Botulinum Toxin Type A as a Therapeutic Agent against Headache and Related Disorders
Abstract
:1. Botulinum Neurotoxins: Biological Properties and Mechanism of Action
2. BoNT/A in Medicine: Brief History
3. Headache: Definitions and Classification
Headaches | Migraine | Tension-Type Headache (TTH) | Trigeminal Autonomic Cephalalgias (TACs) |
---|---|---|---|
Subtypes | - Migraine without aura - Migraine with aura - Hemiplegic migraine - Chronic migraine | - Infrequent episodic TTH - Frequent episodic TTH - Chronic TTH | - Cluster headache (CH) (episodic or chronic) - Paroxysmal hemicrania (episodic or chronic) - Short-lasting unilateral neuralgiform headache (episodic or chronic) - Hemicrania continua |
Pain | - Throbbing - Moderate to severe | - Pressing/tightening - Mild to moderate | CH: extremely severe |
Associated Symptoms | - Nausea - Vomiting - Photophobia - Phonophobia | - None | CH: -conjunctival injection/tearing - rhinorrhea - sweating - ptosis - miosis |
Location | - Most frequently unilateral (hemicranial) | - Bilateral | - Strictly unilateral - Mainly temporal-orbital |
Duration Frequency | - 4/72 h | - 30 min to 7 days | CH: occurring in periods with several attacks each day, each 15′ to 3-h duration |
Sex Ratio | F > M * | F > M * | M > F * |
Possible Triggers | - Hormonal changes - Stress | - Stress | - Alcohol - Nitroglycerine |
4. BoNT/A and Headache: Is BoNT/A Effective at Treating Pain from Headaches?
4.1. Mechanism-Based Evidence for the Analgesic Actions of BoNT/A: In Vitro and In Vivo Animal Studies
4.2. Mechanism-Based Evidence for the Analgesic Actions of BoNT/A: Human Experimental Pain Studies
5. Use of BoNT/A for Therapeutic Treatment of Headache: Evidence from Clinical Studies
5.1. Tension-Type Headache
Authors | Study (1) | Patients (2) | BoNT/A (3) | Injected Muscles (4) | Outcomes (5) | Ref. |
---|---|---|---|---|---|---|
Gobel et al., 1999 | DP/6 w | 10 (+10) | B 20 U | frontal, auricular, splenium | − | [115] |
Smuts et al., 1999 | DP/4 m | 37 (+15) | B 100 U | temporalis, cervical | + | [112] |
Rollnik et al., 2000 | DP/4–12 w | 11 (+10) | D 200 U | fronto-occipital, temporal | − | [114] |
Schmitt et al., 2001 | DP/4–8 w | 30 (+29) | B 20 U | frontal, temporalis | − | [113] |
Freund and Schantz, 2002 | PO/3 m | 46 | B 150 U | masseter, temporalis | + | [111] |
Padberg et al., 2004 | DP/12 w | 19 (+21) | B 100 U | multiple pericranial | − | [116] |
Relja and Telarovic, 2004 | PO/18 m | 30 | B 45–90 U | multiple pericranial | + | [110] |
Relja and Telarovic, 2004 | DP/8 w | 8 (+8) | B 45–90 U | multiple pericranial | + | [110] |
Schulte-Mattler et al., 2004 | DP/12 w | 53 (+54) | D 500 U | multiple pericranial | − | [117] |
Silberstein et al., 2006 | DP/4 m | 250 (+50) | B 50–150 U | multiple pericranial | +/− | [118] |
5.2. Trigeminal Autonomic Cephalalgias and Trigeminal and Occipital Neuralgias
Authors | Study (1) | Patients (2) | BoNT/A (3) | Injection Sites (4) | Outcomes (5) | Ref. |
---|---|---|---|---|---|---|
Cluster Headache | ||||||
Sostak et al., 2007 | PO/3–10 m | 12 | B 50 U | pericranial muscles | +/− | [120] |
Trigeminal Neuralgia | ||||||
Borodic and Acquadro, 2002 | PO/4 m | 11 | B 30–50 U | dermatome with pain | + | [123] |
Allam et al., 2005 | CR/3 m | 1 | B 16 U | hemifacial region | + | [128] |
Piovesan et al., 2005 | PO/2 w | 13 | n.a. | subdermal facial region | + | [124] |
Turk et al., 2005 | PO/n.a. | 8 | B 100 U | zygomatic arch | + | [125] |
Zuniga et al., 2008 | PO/8 w | 12 | B 20–50 U | subcutaneous trigger zone | + | [126] |
Ngeow et al., 2010 | CR/5 m | 1 | B 100 U | nasal and mental trigger zone | + | [129] |
Bohluli et al., 2011 | PO/6 m | 15 | B 50 U | trigger zone | + | [127] |
Wu et al., 2012 | DP/12 w | 22 (+20) | L 75 U | intradermal skin or oral mucosa | + | [130] |
Sheata et al., 2013 | DP/12 w | 10 (+10) | B 100 U | subcutaneous at trigger zone | + | [132] |
Zhang et al., 2014 | DP/8 w | 56 (+28) | L 25–75 U | intradermal skin or oral mucosa | + | [131] |
Xia et al., 2015 | DP/8 w | 47 (+40) | L 50 U | facial pain area | + | [133] |
Occipital Neuralgia | ||||||
Volcy et al., 2006 | CR/10 m | 1 | n.a. 40.5 U | masseter and zygomatic muscles | + | [134] |
Kapural et al., 2007 | PO/4 w | 6 | B 50–100 U | greater occipital nerve | + | [135] |
Taylor et al., 2008 | PO/12 w | 6 | B 50 U | greater occipital nerve | +/− | [136] |
5.3. Migraine
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Simpson, L.L. The life history of a botulinum toxin molecule. Toxicon 2013, 68, 40–59. [Google Scholar] [CrossRef] [PubMed]
- Rossetto, O.; Pirazzini, M.; Montecucco, C. Botulinum neurotoxins: Genetic, structural and mechanistic insights. Nat. Rev. Microbiol. 2014, 12, 535–549. [Google Scholar] [CrossRef] [PubMed]
- Cherington, M. Clinical spectrum of botulism. Muscle Nerve 1988, 21, 701–710. [Google Scholar] [CrossRef]
- Dover, N.; Barash, J.R.; Hill, K.K.; Xie, G.; Arnon, S.S. Molecular characterization of a novel botulinum neurotoxin type H gene. J. Infect. Dis. 2014, 209, 192–202. [Google Scholar] [CrossRef] [PubMed]
- Schiavo, G.; Matteoli, M.; Montecucco, C. Neurotoxins affecting neuroexocytosis. Physiol. Rev. 2000, 80, 717–766. [Google Scholar] [PubMed]
- Johnson, E.A.; Montecucco, C. Chapter 11 botulism. Handb. Clin. Neurol. 2008, 91, 333–368. [Google Scholar] [PubMed]
- Kammerer, R.A.; Benoit, R.M. Botulinum neurotoxins: New questions arising from structural biology. Trends Biochem. Sci. 2014, 39, 517–526. [Google Scholar] [CrossRef] [PubMed]
- Simpson, LL. Identification of the major steps in botulinum toxin action. Annu. Rev. Pharmacol. Toxicol. 2004, 44, 167–93. [Google Scholar] [CrossRef] [PubMed]
- Brunger, A.T. Structural insights into the molecular mechanism of Ca2+-dependent exocytosis. Curr. Opin. Neurobiol. 2000, 10, 293–302. [Google Scholar] [CrossRef]
- Sudhof, T.C. The synaptic vesicle cycle. Annu. Rev. Neurosci. 2004, 27, 509–547. [Google Scholar] [CrossRef] [PubMed]
- Pantano, S.; Montecucco, C. The blockade of the neurotransmitter release apparatus by botulinum neurotoxins. Cell. Mol. Life Sci. 2014, 71, 793–811. [Google Scholar] [CrossRef] [PubMed]
- Lamanna, C.; McElroy, O.E.; Eklund, H.W. The purification and crystallization of Clostridium botulinum type A toxin. Science 1946, 103, 613–614. [Google Scholar] [CrossRef] [PubMed]
- Buehler, H.J.; Schantz, E.J.; Lamanna, C. The elemental and amino acid composition of crystalline Clostridium botulinum type A toxin. J. Biol. Chem. 1947, 169, 295–302. [Google Scholar] [PubMed]
- Brooks, V.B. The action of botulinum toxin on motor-nerve filaments. J. Physiol. 1954, 123, 501–515. [Google Scholar] [CrossRef] [PubMed]
- Scott, A.B. Botulinum toxin injection of eye muscles to correct strabismus. Trans. Am. Ophthalmol. Soc. 1981, 79, 734–770. [Google Scholar] [PubMed]
- Jankovic, J.; Brin, M.F. Botulinum Toxin: Historical Perspective and Potential New Indications. Muscle Nerve 1997, 20 (Suppl. 6), S129–S145. [Google Scholar] [CrossRef]
- Erbguth, F.J. Historical notes on botulism, Clostridium botulinum, botulinum toxin, and the idea of the therapeutic use of the toxin. Mov. Disord. 2004, 19 (Suppl. 8), S2–S6. [Google Scholar] [CrossRef] [PubMed]
- Humeau, Y.; Doussau, F.; Grant, N.J.; Poulain, B. How botulinum and tetanus neurotoxins block neurotransmitter release. Biochimie 2000, 82, 427–446. [Google Scholar]
- Popoff, M.R.; Poulain, B. Bacterial toxins and the nervous system: Neurotoxins and multipotential toxins interacting with neuronal cells. Toxins 2010, 2, 683–737. [Google Scholar] [PubMed]
- Montecucco, C.; Molgò, J. Botulinal neurotoxins: Revival of an old killer. Curr. Opin. Pharmacol. 2005, 5, 274–279. [Google Scholar] [CrossRef] [PubMed]
- Truong, D.D.; Jost, W.H. Botulinum toxin: Clinical use. Parkinsonism Relat. Disord. 2006, 12, 331–355. [Google Scholar] [CrossRef] [PubMed]
- Jabbari, B. Botulinum neurotoxins in the treatment of refractory pain. Nat. Clin. Pract. Neurol. 2008, 4, 676–685. [Google Scholar] [CrossRef] [PubMed]
- Blitzer, A.; Brin, M.F.; Keen, M.S.; Aviv, J.E. Botulinum toxin for the treatment of hyperfunctional lines of the face. Arch. Otolaryngol. Head Neck Surg. 1993, 119, 1018–1022. [Google Scholar] [CrossRef] [PubMed]
- Binder, W.J.; Brin, M.F.; Blitzer, A.; Schenrock, L.; Diamond, B. Botulinum toxin type A (BTX-A) for migraine: An open label assessment. Mov. Disord. 1998, 13, 241. [Google Scholar]
- Binder, W.J.; Brin, M.F.; Blitzer, A.; Schoenrock, L.D.; Pogoda, J.M. Botulinum toxin type A (BOTOX) for treatment of migraine headaches: An open-label study. Otolaryngol. Head Neck Surg. 2000, 123, 669–676. [Google Scholar] [CrossRef] [PubMed]
- International Headache Society (IHS). The International Classification of Headache Disorders, 3rd edition (beta version). Cephalalgia 2013, 33, 679–808. [Google Scholar]
- Pietrobon, D.; Moskowitz, M.A. Pathophysiology of migraine. Annu. Rev. Physiol. 2013, 75, 365–391. [Google Scholar] [CrossRef] [PubMed]
- Olesen, J.; Burstein, R.; Ashina, M.; Tfelt-Hansen, P. Origin of pain in migraine: Evidence for peripheral sensitization. Lancet Neurol. 2009, 8, 679–690. [Google Scholar]
- Cianchetti, C. The role of the neurovascular scalp structures in migraine. Cephalalgia 2012, 32, 778–784. [Google Scholar] [CrossRef] [PubMed]
- Shevel, E. The extracranial vascular theory of migraine—A great story confirmed by the facts. Headache 2011, 51, 409–417. [Google Scholar] [CrossRef] [PubMed]
- Loder, E.; Rizzoli, P. Tension-type headache. Br. Med. J. 2008, 336, 88–92. [Google Scholar] [CrossRef] [PubMed]
- Leroux, E.; Ducros, A. Cluster headache. Orphanet J. Rare Dis. 2008, 3, 20. [Google Scholar]
- Brin, M.F.; Fahn, S.; Moskowitz, C.; Friedman, A.; Shale, H.M.; Greene, P.E.; Blitzer, A.; List, T.; Lange, D.; Lovelace, R.E. Localized injections of botulinum toxin for the treatment of focal dystonia and hemifacial spasm. Adv. Neurol. 1988, 50, 599–608. [Google Scholar] [CrossRef] [PubMed]
- Tarsy, D.; First, E.R. Painful cervical dystonia: Clinical features and response to treatment with botulinum toxin. Mov. Disord. 1999, 14, 1043–1045. [Google Scholar] [CrossRef]
- Freund, B.; Schwartz, M. Temporal relationship of muscle weakness and pain reduction in subjects treated with botulinum toxin A. J. Pain 2003, 4, 159–165. [Google Scholar] [CrossRef] [PubMed]
- Edvison, L.; Ekman, R.; Goadsby, P.J. Measurement of vasoactive neuropeptides in biological materials: Problems and pitfalls from 30 years of experience and novel future approaches. Chephalalgia 2010, 30, 761–766. [Google Scholar] [CrossRef]
- Ho, T.W.; Edvinsson, L.; Goadsby, P.J. CGRP and its receptors provide new insights into migraine pathophysiology. Nat. Rev. Neurol. 2010, 6, 573–582. [Google Scholar] [CrossRef] [PubMed]
- Wang, M. Cortical spreading depression and calcitonin gene-related peptide: A brief review of current progress. Neuropeptides 2013, 47, 463–466. [Google Scholar] [CrossRef] [PubMed]
- Bigal, M.E.; Walter, S.; Rapoport, A.M. Calcitonin gene-related peptide (CGRP) and migraine current understanding and state of development. Headache 2013, 53, 1230–1244. [Google Scholar] [CrossRef] [PubMed]
- Jones, E.A.; Shyti, R.; van Zeijl, R.J.; van Heiningen, S.H.; Ferrari, M.D.; Deelder, A.M.; Tolner, E.A.; van den Maagdenberg, A.M.; McDonnell, L.A. Imaging mass spectrometry to visualize biomolecule distributions in mouse brain tissue following hemispheric cortical spreading depression. J. Proteom. 2012, 75, 5027–5035. [Google Scholar] [CrossRef] [PubMed]
- Shatillo, A.; Koroleva, K.; Giniatullina, R.; Naumenko, N.; Slastnikova, A.A.; Aliev, R.R.; Bart, G.; Atalay, M.; Gu, C.; Khazipov, R.; et al. Cortical spreading depression induces oxidative stress in the trigeminal nociceptive system. Neuroscience 2013, 253, 341–349. [Google Scholar] [CrossRef] [PubMed]
- Welch, M.J.; Purkiss, J.R.; Foster, K.A. Sensitivity of embryonic rat dorsal root ganglia neurons to Clostridium botulinum neurotoxins. Toxicon 2000, 38, 245–258. [Google Scholar] [CrossRef]
- Purkiss, J.; Welch, M.; Doward, S.; Foster, K. Capsaicin-stimulated release of substance P from cultured dorsal root ganglion neurons: Involvement of two distinct mechanisms. Biochem. Pharmacol. 2000, 59, 1403–1406. [Google Scholar] [CrossRef]
- Durham, P.L.; Cady, R.; Cady, R. Regulation of calcitonin gene-related peptide secretion from trigeminal nerve cells by botulinum toxin type A: Implications for migraine therapy. Headache 2004, 44, 35–43. [Google Scholar] [CrossRef] [PubMed]
- Meng, J.; Wang, J.; Lawrence, G.; Dolly, J.O. Synaptobrevin I mediates exocytosis of CGRP from sensory neurons and inhibition by botulinum toxins reflects their anti-nociceptive potential. J. Cell Sci. 2007, 120, 2864–2874. [Google Scholar] [CrossRef] [PubMed]
- Meng, J.; Ovsepian, S.V.; Wang, J.; Pickering, M.; Sasse, A.; Aoki, K.R.; Lawrence, G.W.; Dolly, J.O. Activation of TRPV1 mediates calcitonin gene-related peptide release, which excites trigeminal sensory neurons and is attenuated by a retargeted botulinum toxin with anti-nociceptive potential. J. Neurosci. 2009, 29, 4981–4992. [Google Scholar] [CrossRef] [PubMed]
- Meng, J.; Dolly, J.O.; Wang, J. Selective cleavage of SNAREs in sensory neurons unveils protein complexes mediating peptide exocytosis triggered by different stimuli. Mol. Neurobiol. 2014, 50, 574–588. [Google Scholar] [CrossRef] [PubMed]
- Shao, Y.F.; Zhang, Y.; Zhao, P.; Yan, W.J.; Kong, X.P.; Fan, L.L.; Hou, Y.P. Botulinum toxin type A therapy in migraine: Preclinical and clinical trials. Iran. Red Crescent Med. J. 2013, 15, e7704. [Google Scholar] [CrossRef] [PubMed]
- Gazerani, P.; Au, S.; Dong, X.; Kumar, U.; Arendt-Nielsen, L.; Cairns, B.E. Botulinum neurotoxin type A (BoNT/A) decreases the mechanical sensitivity of nociceptors and inhibits neurogenic vasodilation in a craniofacial muscle targeted for migraine prophylaxis. Pain 2010, 151, 606–616. [Google Scholar] [CrossRef] [PubMed]
- Morenilla-Palao, C.; Planells-Cases, R.; Garcia-Sanz, N.; Ferrer-Montiel, A. Regulated exocytosis contributes to protein kinase C potentiation of vanilloid receptor activity. J. Biol. Chem. 2004, 279, 25665–25672. [Google Scholar] [CrossRef] [PubMed]
- Caterina, M.J.; Schumacher, M.A.; Tominaga, M.; Rosen, T.A.; Levine, J.D.; Julius, D. The capsaicin receptor: A heat-activated ion channel in the pain pathway. Nature 1997, 389, 816–824. [Google Scholar] [PubMed]
- Camprubí-Robles, M.; Planells-Cases, R.; Ferrer-Montiel, A. Differential contribution of SNARE-dependent exocytosis to inflammatory potentiation of TRPV1 in nociceptors. FASEB J. 2009, 23, 3722–3733. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, T.; Shibata, M.; Toriumi, H.; Iwashita, T.; Funakubo, M.; Sato, H.; Kuroi, T.; Ebine, T.; Koizumi, K.; Suzuki, N. Reduction of TRPV1 expression in the trigeminal system by botulinum neurotoxin type-A. Neurobiol. Dis. 2012, 48, 367–378. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.X.; Gutterman, D.D. Transient receptor potential channel activation and endothelium-dependent dilation in the systemic circulation. J. Cardiovasc. Pharmacol. 2011, 57, 133–139. [Google Scholar] [CrossRef] [PubMed]
- Geppetti, P.; Rossi, E.; Chiarugi, A.; Benemei, S. Antidromic vasodilatation and the migraine mechanism. J. Headache Pain 2012, 13, 103–111. [Google Scholar] [CrossRef] [PubMed]
- Tóth, A.; Czikora, A.; Pásztor, E.T.; Dienes, B.; Bai, P.; Csernoch, L.; Rutkai, I.; Csató, V.; Mányiné, I.S.; Pórszász, R.; et al. Vanilloid receptor-1 (TRPV1) expression and function in the vasculature of the rat. J. Histochem. Cytochem. 2014, 62, 129–144. [Google Scholar] [CrossRef] [PubMed]
- Pozsgai, G.; Bodkin, J.V.; Graepel, R.; Bevan, S.; Andersson, D.A.; Brain, S.D. Evidence for the pathophysiological relevance of TRPA1 receptors in the cardiovascular system in vivo. Cardiovasc. Res. 2010, 7, 760–768. [Google Scholar] [CrossRef] [PubMed]
- Baraldi, P.G.; Preti, D.; Materazzi, S.; Geppetti, P. Transient receptor potential ankyrin 1 (TRPA1) channel as emerging target for novel analgesics and anti-inflammatory agents. J. Med. Chem. 2010, 53, 5085–5107. [Google Scholar] [CrossRef] [PubMed]
- Luvisetto, S.; Vacca, V.; Cianchetti, C. Analgesic effects of botulinum neurotoxin type A in a model of allyl isothiocyanate- and capsaicin-induced pain in mice. Toxicon 2015, 94, 23–28. [Google Scholar] [CrossRef] [PubMed]
- Goadsby, P.J. Emerging therapies for migraine. Nat. Clin. Pract. Neurol. 2007, 3, 610–619. [Google Scholar] [CrossRef] [PubMed]
- Meents, J.E.; Neeb, L.; Reuter, U. TRPV1 in migraine pathophysiology. Trends Mol. Med. 2010, 16, 153–159. [Google Scholar] [CrossRef] [PubMed]
- Del Fiacco, M.; Quartu, M.; Boi, M.; Serra, M.P.; Melis, T.; Boccaletti, R.; Shevel, E.; Cianchetti, C. TRPV1, CGRP and SP in scalp arteries of patients suffering from chronic migraine. J. Neurol. Neurosurg. Psychiatr. 2015, 86, 393–397. [Google Scholar] [CrossRef] [PubMed]
- Dux, M.; Sántha, P.; Jancsó, G. The role of chemosensitive afferent nerves and TRP ion channels in the pathomechanism of headaches. Pflugers. Arch. 2012, 464, 239–248. [Google Scholar] [CrossRef] [PubMed]
- Benemei, S.; De Cesaris, F.; Fusi, C.; Rossi, E.; Lupi, C.; Geppetti, P. TRPA1 and other TRP channels in migraine. J. Headache Pain 2013, 14, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Benemei, S.; Fusi, C.; Trevisan, G.; Geppetti, P. The TRPA1 channel in migraine mechanism and treatment. Br. J. Pharmacol. 2014, 171, 2552–2567. [Google Scholar] [CrossRef] [PubMed]
- Burstein, R.; Zhang, X.; Levy, D.; Aoki, K.R.; Brin, M.F. Selective inhibition of meningeal nociceptors by botulinum neurotoxin type A: Therapeutic implications for migraine and other pains. Cephalalgia. 2014, 34, 853–869. [Google Scholar] [CrossRef] [PubMed]
- Matak, I.; Bach-Rojecky, L.; Filipovic, B.; Lackovic, Z. Behavioral and immunohistochemical evidence for central antinociceptive activity of botulinum toxin a. Neuroscience 2011, 186, 201–207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matak, I.; Lackovic, Z. Botulinum toxin a, brain and pain. Prog. Neurobiol. 2014, 119–120, 39–59. [Google Scholar] [CrossRef] [PubMed]
- Drinovac, V.; Bach-Rojecky, L.; Matak, I.; Lackovic, Z. Involvement of mu-opioid receptors in antinociceptive action of botulinum toxin type A. Neuropharmacology 2013, 70, 331–337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ji, R.R.; Berta, T.; Nedergaard, M. Glia and pain: Is chronic pain a gliopathy? Pain 2013, 154 (Suppl. 1), S10–S28. [Google Scholar] [CrossRef] [PubMed]
- Silva, L.B.; Poulsen, J.N.; Arendt-Nielsen, L.; Gazerani, P. Botulinum neurotoxin type a modulates vesicular release of glutamate from satellite glial cells. J. Cell Mol. Med. 2015. [Google Scholar] [CrossRef] [PubMed]
- Marinelli, S.; Vacca, V.; Ricordy, R.; Uggenti, C.; Tata, A.M.; Luvisetto, S.; Pavone, F. The analgesic effect on neuropathic pain of retrogradely transported botulinum neurotoxin A involves Schwann cells and astrocytes. PLoS ONE 2012, 7, e47977. [Google Scholar] [CrossRef] [PubMed]
- Negus, S.S.; Vanderah, T.W.; Brandt, M.R.; Bilsky, E.J.; Becerra, L.; Borsook, D. Preclinical assessment of candidate analgesic drugs: Recent advances and future challenges. J. Pharmacol. Exp. Ther. 2006, 319, 507–514. [Google Scholar] [CrossRef] [PubMed]
- Mogil, J.S.; Davis, K.D.; Derbyshire, S.W. The necessity of animal models in pain research. Pain 2010, 151, 12–17. [Google Scholar] [CrossRef] [PubMed]
- Blackburn-Munro, G. Pain-like behaviours in animals - how human are they? Trends Pharmacol. Sci. 2004, 25, 299–305. [Google Scholar] [CrossRef] [PubMed]
- Mogil, J.S.; Crager, S.E. What should we be measuring in behavioral studies of chronic pain in animals? Pain 2004, 112, 12–15. [Google Scholar] [CrossRef] [PubMed]
- Staahl, C.; Drewes, A.M. Experimental human pain models: A review of standardised methods for preclinical testing of analgesics. Basic Clin. Pharmacol. Toxicol. 2004, 95, 97–111. [Google Scholar] [CrossRef] [PubMed]
- Arendt-Nielsen, L.; Curatolo, M.; Drewes, A. Human experimental pain models in drug development: Translational pain research. Curr. Opin. Investig. Drugs 2007, 8, 41–53. [Google Scholar] [PubMed]
- Staahl, C.; Reddy, H.; Andersen, S.D.; Arendt-Nielsen, L.; Drewes, A.M. Multi-modal and tissue-differentiated experimental pain assessment: Reproducibility of a new concept for assessment of analgesics. Basic Clin. Pharmacol. Toxicol. 2006, 98, 201–211. [Google Scholar] [CrossRef] [PubMed]
- Arendt-Nielsen, L.; Yarnitsky, D. Experimental and clinical applications of quantitative sensory testing applied to skin, muscles and viscera. J. Pain 2009, 10, 556–572. [Google Scholar] [CrossRef] [PubMed]
- Arendt-Nielsen, L.; Hoeck, H.C. Optimizing the early phase development of new analgesics by human pain biomarkers. Expert Rev. Neurother. 2011, 11, 1631–1651. [Google Scholar] [CrossRef] [PubMed]
- Bittencourt da Silva, L.; Karshenas, A.; Bach, F.W.; Rasmussen, S.; Arendt-Nielsen, L.; Gazerani, P. Blockade of glutamate release by botulinum neurotoxin type A in humans: A dermal microdialysis study. Pain Res. Manag. 2014, 19, 126–132. [Google Scholar] [PubMed]
- Blersch, W.; Schulte-Mattler, W.J.; Przywara, S.; May, A.; Bigalke, H.; Wohlfarth, K. Botulinum toxin a and the cutaneous nociception in humans: A prospective, double-blind, placebo-controlled, randomized study. J. Neurol. Sci. 2002, 205, 59–63. [Google Scholar] [CrossRef]
- Da Silva, L.B.; Kulas, D.; Karshenas, A.; Cairns, B.E.; Bach, F.W.; Arendt-Nielsen, L.; Gazerani, P. Time course analysis of the effects of botulinum neurotoxin type A on pain and vasomotor responses evoked by glutamate injection into human temporalis muscles. Toxins 2014, 6, 592–607. [Google Scholar] [CrossRef] [PubMed]
- Gazerani, P.; Pedersen, N.S.; Staahl, C.; Drewes, A.M.; Arendt-Nielsen, L. Subcutaneous botulinum toxin type A reduces capsaicin-induced trigeminal pain and vasomotor reactions in human skin. Pain 2009, 141, 60–69. [Google Scholar] [CrossRef] [PubMed]
- Gazerani, P.; Staahl, C.; Drewes, A.M.; Arendt-Nielsen, L. The effects of botulinum toxin type A on capsaicin-evoked pain, flare, and secondary hyperalgesia in an experimental human model of trigeminal sensitization. Pain 2006, 122, 315–325. [Google Scholar] [CrossRef] [PubMed]
- Kramer, H.H.; Angerer, C.; Erbguth, F.; Schmelz, M.; Birklein, F. Botulinum toxin a reduces neurogenic flare but has almost no effect on pain and hyperalgesia in human skin. J. Neurol. 2003, 250, 188–193. [Google Scholar] [PubMed]
- Schulte-Mattler, W.J.; Opatz, O.; Blersch, W.; May, A.; Bigalke, H.; Wohlfahrt, K. Botulinum toxin a does not alter capsaicin-induced pain perception in human skin. J. Neurol. Sci. 2007, 260, 38–42. [Google Scholar] [CrossRef] [PubMed]
- Sycha, T.; Samal, D.; Chizh, B.; Lehr, S.; Gustorff, B.; Schnider, P.; Auff, E. A lack of antinociceptive or antiinflammatory effect of botulinum toxin a in an inflammatory human pain model. Anesth. Analg. 2006, 102, 509–516. [Google Scholar] [CrossRef] [PubMed]
- Voller, B.; Sycha, T.; Gustorff, B.; Schmetterer, L.; Lehr, S.; Eichler, H.G.; Auff, E.; Schnider, P. A randomized, double-blind, placebo controlled study on analgesic effects of botulinum toxin a. Neurology 2003, 61, 940–944. [Google Scholar] [CrossRef] [PubMed]
- Aoki, K.R.; Francis, J. Updates on the antinociceptive mechanism hypothesis of botulinum toxin A. Parkinsonism Relat. Disord. 2011, 17 (Suppl. 1), S28–S33. [Google Scholar] [CrossRef] [PubMed]
- Ambache, N. A further survey of the action of clostridium botulinum toxin upon different types of autonomic nerve fibre. J. Physiol. 1951, 113, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Pavone, F.; Luvisetto, S. Botulinum neurotoxin for pain management: Insights from animal models. Toxins 2010, 2, 2890–2913. [Google Scholar] [CrossRef] [PubMed]
- Paterson, K.; Lolignier, S.; Wood, J.N.; McMahon, S.B.; Bennett, D.L. Botulinum toxin-a treatment reduces human mechanical pain sensitivity and mechanotransduction. Ann. Neurol. 2014, 75, 591–596. [Google Scholar] [CrossRef] [PubMed]
- O’Neill, J.; Brock, C.; Olesen, A.E.; Andresen, T.; Nilsson, M.; Dickenson, A.H. Unravelling the mystery of capsaicin: A tool to understand and treat pain. Pharmacol. Rev. 2012, 64, 939–971. [Google Scholar] [CrossRef] [PubMed]
- Bach-Rojecky, L.; Lackovic, Z. Antinociceptive effect of botulinum toxin type A in rat model of carrageenan and capsaicin induced pain. Croat. Med. J. 2005, 46, 201–208. [Google Scholar] [PubMed]
- Tugnoli, V.; Capone, J.G.; Eleopra, R.; Quatrale, R.; Sensi, M.; Gastaldo, E.; Tola, M.R.; Geppetti, P. Botulinum toxin type A reduces capsaicin-evoked pain and neurogenic vasodilatation in human skin. Pain 2007, 130, 76–83. [Google Scholar] [CrossRef] [PubMed]
- Matak, I.; Rossetto, O.; Lackovic, Z. Botulinum toxin type A selectivity for certain types of pain is associated with capsaicin-sensitive neurons. Pain 2014, 155, 1516–1526. [Google Scholar] [CrossRef] [PubMed]
- Mørch, C.D.; Gazerani, P.; Nielsen, T.A.; Arendt-Nielsen, L. The UVB cutaneous inflammatory pain model: A reproducibility study in healthy volunteers. Int. J. Physiol. Pathophysiol. Pharmacol. 2013, 5, 203–215. [Google Scholar] [PubMed]
- Castrillon, E.E.; Cairns, B.E.; Wang, K.; Arendt-Nielsen, L.; Svensson, P. Comparison of glutamate-evoked pain between the temporalis and masseter muscles in men and women. Pain 2012, 153, 823–829. [Google Scholar] [CrossRef] [PubMed]
- Frampton, J.E. Onabotulinumtoxina (botox®): A review of its use in the prophylaxis of headaches in adults with chronic migraine. Drugs 2012, 72, 825–845. [Google Scholar] [CrossRef] [PubMed]
- Cui, M.; Khanijou, S.; Rubino, J.; Aoki, K.R. Subcutaneous administration of botulinum toxin a reduces formalin-induced pain. Pain 2004, 107, 125–133. [Google Scholar] [CrossRef] [PubMed]
- Yiangou, Y.; Anand, U.; Otto, W.R.; Sinisi, M.; Fox, M.; Birch, R.; Foster, K.A.; Mukerji, G.; Akbar, A.; Agarwal, S.K.; et al. Increased levels of SV2A botulinum neurotoxin receptor in clinical sensory disorders and functional effects of botulinum toxins A and E in cultured human sensory neurons. J. Pain Res. 2011, 4, 347–55. [Google Scholar] [PubMed]
- Cernuda-Morollón, E.; Ramón, C.; Martínez-Camblor, P.; Serrano-Pertierra, E.; Larrosa, D.; Pascual, J. OnabotulinumtoxinA decreases interictal CGRP plasma levels in patients with chronic migraine. Pain 2015, 156, 820–824. [Google Scholar] [CrossRef] [PubMed]
- Aoki, K.R. Review of a proposed mechanism for the antinociceptive action of botulinum toxin type A. Neurotoxicology. 2005, 26, 785–793. [Google Scholar] [CrossRef] [PubMed]
- Cairns, B.E.; Gazerani, P. Botulinum neurotoxin A for chronic migraine headaches: Does it work and how? Pain Manag. 2014, 4, 377–380. [Google Scholar] [CrossRef] [PubMed]
- Walsh, S. FDA Approves Botox to Treat Chronic Migraine; U.S. Food and Drug Administration: Silver Spring, MD, USA, 2010. [Google Scholar]
- Jensen, R.; Olesen, J. Tension-type headache: An update on mechanisms and treatment. Curr. Opin. Neurol. 2000, 13, 285–289. [Google Scholar] [CrossRef] [PubMed]
- Relja, M. Treatment of tension type headache by local injection of botulinum toxin. Eur. J. Neurol. 1997, 4 (Suppl. 2), S71–S77. [Google Scholar]
- Relja, M.; Telarović, S. Botulinum toxin in tension-type headache. J. Neurol. 2004, 251 (Suppl. 1), I12–I14. [Google Scholar] [CrossRef] [PubMed]
- Freund, B.J.; Schwartz, M. Relief of tension-type headache symptoms in subjects with temporomandibular disorders treated with botulinum toxin-A. Headache 2002, 42, 1033–1037. [Google Scholar] [CrossRef] [PubMed]
- Smuts, J.; Baker, M.; Smuts, H.; Stassen, J.; Rossouw, E.; Barnard, P. Prophylactic treatment of chronic tension-type headache using botulinum toxin type A. Eur. J. Neurol. 1999, 6 (Suppl. 4), S99–S102. [Google Scholar] [CrossRef]
- Schmitt, W.J.; Slowey, E.; Fravi, N.; Weber, S.; Burgunder, J.M. Effect of botulinum toxin A injections in the treatment of chronic tension-type headache: A double-blind, placebo controlled trial. Headache 2001, 41, 658–664. [Google Scholar] [CrossRef] [PubMed]
- Rollnik, J.D.; Tanneberger, O.; Schubert, M.; Schneider, U.; Dengler, R. Treatment of tension-type headache with botulinum toxin type A: A double-blind, placebo-controlled study. Headache 2000, 40, 300–305. [Google Scholar] [CrossRef] [PubMed]
- Gobel, H.; Lindner, V.; Krack, P.; Heinze, A.; Gaartz, N.; Deuschl, G. Treatment of chronic tension-type headache with botulinum toxin. Cephalalgia 1999, 19, 455. [Google Scholar]
- Padberg, M.; de Bruijn, S.F.T.M.; de Haan, R.J.; Tavy, D.L.J. Treatment of chronic tension-type headache with botulinum toxin: A double-blind, placebo-controlled clinical trial. Cephalalgia 2004, 24, 675–680. [Google Scholar] [CrossRef] [PubMed]
- Schulte-Mattler, W.J.; Krack, P.; BoNTTH Study Group. Treatment of chronic tension-type headache with botulinum toxin A: A randomized, double-blind, placebo-controlled multicenter study. Pain 2004, 109, 110–114. [Google Scholar] [CrossRef] [PubMed]
- Silberstein, S.D.; Göbel, H.; Jensen, R.; Elkind, A.H.; DeGryse, R.; Walcott, J.M.C.M.; Turkel, C. Botulinum toxin type A in the prophylactic treatment of chronic tension-type headache: A multicentre, double-blind, randomized, placebo-controlled, parallel-group study. Cephalalgia 2006, 26, 790–800. [Google Scholar] [CrossRef] [PubMed]
- Jackson, J.L.; Kuriyama, A.; Hayashino, Y. Botulinum toxin A for prophylactic treatment of migraine and tension headaches in adults: A meta-analysis. JAMA 2012, 307, 1736–1745. [Google Scholar] [PubMed]
- Sostak, P.; Krause, P.; Förderreuther, S.; Reinisch, V.; Straube, A. Botulinum toxin type-A therapy in cluster headache: An open study. J. Headache Pain 2007, 8, 236–241. [Google Scholar] [CrossRef] [PubMed]
- Gadient, P.M.; Smith, J.H. The neuralgias: Diagnosis and management. Curr. Neurol. Neurosci. Rep. 2014, 14, 459–467. [Google Scholar] [CrossRef] [PubMed]
- Cheshire, W.P. Trigeminal neuralgia: For one nerve a multitude of treatments. Expert Rev. Neurother. 2007, 7, 1565–1579. [Google Scholar] [CrossRef] [PubMed]
- Borodic, G.E.; Acquadro, M.A. The use of botulinum toxin for the treatment of chronic facial pain. J. Pain 2002, 3, 21–27. [Google Scholar] [CrossRef] [PubMed]
- Piovesan, E.J.; Teive, H.G.; Kowacs, P.A.; Della Coletta, M.V.; Werneck, L.C.; Silberstein, S.D. An open study of botulinum-A toxin treatment of trigeminal neuralgia. Neurology 2005, 65, 1306–1308. [Google Scholar] [CrossRef] [PubMed]
- Türk, U.; Ilhan, S.; Alp, R.; Sur, H. Botulinum toxin and intractable trigeminal neuralgia. Clin. Neuropharmacol. 2005, 28, 161–162. [Google Scholar] [PubMed]
- Zuniga, C.; Diaz, S.; Piedimonte, F.; Micheli, F. Beneficial effects of botulinum toxin type A in trigeminal neuralgia. Arq. NeuroPsiquiatr. 2008, 66, 500–503. [Google Scholar] [CrossRef] [PubMed]
- Bohluli, B.; Motamedi, M.H.; Bagheri, S.C.; Bayat, M.; Lassemi, E.; Navi, F.; Moharamnejad, N. Use of botulinum toxin A for drug-refractory trigeminal neuralgia: Preliminary report. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2011, 111, 47–50. [Google Scholar] [CrossRef] [PubMed]
- N. Allam, N.; Brasil-Neto, J.P.; Brown, G.; Tomaz, C. Injections of botulinum toxin type A produce pain alleviation in intractable trigeminal neuralgia. Clin. J. Pain 2005, 21, 182–184. [Google Scholar] [CrossRef]
- Ngeow, W.C.; Nair, R. Injection of botulinum toxin type A (BOTOX) into trigger zone of trigeminal neuralgia as a means to control pain. Oral Surg., Oral Med., Oral Pathol., Oral Radiol., Endod. 2010, 109, e47–e50. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.J.; Lian, Y.J.; Zheng, Y.K.; Zhang, H.F.; Chen, Y.; Xie, N.C.; Wang, L.J. Botulinum toxin type A for the treatment of trigeminal neuralgias: Results from a randomized, double-blind, placebo-controlled trial. Cephalgia 2012, 32, 443–450. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Lian, Y.; Ma, Y.; Chen, Y.; He, C.; Xie, N.; Wu, C. Two doses of botulinum toxin type A for the treatment of trigeminal neuralgia: Observation of therapeutic effect from a randomized, double-blind, placebo-controlled trial. J. Headache Pain. 2014, 15, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Shehata, H.S.; El-Tamawy, M.S.; Shalaby, N.M.; Ramzy, G. Botulinum toxin-type A: Could it be an effective treatment option in intractable trigeminal neuralgia? J. Headache Pain 2013, 14, 92–98. [Google Scholar] [CrossRef] [PubMed]
- Xia, J.H.; He, C.H.; Zhang, H.F.; Lian, Y.J.; Chen, Y.; Wu, C.J.; Ma, Y.Q. Botulinum Toxin A in the Treatment of Trigeminal Neuralgia. Int. J. Neurosci. 2015, 19, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Volcy, M.; Tepper, S.J.; Rapoport, A.M.; Sheftell, F.D.; Bigal, M.E. Botulinum toxin A for the treatment of greater occipital neuralgia and trigeminal neuralgia: A case report with pathophysiological considerations. Cephalalgia. 2006, 26, 336–340. [Google Scholar] [CrossRef] [PubMed]
- Kapural, L.; Stillman, M.; Kapural, M.; McIntyre, P.; Guirgius, M.; Mekhail, N. Botulinum toxin occipital nerve block for the treatment of severe occipital neuralgia: A case series. Pain Pract. 2007, 7, 337–340. [Google Scholar] [CrossRef] [PubMed]
- Taylor, M.; Silva, S.; Cottrell, C. Botulinum toxin type-a (botox) in the treatment of occipital neuralgia: A pilot study. Headache 2008, 48, 1476–1481. [Google Scholar] [CrossRef] [PubMed]
- Ramachandran, R; Yaksh, T.L. Therapeutic use of botulinum toxin in migraine: Mechanism of action. Br. J. Pharmacol. 2014, 171, 4177–4192. [Google Scholar]
- Naumann, M.; So, Y.; Argoff, C.E.; Childers, M.K.; Dykstra, D.D.; Gronseth, G.S.; Jabbari, B.; Kaufmann, H.C.; Schurch, B.; Silberstein, S.D.; et al. Assessment: Botulinum neurotoxin in the treatment of autonomic disorders and pain (an evidence-based review): Report of the therapeutics and technology assessment subcommittee of the american academy of neurology. Neurology 2008, 70, 1707–1714. [Google Scholar] [CrossRef] [PubMed]
- Aurora, S.K.; Dodick, D.W.; Turkel, C.C.; DeGryse, R.E.; Silberstein, S.D.; Lipton, R.B.; Diener, H.C.; Brin, M.F. PREEMPT 1 Chronic Migraine Study Group. OnabotulinumtoxinA for treatment of chronic migraine: Results from the doubleblind, randomized, placebo-controlled phase of the PREEMPT 1 trial. Cephalalgia 2010, 30, 793–803. [Google Scholar] [CrossRef] [PubMed]
- Diener, H.C.; Dodick, D.W.; Aurora, S.K.; Turkel, C.C.; DeGryse, R.E.; Lipton, R.B.; Silberstein, S.D.; Brin, M.F. PREEMPT 2 Chronic Migraine Study Group. OnabotulinumtoxinA for treatment of chronic migraine: Results from the doubleblind, randomized, placebo-controlled phase of the PREEMPT 2 trial. Cephalalgia 2010, 30, 804–814. [Google Scholar] [CrossRef] [PubMed]
- Dodick, D.W.; Turkel, C.C.; DeGryse, R.E.; Aurora, S.K.; Silberstein, S.D.; Lipton, R.B.; Diener, H.C.; Brin, M.F.; Group, P.C.M.S. Onabotulinumtoxina for treatment of chronic migraine: Pooled results from the double-blind, randomized, placebo-controlled phases of the preempt clinical program. Headache 2010, 50, 921–936. [Google Scholar] [CrossRef] [PubMed]
- Silberstein, S.D.; Blumenfeld, A.M.; Cady, R.K.; Turner, I.M.; Lipton, R.B.; Diener, H.C.; Aurora, S.K.; Sirimanne, M.; DeGryse, R.E.; Turkel, C.C.; et al. Onabotulinumtoxina for treatment of chronic migraine: Preempt 24-week pooled subgroup analysis of patients who had acute headache medication overuse at baseline. J. Neurol. Sci. 2013, 331, 48–56. [Google Scholar] [CrossRef] [PubMed]
- Aurora, S.K.; Dodick, D.W.; Diener, H.C.; DeGryse, R.E.; Turkel, C.C.; Lipton, R.B.; Silberstein, S.D. OnabotulinumtoxinA for chronic migraine: Efficacy, safety, and tolerability in patients who received all five treatment cycles in the PREEMPT clinical program. Acta. Neurol. Scand. 2014, 129, 61–70. [Google Scholar] [CrossRef] [PubMed]
- Blumenfeld, A.; Inocelda, A.; Cunanan, C.; Purdy, C.; Dalfonso, L.; Magar, R. The Durability of OnabotulinumtoxinA for the Treatment of Chronic Migraine: CLARITY Pilot Study (P7.186). Neurology 2014, 82 (Suppl. 10), 7. [Google Scholar]
- Blumenfeld, A.; Aurora, S.K.; Laranjo, K.; Papapetropoulos, S. Rationale for study and design of COMPEL: An open-Label, multicenter study of the long-term efficacy, safety, and tolerability of onabotulinumtoxinA for headache prophylaxis in adults with chronic migraine. F1000Posters 2012, 3, 654. [Google Scholar]
- Blumenfeld, A.; Stark, R.; Reppine, A.; Halstead, M.; Holdbrook, F.; Aurora, S.K. Efficacy and Safety of OnabotulinumtoxinA in a Long-Term, Open-Label Study for the Prophylaxis of Headaches in Adult Chronic Migraine Patients: An Interim Analysis of the COMPEL Study (P1.306). Neurology 2015, 84 (Suppl. 14), 1–306. [Google Scholar]
- Cernuda-Morollón, E.; Ramón, C.; Larrosa, D.; Alvarez, R.; Riesco, N.; Pascual, J. Long-term experience with onabotulinumtoxinA in the treatment of chronic migraine: What happens after one year? Cephalalgia 2015, 35, 864–868. [Google Scholar] [CrossRef] [PubMed]
- Blumenfeld, A.M.; Binder, W.; Silberstein, S.D.; Blitzer, A. Procedures for administering botulinum toxin type A for migraine and tension-type headache. Headache 2003, 43, 884–891. [Google Scholar] [CrossRef] [PubMed]
- Silberstein, S.D. Botulinum toxin in headache management. In Botulinum. Toxin: Therapeutic Clinical Practice and Science; Saunders: Philadelphia, PA, USA, 2009; p. 218. [Google Scholar]
- Blumenfeld, A.; Silberstein, S.; Dodick, D.; Aurora, S.; Turkel, C.C.; Binder, W.J. Method of injection of onabotulinumtoxina for chronic migraine: A safe, well-tolerated, and effective treatment paradigm on the preempt clinical program. Headache 2010, 50, 1406–1418. [Google Scholar] [CrossRef] [PubMed]
- Jabbari, B. Migraine and other primary headaches. In Botulinum. Toxin Treatment of Pain Disorders; Springer Publisher: Berlin, Germany, 2015; pp. 49–67. [Google Scholar]
- Silberstein, S.D. TRPV1, CGRP and SP in scalp arteries of patients suffering from chronic migraine. Some like it hot! Chronic migraine increases TRPV1 receptors in the scalp. J. Neurol. Neurosurg. Psychiatr. 2015, 86, 361. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luvisetto, S.; Gazerani, P.; Cianchetti, C.; Pavone, F. Botulinum Toxin Type A as a Therapeutic Agent against Headache and Related Disorders. Toxins 2015, 7, 3818-3844. https://doi.org/10.3390/toxins7093818
Luvisetto S, Gazerani P, Cianchetti C, Pavone F. Botulinum Toxin Type A as a Therapeutic Agent against Headache and Related Disorders. Toxins. 2015; 7(9):3818-3844. https://doi.org/10.3390/toxins7093818
Chicago/Turabian StyleLuvisetto, Siro, Parisa Gazerani, Carlo Cianchetti, and Flaminia Pavone. 2015. "Botulinum Toxin Type A as a Therapeutic Agent against Headache and Related Disorders" Toxins 7, no. 9: 3818-3844. https://doi.org/10.3390/toxins7093818