vázquez-Sánchez, Sara Grillo, Anna Carrera-Salinas, Aida González-Díaz, Guillermo Cuervo, Inmaculada Grau, Mariana Camoez, Sara Martí, Dàmaris Berbel, Fe Tubau, Carmen Ardanuy, Miquel Pujol, Jordi Càmara and Mª Ángeles Domínguez
Microorganisms 2022, 10(12), 2401; https://doi.org/10.3390/microorganisms10122401 - 3 Dec 2022
Cited by 4 | Viewed by 1797
Abstract
Methicillin-resistant Staphylococcus aureus bloodstream infections (MRSA-BSI) are a significant cause of mortality. We analysed the evolution of the molecular and clinical epidemiology of MRSA-BSI (n = 784) in adult patients (Barcelona, 1990–2019). Isolates were tested for antimicrobial susceptibility and genotyped (PFGE), and [...] Read more.
Methicillin-resistant Staphylococcus aureus bloodstream infections (MRSA-BSI) are a significant cause of mortality. We analysed the evolution of the molecular and clinical epidemiology of MRSA-BSI (n = 784) in adult patients (Barcelona, 1990–2019). Isolates were tested for antimicrobial susceptibility and genotyped (PFGE), and a selection was sequenced (WGS) to characterise the pangenome and mechanisms underlying antimicrobial resistance. Increases in patient age (60 to 71 years), comorbidities (Charlson’s index > 2, 10% to 94%), community-onset healthcare-associated acquisition (9% to 60%), and 30-day mortality (28% to 36%) were observed during the 1990–1995 and 2014–2019 periods. The proportion of catheter-related BSIs fell from 57% to 20%. Current MRSA-BSIs are caused by CC5-IV and an upward trend of CC8-IV and CC22-IV clones. CC5 and CC8 had the lowest core genome proportions. Antimicrobial resistance rates fell, and only ciprofloxacin, tobramycin, and erythromycin remained high (>50%) due to GyrA/GrlA changes, the presence of aminoglycoside-modifying enzymes (AAC(6′)-Ie-APH(2″)-Ia and ANT(4′)-Ia), and mph(C)/msr(A) or erm (C) genes. Two CC22-IV strains showed daptomycin resistance (MprF substitutions). MRSA-BSI has become healthcare-associated, affecting elderly patients with comorbidities and causing high mortality rates. Clonal replacement with CC5-IV and CC8-IV clones resulted in lower antimicrobial resistance rates. The increased frequency of the successful CC22-IV, associated with daptomycin resistance, should be monitored. Full article
(This article belongs to the Special Issue Bacteremia and Sepsis)
Show Figures

Figure 1

19 pages, 2222 KiB  
Article
Molecular Epidemiology of Penicillin-Susceptible Staphylococcus aureus Bacteremia in Australia and Reliability of Diagnostic Phenotypic Susceptibility Methods to Detect Penicillin Susceptibility
by Geoffrey W. Coombs, Nicholas W. T. Yee, Denise Daley, Catherine M. Bennett, James O. Robinson, Marc Stegger, Princy Shoby and Shakeel Mowlaboccus
Microorganisms 2022, 10(8), 1650; https://doi.org/10.3390/microorganisms10081650 - 15 Aug 2022
Cited by 1 | Viewed by 1883
Abstract
Background: Defined by the emergence of antibiotic resistant strains, Staphylococcus aureus is a priority bacterial species with high antibiotic resistance. However, a rise in the prevalence of penicillin-susceptible S. aureus (PSSA) bloodstream infections has recently been observed worldwide, including in Australia, where the [...] Read more.
Background: Defined by the emergence of antibiotic resistant strains, Staphylococcus aureus is a priority bacterial species with high antibiotic resistance. However, a rise in the prevalence of penicillin-susceptible S. aureus (PSSA) bloodstream infections has recently been observed worldwide, including in Australia, where the proportion of methicillin-susceptible S. aureus causing bacteremia identified phenotypically as penicillin-susceptible has increased by over 35%, from 17.5% in 2013 to 23.7% in 2020. Objectives: To determine the population structure of PSSA causing community- and hospital-onset bacteremia in Australia and to evaluate routine phenotypic antimicrobial susceptibility methods to reliably confirm penicillin resistance on blaZ-positive S. aureus initially classified as penicillin-susceptible by the Vitek® 2 automated microbiology system. Results: Whole genome sequencing on 470 PSSA collected in the 2020 Australian Group on Antimicrobial Resistance Australian Staphylococcus aureus Sepsis Outcome Programme identified 84 multilocus sequence types (STs), of which 79 (463 isolates) were grouped into 22 clonal complexes (CCs). The dominant CCs included CC5 (31.9%), CC97 (10.2%), CC45 (10.0%), CC15 (8.7%), and CC188 (4.9%). Many of the CCs had multiple STs and spa types and, based on the immune evasion cluster type, isolates within a CC could be classified into different strains harboring a range of virulence and resistance genes. Phylogenetic analyses of the isolates showed most CCs were represented by one clade. The blaZ gene was identified in 45 (9.6%) PSSA. Although multiclonal, approximately 50% of blaZ-positive PSSA were from CC15 and were found to be genetically distant from the blaZ-negative CC15 PSSA. The broth microdilution, Etest® and cefinase, performed poorly; however, when the appearance of the zone edge was considered; as per the EUCAST and CLSI criteria, disc diffusion detected 100% of blaZ-positive PSSA. Conclusions: In Australia, PSSA bacteremia is not caused by the expansion of a single clone. Approximately 10% of S. aureus classified as penicillin-susceptible by the Vitek® 2 harbored blaZ. Consequently, we recommend that confirmation of Vitek® 2 PSSA be performed using an alternative method, such as disc diffusion with careful interpretation of the zone edge. Full article
(This article belongs to the Special Issue Bacteremia and Sepsis)
Show Figures

Figure 1

Back to TopTop