Effects of the COVID-19 Lockdown on Portuguese Children’s Motor Competence
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Measures
2.3. Procedures
2.4. Statistics
3. Results
4. Discussion
5. Limitations and Future Directions
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Fransen, J.; D’Hondt, E.; Bourgois, J.; Vaeyens, R.; Philippaerts, R.M.; Lenoir, M. Motor competence assessment in children: Convergent and discriminant validity between the BOT-2 Short Form and KTK testing batteries. Res. Dev. Disabil. 2014, 35, 1375–1383. [Google Scholar] [CrossRef]
- Luz, C.; Rodrigues, L.P.; Almeida, G.; Cordovil, R. Development and validation of a model of motor competence in children and adolescents. J. Sci. Med. Sport 2016, 19, 568–572. [Google Scholar] [CrossRef]
- Rodrigues, L.P.; Luz, C.; Cordovil, R.; Bezerra, P.; Silva, B.; Camões, M.; Lima, R. Normative values of the motor competence assessment (MCA) from 3 to 23 years of age. J. Sci. Med. Sport 2019, 22, 1038–1043. [Google Scholar] [CrossRef]
- Clark, J.E.; Metcalfe, J.S. The Mountain of Motor Development: A Metaphor. In Motor Development: Research and Reviews; NASPE Publications: Reston, VA, USA, 2002; pp. 163–190. [Google Scholar]
- Hulteen, R.M.; Lander, N.J.; Morgan, P.J.; Barnett, L.M.; Robertson, S.J.; Lubans, D.R. Validity and Reliability of Field-Based Measures for Assessing Movement Skill Competency in Lifelong Physical Activities: A Systematic Review. Sports Med. 2015, 45, 1443–1454. [Google Scholar] [CrossRef] [PubMed]
- Robinson, L.E.; Stodden, D.F.; Barnett, L.M.; Lopes, V.P.; Logan, S.W.; Rodrigues, L.P.; D’Hondt, E. Motor Competence and its Effect on Positive Developmental Trajectories of Health. Sports Med. 2015, 45, 1273–1284. [Google Scholar] [CrossRef] [PubMed]
- Stodden, D.F.; Goodway, J.D.; Langendorfer, S.J.; Roberton, M.A.; Rudisill, M.E.; Garcia, C.; Garcia, L.E. A Developmental Perspective on the Role of Motor Skill Competence in Physical Activity: An Emergent Relationship. Quest 2008, 60, 290–306. [Google Scholar] [CrossRef]
- Hardy, L.L.; Reinten-Reynolds, T.; Espinel, P.; Zask, A.; Okely, A.D. Prevalence and Correlates of Low Fundamental Movement Skill Competency in Children. Pediatrics 2012, 130, e390–e398. [Google Scholar] [CrossRef]
- Lopes, V.P.; Rodrigues, L.P.; Maia, J.A.R.; Malina, R.M. Motor coordination as predictor of physical activity in childhood. Scand. J. Med. Sci. Sports 2010, 21, 663–669. [Google Scholar] [CrossRef] [PubMed]
- Barnett, L.; Van Beurden, E.; Morgan, P.J.; Brooks, L.O.; Beard, J.R. Childhood Motor Skill Proficiency as a Predictor of Adolescent Physical Activity. J. Adolesc. Health 2009, 44, 252–259. [Google Scholar] [CrossRef] [PubMed]
- Barnett, L.M.; VAN Beurden, E.; Morgan, P.J.; Brooks, L.O.; Beard, J.R. Does Childhood Motor Skill Proficiency Predict Adolescent Fitness? Med. Sci. Sports Exerc. 2008, 40, 2137–2144. [Google Scholar] [CrossRef] [Green Version]
- D’Hondt, E.; Deforche, B.; Gentier, I.; De Bourdeaudhuij, I.; Vaeyens, R.; Philippaerts, R.; Lenoir, M.A. A longitudinal analysis of gross motor coordination in overweight and obese children versus normal-weight peers. Int. J. Obes. 2013, 37, 61–67. [Google Scholar] [CrossRef] [Green Version]
- De Meester, A.; Stodden, D.; Brian, A.; True, L.; Cardon, G.; Tallir, I.; Haerens, L. Associations among Elementary School Children’s Actual Motor Competence, Perceived Motor Competence, Physical Activity and BMI: A Cross-Sectional Study. PLoS ONE 2016, 11, e0164600. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lopes, V.P.; Stodden, D.F.; Bianchi, M.M.; Maia, J.A.; Rodrigues, L.P. Correlation between BMI and motor coordination in children. J. Sci. Med. Sport 2012, 15, 38–43. [Google Scholar] [CrossRef]
- Dollman, J.; Norton, K.; Norton, L. Evidence for secular trends in children’s physical activity behaviour. Br. J. Sports Med. 2005, 39, 892–897. [Google Scholar] [CrossRef]
- Keane, E.; Li, X.; Harrington, J.M.; Fitzgerald, A.P.; Perry, I.J.; Kearney, P.M. Physical Activity, Sedentary Behavior and the Risk of Overweight and Obesity in School-Aged Children. Pediatr. Exerc. Sci. 2017, 29, 408–418. [Google Scholar] [CrossRef] [PubMed]
- Schwarzfischer, P.; Gruszfeld, D.; Stolarczyk, A.; Ferre, N.; Escribano, J.; Rousseaux, D.; Moretti, M.; Mariani, B.; Verduci, E.; Koletzko, B.; et al. Physical Activity and Sedentary Behavior From 6 to 11 Years. Pediatrics 2018, 143, e20180994. [Google Scholar] [CrossRef] [Green Version]
- Nelson, M.C.; Neumark-Stzainer, D.; Hannan, P.J.; Sirard, J.R.; Story, M. Longitudinal and Secular Trends in Physical Activity and Sedentary Behavior During Adolescence. Pediatrics 2006, 118, e1627–e1634. [Google Scholar] [CrossRef]
- Huotari, P.; Heikinaro-Johansson, P.; Watt, A.; Jaakkola, T. Fundamental movement skills in adolescents: Secular trends from 2003 to 2010 and associations with physical activity and BMI. Scand. J. Med. Sci. Sports 2018, 28, 1121–1129. [Google Scholar] [CrossRef] [Green Version]
- Huotari, P.R.T.; Nupponen, H.; Laakso, L.; Kujala, U.M. Secular trends in aerobic fitness performance in 13-18-year-old adolescents from 1976 to 2001. Br. J. Sports Med. 2009, 44, 968–972. [Google Scholar] [CrossRef]
- Janssen, I.; Leblanc, A.G. Systematic review of the health benefits of physical activity and fitness in school-aged children and youth. Int. J. Behav. Nutr. Phys. Act. 2010, 7, 40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moore, S.A.; Faulkner, G.; Rhodes, R.E.; Brussoni, M.; Chulak-Bozzer, T.; Ferguson, L.J.; Mitra, R.; O’Reilly, N.; Spence, J.C.; Vanderloo, L.M.; et al. Impact of the COVID-19 virus outbreak on movement and play behaviours of Canadian children and youth: A national survey. Int. J. Behav. Nutr. Phys. Act. 2020, 17, 1–11. [Google Scholar] [CrossRef]
- Pombo, A.; Luz, C.; Rodrigues, L.P.; Cordovil, R. COVID-19 Confinement In Portugal: Effects On The Household Routines Of Children Under 13. Res. Sq. 2020, 1–16. [Google Scholar] [CrossRef]
- Sá, C.D.S.C.D.; Pombo, A.; Luz, C.; Rodrigues, L.P.; Cordovil, R. Covid-19 social isolation in brazil: Effects on the physical activity routine of families with children. Rev. Paul. de Pediatr. 2021, 39, 2020159. [Google Scholar] [CrossRef] [PubMed]
- Pietrobelli, A.; Pecoraro, L.; Ferruzzi, A.; Heo, M.; Faith, M.; Zoller, T.; Antoniazzi, F.; Piacentini, G.; Fearnbach, S.N.; Heymsfield, S.B. Effects of COVID-19 Lockdown on Lifestyle Behaviors in Children with Obesity Living in Verona, Italy: A Longitudinal Study. Obesity 2020, 28, 1382–1385. [Google Scholar] [CrossRef]
- Carroll, N.; Sadowski, A.; Laila, A.; Hruska, V.; Nixon, M.; Ma, D.W.; Haines, J.; on behalf of the Guelph Family Health Study. The Impact of COVID-19 on Health Behavior, Stress, Financial and Food Security among Middle to High Income Canadian Families with Young Children. Nutrition 2020, 12, 2352. [Google Scholar] [CrossRef] [PubMed]
- Direção-Geral da Saúde. REACT-COVID—Inquérito Sobre Alimentação e Atividade Física em Contexto de Contenção Social; Direção-Geral da Saúde: Lisbon, Portugal, 2020; pp. 1–15. [Google Scholar]
- Campagnaro, R.; Collet, G.D.O.; de Andrade, M.P.; Salles, J.P.D.S.L.; Fracasso, M.D.L.C.; Scheffel, D.L.S.; Freitas, K.M.S.; Santin, G.C. COVID-19 pandemic and pediatric dentistry: Fear, eating habits and parent’s oral health perceptions. Child. Youth Serv. Rev. 2020, 118, 105469. [Google Scholar] [CrossRef]
- Pombo, A.; Luz, C.; Rodrigues, L.P.; Ferreira, C.; Cordovil, R. Correlates of children’s physical activity during the COVID-19 confinement in Portugal. Public Health 2020, 189, 14–19. [Google Scholar] [CrossRef]
- Mota, J.; Santos, R.; Coelho-E-Silva, M.J.; Raimundo, A.M.; Sardinha, L.B. Results From Portugal’s 2018 Report Card on Physical Activity for Children and Youth. J. Phys. Act. Health 2018, 15, S398–S399. [Google Scholar] [CrossRef]
- Health Organization Regional Office for Europe. Childhood Obesity Surveillance Initiative—Childhood Obesity: Causes, Management and Challenges; Health Organization Regional Office for Europe: Copenhagen, Denmark, 2017. [Google Scholar]
- Carrel, A.L.; Clark, R.R.; Peterson, S.; Eickhoff, J.; Allen, D.B. School-Based Fitness Changes Are Lost During the Summer Vacation. Arch. Pediatr. Adolesc. Med. 2007, 161, 561–564. [Google Scholar] [CrossRef]
- Hesketh, K.R.; Lakshman, R.; Van Sluijs, E.M.F. Barriers and facilitators to young children’s physical activity and sedentary behaviour: A systematic review and synthesis of qualitative literature. Obes. Rev. 2017, 18, 987–1017. [Google Scholar] [CrossRef]
- Vandorpe, B.; VandenDriessche, J.; Lefevre, J.; Pion, J.; Vaeyens, R.; Matthys, S.; Philippaerts, R.; Lenoir, M. The KörperkoordinationsTest für Kinder: Reference values and suitability for 6-12-year-old children in Flanders. Scand. J. Med. Sci. Sports 2010, 21, 378–388. [Google Scholar] [CrossRef]
- Tomkinson, G.R.; Olds, T.S. Secular Changes in Aerobic Fitness Test Performance of Australasian Children and Adolescents. Med. Sport Sci. 2007, 50, 168–182. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, Y.; Zhao, J.; Zhang, J.; Jiang, F. Mitigate the effects of home confinement on children during the COVID-19 outbreak. Lancet 2020, 395, 945–947. [Google Scholar] [CrossRef]
- Guan, H.; Okely, A.D.; Aguilar-Farias, N.; Cruz, B.D.P.; E Draper, C.; El Hamdouchi, A.; A Florindo, A.; Jáuregui, A.; Katzmarzyk, P.T.; Kontsevaya, A.; et al. Promoting healthy movement behaviours among children during the COVID-19 pandemic. Lancet Child. Adolesc. Health 2020, 4, 416–418. [Google Scholar] [CrossRef]
- Lorås, H. The Effects of Physical Education on Motor Competence in Children and Adolescents: A Systematic Review and Meta-Analysis. Sports 2020, 8, 88. [Google Scholar] [CrossRef]
- Dobbins, M.; De Corby, K.; Robeson, P.; Husson, H.; Tirilis, D. School-based physical activity programs for promoting physical activity and fitness in children and adolescents aged 6-18. Cochrane Database Syst. Rev. 2009, 2, CD007651. [Google Scholar] [CrossRef]
- Ridgers, N.D.; Stratton, G.; Fairclough, S.J. Physical Activity Levels of Children during School Playtime. Sports Med. 2006, 36, 359–371. [Google Scholar] [CrossRef] [PubMed]
- Niemistö, D.; Finni, T.; Haapala, E.A.; Cantell, M.; Korhonen, E.; Sääkslahti, A. Environmental Correlates of Motor Competence in Children—The Skilled Kids Study. Int. J. Environ. Res. Public Health 2019, 16, 1989. [Google Scholar] [CrossRef] [Green Version]
- Gray, C.; Gibbons, R.; Larouche, R.; Sandseter, E.B.H.; Bienenstock, A.; Brussoni, M.; Chabot, G.; Herrington, S.; Janssen, I.; Pickett, W.; et al. What Is the Relationship between Outdoor Time and Physical Activity, Sedentary Behaviour, and Physical Fitness in Children? A Systematic Review. Int. J. Environ. Res. Public Health 2015, 12, 6455–6474. [Google Scholar] [CrossRef] [Green Version]
- Cordovil, R.; Lopes, F.; Neto, C. Children’s (in)dependent mobility in Portugal. J. Sci. Med. Sport 2015, 18, 299–303. [Google Scholar] [CrossRef]
- Lopes, F.; Cordovil, R.; Neto, C. Children’s independent mobility in Portugal: Effects of urbanization degree and motorized modes of travel. J. Transp. Geogr. 2014, 41, 210–219. [Google Scholar] [CrossRef]
- Silva, P.; Santos, M.P. Playing outdoor and practising sport: A study of physical activity levels in Portuguese children. Eur. J. Sport Sci. 2016, 17, 1–7. [Google Scholar] [CrossRef]
- Gordon, E.S.; Tucker, P.; Burke, S.M.; Carron, A.V. Effectiveness of Physical Activity Interventions for Preschoolers: A Meta-Analysis. Res. Q. Exerc. Sport 2013, 84, 287–294. [Google Scholar] [CrossRef] [PubMed]
- Sprengeler, O.; Buck, C.; Hebestreit, A.; Wirsik, N.; Ahrens, W. Sports Contribute to Total Moderate to Vigorous Physical Activity in School Children. Med. Sci. Sports Exerc. 2019, 51, 1653–1661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ward, D.S.; Vaughn, A.; McWILLIAMS, C.; Hales, D. Interventions for Increasing Physical Activity at Child Care. Med. Sci. Sports Exerc. 2010, 42, 526–534. [Google Scholar] [CrossRef]
- Vallence, A.-M.; Hebert, J.; Jespersen, E.; Klakk, H.; Rexen, C.; Wedderkopp, N. Childhood motor performance is increased by participation in organized sport: The CHAMPS Study-DK. Sci. Rep. 2019, 9, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Lopes, C.; Torres, D.; Oliveira, A.; Savero, M.; Alarcão, V.; Guiomar, S.; Mota, J.; Teixeira, P.; Ramos, E.; Rodrigues, S.; et al. Inquérito Alimentar Nacional e de Atividade Fisica; Direção-Geral da Saúde: Lisbon, Portugal, 2017. [Google Scholar]
- Barbosa, N.; Monteiro, B. Pandemia Tira 173 mil jovens atletas aos clubes. 2020. Available online: https://www.jn.pt/desporto/pandemia-tira-173-mil-jovens-atletas-aos-clubes-13143073.html (accessed on 13 January 2021).
- Fu, Y.; Brusseau, T.A.; Hannon, J.C.; Burns, R.D. Effect of a 12-Week Summer Break on School Day Physical Activity and Health-Related Fitness in Low-Income Children from CSPAP Schools. J. Environ. Public Health 2017, 2017, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Brusseau, T.A.; Burns, R.D.; Fu, Y.; Weaver, R.G. Impact of Year-Round and Traditional School Schedules on Summer Weight Gain and Fitness Loss. Child. Obes. 2019, 15, 541–547. [Google Scholar] [CrossRef] [Green Version]
- Baranowski, T.; O’Connor, T.; Johnston, C.; Hughes, S.; Moreno, J.; Chen, T.-A.; Meltzer, L.; Baranowski, J. School Year Versus Summer Differences in Child Weight Gain: A Narrative Review. Child. Obes. 2014, 10, 18–24. [Google Scholar] [CrossRef]
- Moreno, J.P.; Johnston, C.A.; Woehler, D. Changes in Weight Over the School Year and Summer Vacation: Results of a 5-Year Longitudinal Study. J. Sch. Health 2013, 83, 473–477. [Google Scholar] [CrossRef] [PubMed]
- Burns, R.D.; Bai, Y.; Byun, W.; Colotti, T.E.; Pfledderer, C.D.; Kwon, S.; Brusseau, T.A. Bidirectional relationships of physical activity and gross motor skills before and after summer break: Application of a cross-lagged panel model. J. Sport Health Sci. 2020, 1–9. [Google Scholar] [CrossRef]
Jumping Sideways AL | Shifting Platforms AL | ||||||||||
1st Q | 2nd Q | 3rd Q | 4th Q | 1st Q | 2nd Q | 3rd Q | 4th Q | ||||
Boys | Jumping Sideways BL | 1st Q | 78.6% | 14.3% | 7.1% | 0% | Shifting Platforms BL | 100% | 0% | 0% | 0% |
2nd Q | 23.5% | 13.5% | 35.3% | 17.6% | 66.7% | 33.3% | 0% | 0% | |||
3rd Q | 0% | 16.7% | 41.7% | 41.7% | 71.4% | 14.3% | 14.3% | 0% | |||
4th Q | 0% | 27.3% | 27.3% | 45.5% | 31.4% | 25.7% | 28.6% | 14.3% | |||
TMB (5) = 4.167, p = 0.526 | TMB (6) = 40.000, p < 0.001 | ||||||||||
Girls | Jumping Sideways BL | 1st Q | 63.6% | 36.4% | 0% | 0% | Shifting Platforms BL | 66.7% | 33.3% | 0% | 0% |
2nd Q | 15.0% | 33.3% | 33.3% | 8.3% | 42.9% | 42.9% | 14.3% | 0% | |||
3rd Q | 11.8% | 41.2% | 47.1% | 0% | 12.5% | 6.,5% | 12.5% | 12.5% | |||
4th Q | 0% | 11.1% | 44.4% | 44.4% | 4.8% | 35.7% | 42.9% | 16.7% | |||
TMB (5) = 9.091, p = 0.105 | TMB (6) = 36.877, p < 0.001 | ||||||||||
Standing Long Jump AL | Shuttle Run AL | ||||||||||
1st Q | 2nd Q | 3rd Q | 4th Q | 1st Q | 2nd Q | 3rd Q | 4th Q | ||||
Boys | Standing long Jump BL | 1st Q | 83.3% | 16.7% | 0% | 0% | Shuttle Run BL | 81.3% | 18.7% | 0% | 0% |
2nd Q | 44.4% | 44.4% | 0% | 11.1% | 42.1% | 31.6% | 26.3% | 0% | |||
3rd Q | 35.3% | 23.5% | 41.2% | 0% | 16.7% | 41.7% | 33.3% | 8.3% | |||
4th Q | 0% | 13.6% | 36.4% | 50% | 0% | 14.3% | 14.3% | 71.4% | |||
TMB (5) = 20.800, p = 0.001 | TMB (5) = 5.273, p = 0.384 | ||||||||||
Girls | Standing long Jump BL | 1st Q | 100% | 0% | 0% | 0% | Shuttle Run BL | 58.8% | 35.3% | 5.9% | 0% |
2nd Q | 50.0% | 30.0% | 20.0% | 8.3% | 42.1% | 47.4% | 5.3% | 5.3% | |||
3rd Q | 11.8% | 52.9% | 23.5% | 11.8% | 6.3% | 37.5% | 50.0% | 6.3% | |||
4th Q | 9.4%% | 29.4% | 72.7% | 80% | 12.5% | 0% | 50.0% | 37.5% | |||
TMB (6) = 30.343, p < 0.001 | TMB (6) = 7.657, p = 0.264 | ||||||||||
Throwing Velocity AL | Kicking Velocity AL | ||||||||||
1st Q | 2nd Q | 3rd Q | 4th Q | 1st Q | 2nd Q | 3rd Q | 4th Q | ||||
Boys | Throwing Velocity BL | 1st Q | 33.3% | 50.0% | 8.3% | 8.3% | Kicking Velocity BL | 66.7% | 26.7% | 0% | 6.7% |
2nd Q | 12.5% | 62.5% | 0% | 25.0% | 44.4% | 44.4% | 0% | 11.1% | |||
3rd Q | 7.7% | 46.2% | 23.1% | 23.1% | 35.7% | 35.7% | 21.4% | 7.1% | |||
4th Q | 4.8% | 4.8% | 38.1% | 52.4% | 31.3% | 31.3% | 25.0% | 12.5% | |||
TMB (6) = 12.177, p = 0.058 | TMB (6) = 17.133, p = 0.009 | ||||||||||
Girls | Throwing Velocity BL | 1st Q | 53.8% | 15.4% | 23.1% | 7.7% | Kicking Velocity BL | 81.3% | 18.7% | 0% | 0% |
2nd Q | 45.5% | 0% | 54.5% | 0% | 70.0% | 10.0% | 20.0% | 5.3% | |||
3rd Q | 52.9% | 23.5% | 17.6% | 5.9% | 34.8% | 34.8% | 13.0% | 17.4% | |||
4th Q | 26.3% | 21.1% | 21.1% | 31.6% | 63.6% | 18.2% | 18.2% | 0% | |||
TMB (6) = 13.152, p = 0.041 | TMB (6) = 2.867, p = 0.001 |
Boys (N = 54) Age M BL 7.49 ± 0.93 Age M AL 8.42 ± 0.90 | Girls (N = 60) Age M BL 7.48 ± 0.86 Age M AL 8.38 ± 0.88 | ||||
---|---|---|---|---|---|
BL | AL | BL | AL | ||
Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | Repeated ANOVA | |
Jumping Sideways | 45.64 ± 27.81 | 49.31 ± 28.13 | 42.72 ± 25.61 | 40.05 ± 23.85 | F lockdown (1, 112) = 0.07, p = 0.794, ηp2 = 0.001 F sex (1, 112) = 1.78, p = 0.184, ηp2 = 0.016 F lockdown *sex (1, 112) = 2.81, p = 0.096, ηp2 = 0.025 |
Shifting Platforms | 73.12 ± 30.65 | 34.40 ± 27.68 | 78.68 ± 23.40 | 48.51 ± 23.57 | F lockdown (1, 112) =209.82 p < 0.001, ηp2 = 0.652 F sex (1, 112) = 5.15, p = 0.025, ηp2 = 0.044 F lockdown *sex (1, 112) = 3.24, p = 0.075, ηp2 = 0.028 |
Standing Long Jump | 64.24 ± 26.13 | 48.04 ± 28.97 | 71.10 ± 20.98 | 50.15 ± 25.05 | F lockdown (1, 112) =94.64, p < 0.001, ηp2 = 0.057 F sex (1, 112) = 1.06, p = 0.305, ηp2 = 0.007 F lockdown *sex (1, 112) = 1.54, p = 0.217, ηp2 = 0.021 |
Shuttle Run | 41.52 ± 26.82 | 36.97 ± 26.94 | 42.37 ± 25.98 | 37.01 ± 25.33 | F lockdown (1, 112) =7.51, p = 0.007, ηp2 = 0.063 F sex (1, 112) = 0.01, p = 0.918, ηp2 = 0.000 F lockdown *sex (1, 112) = 0.46, p = 0.830, ηp2 = 0.000 |
Throwing Velocity | 59.21 ± 30.50 | 57.49 ± 27.08 | 55.83 ± 28.47 | 41.85 ± 30.40 | F lockdown (1, 112) =6.71, p = 0.011, ηp2 = 0.057 F sex (1, 112) = 4.36, p = 0.039, ηp2 = 0.037 F lockdown *sex (1, 112) = 4.09, p = 0.046, ηp2 = 0.035 |
Kicking Velocity | 53.04 ± 32.71 | 32.18 ± 25.47 | 49.86 ± 28.52 | 25.91 ± 25.90 | F lockdown (1, 112) = 57.20, p < 0.001, ηp2 = 0.338 F sex (1, 112) = 1.16, p = 0.284, ηp2 = 0.010 F lockdown *sex (1, 112) = 0.27, p = 0.603, ηp2 = 0.002 |
Stability | 59.39 ± 25.48 | 41.85 ± 23.68 | 60.70 ± 20.27 | 44.28 ± 20.43 | F lockdown (1, 112) =129.19, p < 0.001, ηp2 = 0.536 F sex (1, 112) = 0.225, p = 0.636, ηp2 = 0.002 F lockdown *sex (1, 112) = 0.14, p = 0.71, ηp2 = 0.001 |
Locomotor | 52.88 ± 23.74 | 42.50 ± 26.20 | 56.73 ± 20.82 | 43.60 ± 22.01 | F lockdown (1, 112) =64.43, p < 0.001, ηp2 = 0.363 F sex (1, 112) = 0.36, p = 0.547, ηp2 = 0.002 F lockdown *sex (1, 112) = 0.89, p = 0.349, ηp2 = 0.011 |
Manipulative | 56.13 ± 25.96 | 44.83 ± 21.96 | 52.85 ± 22.52 | 33.88 ± 21.46 | F lockdown (1, 112) =58.20, p < 0.001, ηp2 = 0.342 F sex (1, 112) = 3.46, p = 0.066, ηp2 = 0.030 F lockdown *sex (1, 112) = 3.74, p = 0.056, ηp2 = 0.032 |
MC | 56.13 ± 20.03 | 43.06 ± 19.66 | 56.76 ± 17.10 | 40.58 ± 17.12 | F lockdown (1, 112) =172.80, p < 0.001, ηp2 = 0.603 F sex (1, 112) = 0.08, p = 0.778, ηp2 = 0.001 F lockdown *sex (1, 112) = 1.95, p = 0.165, ηp2 = 0.019 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pombo, A.; Luz, C.; de Sá, C.; Rodrigues, L.P.; Cordovil, R. Effects of the COVID-19 Lockdown on Portuguese Children’s Motor Competence. Children 2021, 8, 199. https://doi.org/10.3390/children8030199
Pombo A, Luz C, de Sá C, Rodrigues LP, Cordovil R. Effects of the COVID-19 Lockdown on Portuguese Children’s Motor Competence. Children. 2021; 8(3):199. https://doi.org/10.3390/children8030199
Chicago/Turabian StylePombo, André, Carlos Luz, Cristina de Sá, Luis Paulo Rodrigues, and Rita Cordovil. 2021. "Effects of the COVID-19 Lockdown on Portuguese Children’s Motor Competence" Children 8, no. 3: 199. https://doi.org/10.3390/children8030199
APA StylePombo, A., Luz, C., de Sá, C., Rodrigues, L. P., & Cordovil, R. (2021). Effects of the COVID-19 Lockdown on Portuguese Children’s Motor Competence. Children, 8(3), 199. https://doi.org/10.3390/children8030199