Radiation-Induced Lung Injury—Current Perspectives and Management
Abstract
:1. Introduction
2. Epidemiology
3. Pathophysiology
4. Predisposing Factors of Lung Injury
4.1. Treatment-Related Risk Factors
4.1.1. Total Radiation Dose
4.1.2. Fractionation and Dose Rate
4.1.3. The Volume of Irradiated Lung
4.1.4. Technique of Irradiation
4.1.5. Chemotherapy
4.1.6. Immunotherapy
4.2. Patient-Related Risk Factors
- Interstitial lung disease: The presence of baseline ILD is a significant risk factor for grade 4 and 5 radiation pneumonitis [35]. ILD itself causes parenchymal inflammation, which can predispose to radiation-induced lung injury (RILI). In a recent single-center experience, the rate of radiation pneumonitis after receiving SBRT was higher in patients with pre-existing ILD (20% versus 6%) [36]. Pre-existing ILD also increases the risk of mortality in patients with RILI [37].
- Smoking and COPD: Data are conflicting with retrospective studies indicating less symptomatic radiation pneumonitis in these patient populations than with normal lungs [38,39,40,41]. In fact, smoking may have a protective impact on the development of RILI when compared to non-smokers [42,43]. However, other retrospective studies indicate an increased risk of radiation-induced lung injury in patients with COPD, specifically pulmonary emphysema [33,44]. Patients with lung cancer have an increased prevalence of COPD, and further prospective research is needed to understand the impact of COPD in RILI.
- Tumor-related factors: Higher rates of organizing pneumonia have been observed in women with breast cancer treated with concurrent radiation and endocrine therapy [45]. Similarly, concurrent use of tamoxifen in women with breast cancer increases the frequency of pulmonary fibrosis [46]. Breast cancer and lung cancer involving the mid-lower lung zones are more associated with RILI [12,47]. Patients with higher tumor volume have a higher percentage of irradiated lung and, therefore, a higher risk of RILI [48,49].
5. Phases of Lung Injury
- Acute Phase
- Latent Phase
- Exudative Phase
- Intermediate Phase
- Resolution Phase
- Fibrosis
6. Diagnosis of Radiation Pneumonitis
6.1. Examination Findings
6.2. Laboratory Findings
6.3. Complications
6.4. Imaging
6.4.1. X-rays
6.4.2. Chest CT-Scan
6.4.3. Differential Diagnosis
6.4.4. Newer Imaging Techniques
6.4.5. Pulmonary Function Tests
6.4.6. Bronchoscopy
7. Management of Radiation Pneumonitis
7.1. Treatment Strategies
7.1.1. Minimally Symptomatic Patients
7.1.2. Symptomatic Patients with Subacute Radiation Pneumonitis
7.1.3. Organizing Pneumonia
7.1.4. Pulmonary Fibrosis
7.2. Treatment Options
7.2.1. Steroids
7.2.2. ACE Inhibitor
7.2.3. Amifostine
8. Radiation Pneumonitis and Mortality and Outcomes
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Abbreviations
RILI | Radiotherapy induced lung injury |
RP | Radiation pneumonitis |
RF | Radiation fibrosis |
RT | Radiotherapy |
SBRT | Stereotactic body radiation therapy |
ICI | Immune checkpoint inhibitor |
NSCLC | Non small cell lung cancer |
References
- Kolilekas, L.; Costabel, U.; Tzouvelekis, A.; Tzilas, V.; Bouros, D. Idiopathic interstitial pneumonia or idiopathic interstitial pneumonitis: What’s in a name? Eur. Respir. J. 2019, 53. [Google Scholar] [CrossRef]
- Libshitz, H.I.; Southard, M.E. Complications of radiation therapy: The thorax. Semin. Roentgenol. 1974, 9, 41–49. [Google Scholar] [CrossRef]
- Slezak, J.; Kura, B.; Ravingerová, T.; Tribulova, N.; Okruhlicova, L.; Barancik, M. Mechanisms of cardiac radiation injury and potential preventive approaches. Can. J. Physiol. Pharmacol. 2015, 93, 737–753. [Google Scholar] [CrossRef] [PubMed]
- Kelsey, C.R.; Rosenstein, B.S.; Marks, L.B. Predicting toxicity from radiation therapy--it’s genetic, right? Cancer 2012, 118, 3450–3454. [Google Scholar] [CrossRef] [Green Version]
- Käsmann, L.; Dietrich, A.; Staab-Weijnitz, C.A.; Manapov, F.; Behr, J.; Rimner, A.; Jeremic, B.; Senan, S.; De Ruysscher, D.; Lauber, K.; et al. Radiation-induced lung toxicity—Cellular and molecular mechanisms of pathogenesis, management, and literature review. Radiat. Oncol. 2020, 15, 214. [Google Scholar] [CrossRef]
- Hanania, A.N.; Mainwaring, W.; Ghebre, Y.T.; Hanania, N.A.; Ludwig, M. Radiation-Induced Lung Injury: Assessment and Management. Chest 2019, 156, 150–162. [Google Scholar] [CrossRef] [PubMed]
- Barriger, R.B.; Forquer, J.A.; Brabham, J.G.; Andolino, D.L.; Shapiro, R.H.; Henderson, M.A.; Johnstone, P.A.; Fakiris, A.J. A dose-volume analysis of radiation pneumonitis in non-small cell lung cancer patients treated with stereotactic body radiation therapy. Int. J. Radiat. Oncol. Biol. Phys. 2012, 82, 457–462. [Google Scholar] [CrossRef] [PubMed]
- Arroyo-Hernández, M.; Maldonado, F.; Lozano-Ruiz, F.; Muñoz-Montaño, W.; Nuñez-Baez, M.; Arrieta, O. Radiation-induced lung injury: Current evidence. BMC Pulm. Med. 2021, 21, 9. [Google Scholar] [CrossRef]
- Taghian, A.G.; Assaad, S.I.; Niemierko, A.; Kuter, I.; Younger, J.; Schoenthaler, R.; Roche, M.; Powell, S.N. Risk of pneumonitis in breast cancer patients treated with radiation therapy and combination chemotherapy with paclitaxel. J. Natl. Cancer Inst. 2001, 93, 1806–1811. [Google Scholar] [CrossRef] [Green Version]
- Giridhar, P.; Mallick, S.; Rath, G.K.; Julka, P.K. Radiation induced lung injury: Prediction, assessment and management. Asian Pac. J. Cancer Prev. 2015, 16, 2613–2617. [Google Scholar] [CrossRef] [Green Version]
- Wen, J.; Liu, H.; Wang, Q.; Liu, Z.; Li, Y.; Xiong, H.; Xu, T.; Li, P.; Wang, L.E.; Gomez, D.R.; et al. Genetic variants of the LIN28B gene predict severe radiation pneumonitis in patients with non-small cell lung cancer treated with definitive radiation therapy. Eur. J. Cancer 2014, 50, 1706–1716. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.J.; Sun, J.G.; Sun, J.; Ming, H.; Wang, X.X.; Wu, L.; Chen, Z.T. Prediction of radiation pneumonitis in lung cancer patients: A systematic review. J. Cancer Res. Clin. Oncol. 2012, 138, 2103–2116. [Google Scholar] [CrossRef]
- Gurley, L.R.; London, J.E.; Tietjen, G.L.; van der Kogel, A.J.; Dethloff, L.A.; Lehnert, B.E. Lung hyperpermeability and changes in biochemical constituents in bronchoalveolar lavage fluids following X irradiation of the thorax. Radiat. Res. 1993, 134, 151–159. [Google Scholar] [CrossRef] [PubMed]
- Movsas, B.; Raffin, T.A.; Epstein, A.H.; Link, C.J. Pulmonary radiation injury. Chest 1997, 111, 1061–1076. [Google Scholar] [CrossRef]
- Jennings, F.L.; Arden, A. Development of radiation pneumonitis. Time and dose factors. Arch. Pathol. 1962, 74, 351–360. [Google Scholar]
- Roach, M.; Gandara, D.R.; Yuo, H.S.; Swift, P.S.; Kroll, S.; Shrieve, D.C.; Wara, W.M.; Margolis, L.; Phillips, T.L. Radiation pneumonitis following combined modality therapy for lung cancer: Analysis of prognostic factors. J. Clin. Oncol. 1995, 13, 2606–2612. [Google Scholar] [CrossRef]
- Davis, S.D.; Yankelevitz, D.F.; Henschke, C.I. Radiation effects on the lung: Clinical features, pathology, and imaging findings. AJR Am. J. Roentgenol. 1992, 159, 1157–1164. [Google Scholar] [CrossRef] [Green Version]
- Chun, S.G.; Hu, C.; Choy, H.; Komaki, R.U.; Timmerman, R.D.; Schild, S.E.; Bogart, J.A.; Dobelbower, M.C.; Bosch, W.; Galvin, J.M.; et al. Impact of Intensity-Modulated Radiation Therapy Technique for Locally Advanced Non-Small-Cell Lung Cancer: A Secondary Analysis of the NRG Oncology RTOG 0617 Randomized Clinical Trial. J. Clin. Oncol. 2017, 35, 56–62. [Google Scholar] [CrossRef]
- Pang, Q.; Wei, Q.; Xu, T.; Yuan, X.; Lopez Guerra, J.L.; Levy, L.B.; Liu, Z.; Gomez, D.R.; Zhuang, Y.; Wang, L.E.; et al. Functional promoter variant rs2868371 of HSPB1 is associated with risk of radiation pneumonitis after chemoradiation for non-small cell lung cancer. Int. J. Radiat. Oncol. Biol. Phys. 2013, 85, 1332–1339. [Google Scholar] [CrossRef] [PubMed]
- Verma, V.; Shostrom, V.K.; Zhen, W.; Zhang, M.; Braunstein, S.E.; Holland, J.; Hallemeier, C.L.; Harkenrider, M.M.; Iskhanian, A.; Jabbour, S.K.; et al. Influence of Fractionation Scheme and Tumor Location on Toxicities After Stereotactic Body Radiation Therapy for Large (≥5 cm) Non-Small Cell Lung Cancer: A Multi-institutional Analysis. Int. J. Radiat. Oncol. Biol. Phys. 2017, 97, 778–785. [Google Scholar] [CrossRef] [PubMed]
- Verma, V.; Simone, C.B.; Allen, P.K.; Gajjar, S.R.; Shah, C.; Zhen, W.; Harkenrider, M.M.; Hallemeier, C.L.; Jabbour, S.K.; Matthiesen, C.L.; et al. Multi-Institutional Experience of Stereotactic Ablative Radiation Therapy for Stage I Small Cell Lung Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2017, 97, 362–371. [Google Scholar] [CrossRef] [PubMed]
- Jain, V.; Berman, A.T. Radiation Pneumonitis: Old Problem, New Tricks. Cancers 2018, 10, 222. [Google Scholar] [CrossRef] [Green Version]
- Marks, L.B.; Bentzen, S.M.; Deasy, J.O.; Kong, F.M.; Bradley, J.D.; Vogelius, I.S.; El Naqa, I.; Hubbs, J.L.; Lebesque, J.V.; Timmerman, R.D.; et al. Radiation dose-volume effects in the lung. Int. J. Radiat. Oncol. Biol. Phys. 2010, 76, S70–S76. [Google Scholar] [CrossRef] [Green Version]
- Hensley, M.L.; Hagerty, K.L.; Kewalramani, T.; Green, D.M.; Meropol, N.J.; Wasserman, T.H.; Cohen, G.I.; Emami, B.; Gradishar, W.J.; Mitchell, R.B.; et al. American Society of Clinical Oncology 2008 clinical practice guideline update: Use of chemotherapy and radiation therapy protectants. J. Clin. Oncol. 2009, 27, 127–145. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Liao, Z.; Wei, X.; Liu, H.H.; Tucker, S.L.; Hu, C.; Ajani, J.A.; Phan, A.; Swisher, S.G.; Mohan, R.; et al. Association between systemic chemotherapy before chemoradiation and increased risk of treatment-related pneumonitis in esophageal cancer patients treated with definitive chemoradiotherapy. J. Thorac. Oncol. 2008, 3, 277–282. [Google Scholar] [CrossRef] [Green Version]
- Arrieta, O.; Gallardo-Rincón, D.; Villarreal-Garza, C.; Michel, R.M.; Astorga-Ramos, A.M.; Martínez-Barrera, L.; de la Garza, J. High frequency of radiation pneumonitis in patients with locally advanced non-small cell lung cancer treated with concurrent radiotherapy and gemcitabine after induction with gemcitabine and carboplatin. J. Thorac. Oncol. 2009, 4, 845–852. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suresh, K.; Voong, K.R.; Shankar, B.; Forde, P.M.; Ettinger, D.S.; Marrone, K.A.; Kelly, R.J.; Hann, C.L.; Levy, B.; Feliciano, J.L.; et al. Pneumonitis in Non-Small Cell Lung Cancer Patients Receiving Immune Checkpoint Immunotherapy: Incidence and Risk Factors. J. Thorac. Oncol. 2018, 13, 1930–1939. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Twyman-Saint Victor, C.; Rech, A.J.; Maity, A.; Rengan, R.; Pauken, K.E.; Stelekati, E.; Benci, J.L.; Xu, B.; Dada, H.; Odorizzi, P.M.; et al. Radiation and dual checkpoint blockade activate non-redundant immune mechanisms in cancer. Nature 2015, 520, 373–377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schoenfeld, J.D.; Nishino, M.; Severgnini, M.; Manos, M.; Mak, R.H.; Hodi, F.S. Pneumonitis resulting from radiation and immune checkpoint blockade illustrates characteristic clinical, radiologic and circulating biomarker features. J. Immunother. Cancer 2019, 7, 112. [Google Scholar] [CrossRef]
- Shaverdian, N.; Lisberg, A.E.; Bornazyan, K.; Veruttipong, D.; Goldman, J.W.; Formenti, S.C.; Garon, E.B.; Lee, P. Previous radiotherapy and the clinical activity and toxicity of pembrolizumab in the treatment of non-small-cell lung cancer: A secondary analysis of the KEYNOTE-001 phase 1 trial. Lancet Oncol. 2017, 18, 895–903. [Google Scholar] [CrossRef]
- Antonia, S.J.; Villegas, A.; Daniel, D.; Vicente, D.; Murakami, S.; Hui, R.; Yokoi, T.; Chiappori, A.; Lee, K.H.; de Wit, M.; et al. Durvalumab after Chemoradiotherapy in Stage III Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2017, 377, 1919–1929. [Google Scholar] [CrossRef] [Green Version]
- Louvel, G.; Bahleda, R.; Ammari, S.; Le Péchoux, C.; Levy, A.; Massard, C.; Le Pavec, J.; Champiat, S.; Deutsch, E. Immunotherapy and pulmonary toxicities: Can concomitant immune-checkpoint inhibitors with radiotherapy increase the risk of radiation pneumonitis? Eur. Respir. J. 2018, 51. [Google Scholar] [CrossRef] [Green Version]
- Kimura, T.; Togami, T.; Takashima, H.; Nishiyama, Y.; Ohkawa, M.; Nagata, Y. Radiation pneumonitis in patients with lung and mediastinal tumours: A retrospective study of risk factors focused on pulmonary emphysema. Br. J. Radiol. 2012, 85, 135–141. [Google Scholar] [CrossRef] [Green Version]
- Jin, H.; Tucker, S.L.; Liu, H.H.; Wei, X.; Yom, S.S.; Wang, S.; Komaki, R.; Chen, Y.; Martel, M.K.; Mohan, R.; et al. Dose-volume thresholds and smoking status for the risk of treatment-related pneumonitis in inoperable non-small cell lung cancer treated with definitive radiotherapy. Radiother. Oncol. 2009, 91, 427–432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ueki, N.; Matsuo, Y.; Togashi, Y.; Kubo, T.; Shibuya, K.; Iizuka, Y.; Mizowaki, T.; Togashi, K.; Mishima, M.; Hiraoka, M. Impact of pretreatment interstitial lung disease on radiation pneumonitis and survival after stereotactic body radiation therapy for lung cancer. J. Thorac. Oncol. 2015, 10, 116–125. [Google Scholar] [CrossRef] [Green Version]
- Glick, D.; Lyen, S.; Kandel, S.; Shapera, S.; Le, L.W.; Lindsay, P.; Wong, O.; Bezjak, A.; Brade, A.; Cho, B.C.J.; et al. Impact of Pretreatment Interstitial Lung Disease on Radiation Pneumonitis and Survival in Patients Treated With Lung Stereotactic Body Radiation Therapy (SBRT). Clin. Lung Cancer 2018, 19, e219–e226. [Google Scholar] [CrossRef] [PubMed]
- Onishi, H.; Yamashita, H.; Shioyama, Y.; Matsumoto, Y.; Takayama, K.; Matsuo, Y.; Miyakawa, A.; Matsushita, H.; Aoki, M.; Nihei, K.; et al. Stereotactic Body Radiation Therapy for Patients with Pulmonary Interstitial Change: High Incidence of Fatal Radiation Pneumonitis in a Retrospective Multi-Institutional Study. Cancers 2018, 10, 257. [Google Scholar] [CrossRef] [Green Version]
- Robnett, T.J.; Machtay, M.; Vines, E.F.; McKenna, M.G.; Algazy, K.M.; McKenna, W.G. Factors predicting severe radiation pneumonitis in patients receiving definitive chemoradiation for lung cancer. Int. J. Radiat. Oncol. Biol. Phys. 2000, 48, 89–94. [Google Scholar] [CrossRef]
- Monson, J.M.; Stark, P.; Reilly, J.J.; Sugarbaker, D.J.; Strauss, G.M.; Swanson, S.J.; Decamp, M.M.; Mentzer, S.J.; Baldini, E.H. Clinical radiation pneumonitis and radiographic changes after thoracic radiation therapy for lung carcinoma. Cancer 1998, 82, 842–850. [Google Scholar] [CrossRef]
- Takeda, A.; Kunieda, E.; Ohashi, T.; Aoki, Y.; Oku, Y.; Enomoto, T.; Nomura, K.; Sugiura, M. Severe COPD is correlated with mild radiation pneumonitis following stereotactic body radiotherapy. Chest 2012, 141, 858–866. [Google Scholar] [CrossRef] [PubMed]
- Yirmibesoglu, E.; Higginson, D.S.; Fayda, M.; Rivera, M.P.; Halle, J.; Rosenman, J.; Xie, L.; Marks, L.B. Challenges scoring radiation pneumonitis in patients irradiated for lung cancer. Lung Cancer 2012, 76, 350–353. [Google Scholar] [CrossRef] [Green Version]
- Mehta, V. Radiation pneumonitis and pulmonary fibrosis in non-small-cell lung cancer: Pulmonary function, prediction, and prevention. Int. J. Radiat. Oncol. Biol. Phys. 2005, 63, 5–24. [Google Scholar] [CrossRef]
- Gokula, K.; Earnest, A.; Wong, L.C. Meta-analysis of incidence of early lung toxicity in 3-dimensional conformal irradiation of breast carcinomas. Radiat. Oncol. 2013, 8, 268. [Google Scholar] [CrossRef] [Green Version]
- Rancati, T.; Ceresoli, G.L.; Gagliardi, G.; Schipani, S.; Cattaneo, G.M. Factors predicting radiation pneumonitis in lung cancer patients: A retrospective study. Radiother. Oncol. 2003, 67, 275–283. [Google Scholar] [CrossRef]
- Katayama, N.; Sato, S.; Katsui, K.; Takemoto, M.; Tsuda, T.; Yoshida, A.; Morito, T.; Nakagawa, T.; Mizuta, A.; Waki, T.; et al. Analysis of factors associated with radiation-induced bronchiolitis obliterans organizing pneumonia syndrome after breast-conserving therapy. Int. J. Radiat. Oncol. Biol. Phys. 2009, 73, 1049–1054. [Google Scholar] [CrossRef] [PubMed]
- Varga, Z.; Cserháti, A.; Kelemen, G.; Boda, K.; Thurzó, L.; Kahán, Z. Role of systemic therapy in the development of lung sequelae after conformal radiotherapy in breast cancer patients. Int. J. Radiat. Oncol. Biol. Phys. 2011, 80, 1109–1116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kong, F.M.; Wang, S. Nondosimetric risk factors for radiation-induced lung toxicity. Semin. Radiat. Oncol. 2015, 25, 100–109. [Google Scholar] [CrossRef] [Green Version]
- Leprieur, E.G.; Fernandez, D.; Chatellier, G.; Klotz, S.; Giraud, P.; Durdux, C. Acute radiation pneumonitis after conformational radiotherapy for nonsmall cell lung cancer: Clinical, dosimetric, and associated-treatment risk factors. J. Cancer Res. Ther. 2013, 9, 447–451. [Google Scholar] [CrossRef]
- Ren, C.; Ji, T.; Liu, T.; Dang, J.; Li, G. The risk and predictors for severe radiation pneumonitis in lung cancer patients treated with thoracic reirradiation. Radiat. Oncol. 2018, 13, 69. [Google Scholar] [CrossRef] [Green Version]
- Harder, E.M.; Park, H.S.; Chen, Z.J.; Decker, R.H. Pulmonary dose-volume predictors of radiation pneumonitis following stereotactic body radiation therapy. Pract. Radiat. Oncol. 2016, 6, e353–e359. [Google Scholar] [CrossRef]
- Torre-Bouscoulet, L.; Muñoz-Montaño, W.R.; Martínez-Briseño, D.; Lozano-Ruiz, F.J.; Fernández-Plata, R.; Beck-Magaña, J.A.; García-Sancho, C.; Guzmán-Barragán, A.; Vergara, E.; Blake-Cerda, M.; et al. Abnormal pulmonary function tests predict the development of radiation-induced pneumonitis in advanced non-small cell lung Cancer. Respir. Res. 2018, 19, 72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kharofa, J.; Cohen, E.P.; Tomic, R.; Xiang, Q.; Gore, E. Decreased risk of radiation pneumonitis with incidental concurrent use of angiotensin-converting enzyme inhibitors and thoracic radiation therapy. Int. J. Radiat. Oncol. Biol. Phys. 2012, 84, 238–243. [Google Scholar] [CrossRef] [PubMed]
- Martin, T.R.; Hagimoto, N.; Nakamura, M.; Matute-Bello, G. Apoptosis and epithelial injury in the lungs. Proc. Am. Thorac. Soc. 2005, 2, 214–220. [Google Scholar] [CrossRef] [PubMed]
- Giuranno, L.; Ient, J.; De Ruysscher, D.; Vooijs, M.A. Radiation-Induced Lung Injury (RILI). Front. Oncol. 2019, 9, 877. [Google Scholar] [CrossRef] [Green Version]
- Lierova, A.; Jelicova, M.; Nemcova, M.; Proksova, M.; Pejchal, J.; Zarybnicka, L.; Sinkorova, Z. Cytokines and radiation-induced pulmonary injuries. J. Radiat. Res. 2018, 59, 709–753. [Google Scholar] [CrossRef]
- Small, W., Jr.; Woloschak, G. Radiation toxicity: A practical guide. Introduction. Cancer Treat. Res. 2006, 128, 3–5. [Google Scholar]
- Watanabe, H.; Suga, A.; Tsuchihashi, Y.; Hori, A.; Kawakami, K.; Masaki, H.; Akiyama, M.; Ohishi, K.; Takahashi, A.; Nagatake, T.; et al. Clinical study of radiation pneumonitis over 10 years. Nihon Kyobu Shikkan Gakkai Zasshi 1995, 33, 384–388. [Google Scholar]
- Wall, R.J.; Schnapp, L.M. Radiation pneumonitis. Respir. Care 2006, 51, 1255–1260. [Google Scholar]
- Osterreicher, J.; Pejchal, J.; Skopek, J.; Mokry, J.; Vilasova, Z.; Psutka, J.; Vavrova, J.; Mazurova, Y. Role of type II pneumocytes in pathogenesis of radiation pneumonitis: Dose response of radiation-induced lung changes in the transient high vascular permeability period. Exp. Toxicol. Pathol. 2004, 56, 181–187. [Google Scholar] [CrossRef]
- Zhong, D.; Wu, C.; Bai, J.; Hu, C.; Xu, D.; Wang, Q.; Zeng, X. Comparative diagnostic efficacy of serum Krebs von den Lungen-6 and surfactant D for connective tissue disease-associated interstitial lung diseases: A meta-analysis. Medicine 2020, 99, e19695. [Google Scholar] [CrossRef]
- Kim, M.; Lee, J.; Ha, B.; Lee, R.; Lee, K.J.; Suh, H.S. Factors predicting radiation pneumonitis in locally advanced non-small cell lung cancer. Radiat. Oncol. J. 2011, 29, 181–190. [Google Scholar] [CrossRef] [Green Version]
- Kouloulias, V.; Zygogianni, A.; Efstathopoulos, E.; Victoria, O.; Christos, A.; Pantelis, K.; Koutoulidis, V.; Kouvaris, J.; Sandilos, P.; Varela, M.; et al. Suggestion for a new grading scale for radiation induced pneumonitis based on radiological findings of computerized tomography: Correlation with clinical and radiotherapeutic parameters in lung cancer patients. Asian Pac. J. Cancer Prev. 2013, 14, 2717–2722. [Google Scholar] [CrossRef] [PubMed]
- Bradley, J.; Graham, M.V.; Winter, K.; Purdy, J.A.; Komaki, R.; Roa, W.H.; Ryu, J.K.; Bosch, W.; Emami, B. Toxicity and outcome results of RTOG 9311: A phase I-II dose-escalation study using three-dimensional conformal radiotherapy in patients with inoperable non-small-cell lung carcinoma. Int. J. Radiat. Oncol. Biol. Phys. 2005, 61, 318–328. [Google Scholar] [CrossRef] [PubMed]
- Bhardwaj, H.; Bhardwaj, B.; Youness, H.A. A case of spontaneous pneumothorax following radiation therapy for non-small cell lung cancer. Lung India 2013, 30, 360–362. [Google Scholar] [CrossRef]
- Otani, K.; Seo, Y.; Ogawa, K. Radiation-Induced Organizing Pneumonia: A Characteristic Disease that Requires Symptom-Oriented Management. Int. J. Mol. Sci. 2017, 18, 281. [Google Scholar] [CrossRef] [Green Version]
- Choi, Y.W.; Munden, R.F.; Erasmus, J.J.; Park, K.J.; Chung, W.K.; Jeon, S.C.; Park, C.K. Effects of radiation therapy on the lung: Radiologic appearances and differential diagnosis. Radiographics 2004, 24, 985–997. [Google Scholar] [CrossRef] [PubMed]
- Benveniste, M.F.; Gomez, D.; Carter, B.W.; Betancourt Cuellar, S.L.; Shroff, G.S.; Benveniste, A.P.A.; Odisio, E.G.; Marom, E.M. Recognizing Radiation Therapy-related Complications in the Chest. Radiographics 2019, 39, 344–366. [Google Scholar] [CrossRef] [PubMed]
- Larici, A.R.; del Ciello, A.; Maggi, F.; Santoro, S.I.; Meduri, B.; Valentini, V.; Giordano, A.; Bonomo, L. Lung abnormalities at multimodality imaging after radiation therapy for non-small cell lung cancer. Radiographics 2011, 31, 771–789. [Google Scholar] [CrossRef]
- Ta, V.; Aronowitz, P. Radiation pneumonitis. J. Gen. Intern. Med. 2011, 26, 1213–1214. [Google Scholar] [CrossRef]
- Bledsoe, T.J.; Nath, S.K.; Decker, R.H. Radiation Pneumonitis. Clin. Chest Med. 2017, 38, 201–208. [Google Scholar] [CrossRef]
- Park, K.J.; Chung, J.Y.; Chun, M.S.; Suh, J.H. Radiation-induced lung disease and the impact of radiation methods on imaging features. Radiographics 2000, 20, 83–98. [Google Scholar] [CrossRef] [Green Version]
- Arbetter, K.R.; Prakash, U.B.; Tazelaar, H.D.; Douglas, W.W. Radiation-induced pneumonitis in the “nonirradiated” lung. Mayo Clin. Proc. 1999, 74, 27–36. [Google Scholar] [CrossRef]
- Giordano, F.M.; Ippolito, E.; Quattrocchi, C.C.; Greco, C.; Mallio, C.A.; Santo, B.; D’Alessio, P.; Crucitti, P.; Fiore, M.; Zobel, B.B.; et al. Radiation-Induced Pneumonitis in the Era of the COVID-19 Pandemic: Artificial Intelligence for Differential Diagnosis. Cancers 2021, 13, 1960. [Google Scholar] [CrossRef] [PubMed]
- Rahi, M.S.; Jindal, V.; Reyes, S.-P.; Gunasekaran, K.; Gupta, R.; Jaiyesimi, I. Hematologic disorders associated with COVID-19: A review. Ann. Hematol. 2021. [Google Scholar] [CrossRef]
- Rahi, M.S.; Reyes, S.P.; Parekh, J.; Gunasekaran, K.; Amoah, K.; Rudolph, D. Disseminated Mycobacterium abscessus infection and native valve endocarditis. Respir. Med. Case Rep. 2021, 32, 101331. [Google Scholar] [CrossRef] [PubMed]
- Gunasekaran, K.; Baskaran, B.; Rahi, M.S.; Rudolph, D.; Parekh, J. Cavitating pulmonary metastases from a renal cell carcinoma. Clin. Pract. 2020, 10. [Google Scholar] [CrossRef]
- Gunasekaran, K.; Shukla, A.; Palanisamy, N.; Singh Rahi, M.; Wolff, A. Diffuse alveolar hemorrhage associated with ustekinumab treatment. Am. J. Health-Syst. Pharm. 2021. [Google Scholar] [CrossRef] [PubMed]
- Gunasekaran, K.; Murthi, S.; Jennings, J.; Lone, N. Aripiprazole-induced hypersensitivity pneumonitis. BMJ Case Rep. 2017, 2017. [Google Scholar] [CrossRef]
- Rajasurya, V.; Gunasekaran, K.; Damarla, V.; Kolluru, A. A Fatal Case of Coronavirus Disease 2019 (COVID-19) in a Patient With Idiopathic Pulmonary Fibrosis. Cureus 2020, 12, e8432. [Google Scholar] [CrossRef]
- Rajasurya, V.; Gunasekaran, K.; Surani, S. Interstitial lung disease and diabetes. World J. Diabetes 2020, 11, 351–357. [Google Scholar] [CrossRef]
- Liu, K.; Li, Q.; Ma, J.; Zhou, Z.; Sun, M.; Deng, Y.; Tu, W.; Wang, Y.; Fan, L.; Xia, C.; et al. Evaluating a Fully Automated Pulmonary Nodule Detection Approach and Its Impact on Radiologist Performance. Radiol. Artif. Intell. 2019, 1, e180084. [Google Scholar] [CrossRef]
- Chamberlin, J.; Kocher, M.R.; Waltz, J.; Snoddy, M.; Stringer, N.F.C.; Stephenson, J.; Sahbaee, P.; Sharma, P.; Rapaka, S.; Schoepf, U.J.; et al. Automated detection of lung nodules and coronary artery calcium using artificial intelligence on low-dose CT scans for lung cancer screening: Accuracy and prognostic value. BMC Med. 2021, 19, 55. [Google Scholar] [CrossRef] [PubMed]
- Mallio, C.A.; Napolitano, A.; Castiello, G.; Giordano, F.M.; D’Alessio, P.; Iozzino, M.; Sun, Y.; Angeletti, S.; Russano, M.; Santini, D.; et al. Deep Learning Algorithm Trained with COVID-19 Pneumonia Also Identifies Immune Checkpoint Inhibitor Therapy-Related Pneumonitis. Cancers 2021, 13, 652. [Google Scholar] [CrossRef] [PubMed]
- Petit, S.F.; van Elmpt, W.J.; Oberije, C.J.; Vegt, E.; Dingemans, A.M.; Lambin, P.; Dekker, A.L.; De Ruysscher, D. [¹⁸F]fluorodeoxyglucose uptake patterns in lung before radiotherapy identify areas more susceptible to radiation-induced lung toxicity in non-small-cell lung cancer patients. Int. J. Radiat. Oncol. Biol. Phys. 2011, 81, 698–705. [Google Scholar] [CrossRef]
- Borst, G.R.; De Jaeger, K.; Belderbos, J.S.; Burgers, S.A.; Lebesque, J.V. Pulmonary function changes after radiotherapy in non-small-cell lung cancer patients with long-term disease-free survival. Int. J. Radiat. Oncol. Biol. Phys. 2005, 62, 639–644. [Google Scholar] [CrossRef] [PubMed]
- Lopez Guerra, J.L.; Gomez, D.; Zhuang, Y.; Levy, L.B.; Eapen, G.; Liu, H.; Mohan, R.; Komaki, R.; Cox, J.D.; Liao, Z. Change in diffusing capacity after radiation as an objective measure for grading radiation pneumonitis in patients treated for non-small-cell lung cancer. Int. J. Radiat. Oncol. Biol. Phys. 2012, 83, 1573–1579. [Google Scholar] [CrossRef] [Green Version]
- Henkenberens, C.; Janssen, S.; Lavae-Mokhtari, M.; Leni, K.; Meyer, A.; Christiansen, H.; Bremer, M.; Dickgreber, N. Inhalative steroids as an individual treatment in symptomatic lung cancer patients with radiation pneumonitis grade II after radiotherapy—A single-centre experience. Radiat. Oncol. 2016, 11, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Magana, E.; Crowell, R.E. Radiation pneumonitis successfully treated with inhaled corticosteroids. South. Med. J. 2003, 96, 521–524. [Google Scholar] [CrossRef] [PubMed]
- Guilhem, A.; Celton, B.; Terminet, A.; Pavio, C.; Raschilas, F.; Blain, H. [Radiation pneumonitis: A rare and potentially severe pneumonia. Usefulness of corticosteroids]. Rev. Med. Internet 2010, 31, e10–e12. [Google Scholar] [CrossRef] [PubMed]
- Fu, Z.; Yang, X.; Bi, N.; Zhai, Y.; Chen, D.; Wang, W.; Deng, L.; Zhang, T.; Zhou, Z.; Liang, J. Radiation pneumonitis complicated by Pneumocystis carinii in patients with thoracic neoplasia: A clinical analysis of 7 cases. Cancer Commun. 2019, 39, 47. [Google Scholar] [CrossRef] [Green Version]
- Kainthola, A.; Haritwal, T.; Tiwari, M.; Gupta, N.; Parvez, S.; Prakash, H.; Agrawala, P.K. Immunological Aspect of Radiation-Induced Pneumonitis, Current Treatment Strategies, and Future Prospects. Front. Immunol. 2017, 8, 506. [Google Scholar] [CrossRef] [Green Version]
- Bluestein, S.G.; Roemer, J. The treatment of radiation pneumonitis with cortisone. J. Med. Soc. N. J. 1953, 50, 106–107. [Google Scholar]
- Ward, H.E.; Kemsley, L.; Davies, L.; Holecek, M.; Berend, N. The effect of steroids on radiation-induced lung disease in the rat. Radiat. Res. 1993, 136, 22–28. [Google Scholar] [CrossRef]
- Sekine, I.; Sumi, M.; Ito, Y.; Nokihara, H.; Yamamoto, N.; Kunitoh, H.; Ohe, Y.; Kodama, T.; Saijo, N.; Tamura, T. Retrospective analysis of steroid therapy for radiation-induced lung injury in lung cancer patients. Radiother. Oncol. 2006, 80, 93–97. [Google Scholar] [CrossRef]
- Kim, S.; Oh, I.J.; Park, S.Y.; Song, J.H.; Seon, H.J.; Kim, Y.H.; Yoon, S.H.; Yu, J.Y.; Lee, B.R.; Kim, K.S.; et al. Corticosteroid therapy against treatment-related pulmonary toxicities in patients with lung cancer. J. Thorac. Dis. 2014, 6, 1209–1217. [Google Scholar] [CrossRef]
- Toma, C.L.; Dumitrache-Rujinski, S.; Belaconi, I.; Ionita, D.L.; Nemes, R.; Croitoru, A.; Bogdan, M.A. To treat or not to treat with corticosteroids radiation induced pneumonitis. Eur. Respir. J. 2013, 42, P3353. [Google Scholar]
- Zhang, P.; Yan, H.; Wang, S.; Kai, J.; Pi, G.; Peng, Y.; Liu, X.; Sun, J. Post-radiotherapy maintenance treatment with fluticasone propionate and salmeterol for lung cancer patients with grade III radiation pneumonitis: A case report. Medicine 2018, 97, e10681. [Google Scholar] [CrossRef] [PubMed]
- Ward, W.F.; Molteni, A.; Ts’ao, C.H.; Kim, Y.T.; Hinz, J.M. Radiation pneumotoxicity in rats: Modification by inhibitors of angiotensin converting enzyme. Int. J. Radiat. Oncol. Biol. Phys. 1992, 22, 623–625. [Google Scholar] [CrossRef]
- Molteni, A.; Moulder, J.E.; Cohen, E.F.; Ward, W.F.; Fish, B.L.; Taylor, J.M.; Wolfe, L.F.; Brizio-Molteni, L.; Veno, P. Control of radiation-induced pneumopathy and lung fibrosis by angiotensin-converting enzyme inhibitors and an angiotensin II type 1 receptor blocker. Int. J. Radiat. Biol. 2000, 76, 523–532. [Google Scholar] [CrossRef] [PubMed]
- Robbins, M.E.; Diz, D.I. Pathogenic role of the renin-angiotensin system in modulating radiation-induced late effects. Int. J. Radiat. Oncol. Biol. Phys. 2006, 64, 6–12. [Google Scholar] [CrossRef]
- Wang, L.W.; Fu, X.L.; Clough, R.; Sibley, G.; Fan, M.; Bentel, G.C.; Marks, L.B.; Anscher, M.S. Can angiotensin-converting enzyme inhibitors protect against symptomatic radiation pneumonitis? Radiat. Res. 2000, 153, 405–410. [Google Scholar] [CrossRef]
- Ghosh, S.N.; Zhang, R.; Fish, B.L.; Semenenko, V.A.; Li, X.A.; Moulder, J.E.; Jacobs, E.R.; Medhora, M. Renin-Angiotensin system suppression mitigates experimental radiation pneumonitis. Int. J. Radiat. Oncol. Biol. Phys. 2009, 75, 1528–1536. [Google Scholar] [CrossRef] [Green Version]
- Jenkins, P.; Watts, J. An improved model for predicting radiation pneumonitis incorporating clinical and dosimetric variables. Int. J. Radiat. Oncol. Biol. Phys. 2011, 80, 1023–1029. [Google Scholar] [CrossRef]
- Jenkins, P.; Welsh, A. Computed tomography appearance of early radiation injury to the lung: Correlation with clinical and dosimetric factors. Int. J. Radiat. Oncol. Biol. Phys. 2011, 81, 97–103. [Google Scholar] [CrossRef]
- Kma, L.; Gao, F.; Fish, B.L.; Moulder, J.E.; Jacobs, E.R.; Medhora, M. Angiotensin converting enzyme inhibitors mitigate collagen synthesis induced by a single dose of radiation to the whole thorax. J. Radiat. Res. 2012, 53, 10–17. [Google Scholar] [CrossRef] [Green Version]
- Gao, F.; Fish, B.L.; Moulder, J.E.; Jacobs, E.R.; Medhora, M. Enalapril mitigates radiation-induced pneumonitis and pulmonary fibrosis if started 35 days after whole-thorax irradiation. Radiat. Res. 2013, 180, 546–552. [Google Scholar] [CrossRef] [Green Version]
- Harder, E.M.; Park, H.S.; Nath, S.K.; Mancini, B.R.; Decker, R.H. Angiotensin-converting enzyme inhibitors decrease the risk of radiation pneumonitis after stereotactic body radiation therapy. Pract Radiat. Oncol. 2015, 5, e643–e649. [Google Scholar] [CrossRef]
- Bracci, S.; Valeriani, M.; Agolli, L.; De Sanctis, V.; Maurizi Enrici, R.; Osti, M.F. Renin-Angiotensin System Inhibitors Might Help to Reduce the Development of Symptomatic Radiation Pneumonitis After Stereotactic Body Radiotherapy for Lung Cancer. Clin. Lung Cancer 2016, 17, 189–197. [Google Scholar] [CrossRef] [PubMed]
- Alite, F.; Balasubramanian, N.; Adams, W.; Surucu, M.; Mescioglu, I.; Harkenrider, M.M. Decreased Risk of Radiation Pneumonitis With Coincident Concurrent Use of Angiotensin-converting Enzyme Inhibitors in Patients Receiving Lung Stereotactic Body Radiation Therapy. Am. J. Clin. Oncol. 2018, 41, 576–580. [Google Scholar] [CrossRef] [PubMed]
- Sio, T.T.; Atherton, P.J.; Pederson, L.D.; Zhen, W.K.; Mutter, R.W.; Garces, Y.I.; Ma, D.J.; Leenstra, J.L.; Rwigema, J.M.; Dakhil, S.; et al. Daily Lisinopril vs Placebo for Prevention of Chemoradiation-Induced Pulmonary Distress in Patients With Lung Cancer (Alliance MC1221): A Pilot Double-Blind Randomized Trial. Int. J. Radiat. Oncol. Biol. Phys. 2019, 103, 686–696. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Liao, Z.; Zhuang, Y.; Xu, T.; Nguyen, Q.N.; Levy, L.B.; O’Reilly, M.; Gold, K.A.; Gomez, D.R. Do angiotensin-converting enzyme inhibitors reduce the risk of symptomatic radiation pneumonitis in patients with non-small cell lung cancer after definitive radiation therapy? Analysis of a single-institution database. Int. J. Radiat. Oncol. Biol. Phys. 2013, 87, 1071–1077. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Medhora, M.; Gao, F.; Jacobs, E.R.; Moulder, J.E. Radiation damage to the lung: Mitigation by angiotensin-converting enzyme (ACE) inhibitors. Respirology 2012, 17, 66–71. [Google Scholar] [CrossRef] [PubMed]
- Vujaskovic, Z.; Feng, Q.F.; Rabbani, Z.N.; Samulski, T.V.; Anscher, M.S.; Brizel, D.M. Assessment of the protective effect of amifostine on radiation-induced pulmonary toxicity. Exp. Lung Res. 2002, 28, 577–590. [Google Scholar] [CrossRef] [PubMed]
- Antonadou, D.; Coliarakis, N.; Synodinou, M.; Athanassiou, H.; Kouveli, A.; Verigos, C.; Georgakopoulos, G.; Panoussaki, K.; Karageorgis, P.; Throuvalas, N.; et al. Randomized phase III trial of radiation treatment +/- amifostine in patients with advanced-stage lung cancer. Int. J. Radiat. Oncol. Biol. Phys. 2001, 51, 915–922. [Google Scholar] [CrossRef]
- Komaki, R.; Lee, J.S.; Kaplan, B.; Allen, P.; Kelly, J.F.; Liao, Z.; Stevens, C.W.; Fossella, F.V.; Zinner, R.; Papadimitrakopoulou, V.; et al. Randomized phase III study of chemoradiation with or without amifostine for patients with favorable performance status inoperable stage II-III non-small cell lung cancer: Preliminary results. Semin. Radiat. Oncol. 2002, 12, 46–49. [Google Scholar] [CrossRef] [PubMed]
- Gopal, R. Pulmonary toxicity associated with the treatment of non-small cell lung cancer and the effects of cytoprotective strategies. Semin. Oncol. 2005, 32, S55–S59. [Google Scholar] [CrossRef] [PubMed]
- Sasse, A.D.; Clark, L.G.; Sasse, E.C.; Clark, O.A. Amifostine reduces side effects and improves complete response rate during radiotherapy: Results of a meta-analysis. Int. J. Radiat. Oncol. Biol. Phys. 2006, 64, 784–791. [Google Scholar] [CrossRef]
- Inoue, A.; Kunitoh, H.; Sekine, I.; Sumi, M.; Tokuuye, K.; Saijo, N. Radiation pneumonitis in lung cancer patients: A retrospective study of risk factors and the long-term prognosis. Int. J. Radiat. Oncol. Biol. Phys. 2001, 49, 649–655. [Google Scholar] [CrossRef]
- Wang, J.Y.; Chen, K.Y.; Wang, J.T.; Chen, J.H.; Lin, J.W.; Wang, H.C.; Lee, L.N.; Yang, P.C. Outcome and prognostic factors for patients with non-small-cell lung cancer and severe radiation pneumonitis. Int. J. Radiat. Oncol. Biol. Phys. 2002, 54, 735–741. [Google Scholar] [CrossRef]
- Holgersson, G.; Bergström, S.; Liv, P.; Nilsson, J.; Edlund, P.; Blomberg, C.; Nyman, J.; Friesland, S.; Ekman, S.; Asklund, T.; et al. Effect of Increased Radiotoxicity on Survival of Patients with Non-small Cell Lung Cancer Treated with Curatively Intended Radiotherapy. Anticancer Res. 2015, 35, 5491–5497. [Google Scholar]
- Onishi, H.; Marino, K.; Yamashita, H.; Terahara, A.; Onimaru, R.; Kokubo, M.; Shioyama, Y.; Kozuka, T.; Matsuo, Y.; Aruga, T.; et al. Case Series of 23 Patients Who Developed Fatal Radiation Pneumonitis After Stereotactic Body Radiotherapy for Lung Cancer. Technol. Cancer Res. Treat. 2018, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Butof, R.; Kirchner, K.; Appold, S.; Lock, S.; Rolle, A.; Hoffken, G.; Krause, M.; Baumann, M. Potential clinical predictors of outcome after postoperative radiotherapy of non-small cell lung cancer. Strahlenther. Onkol. 2014, 190, 263–269. [Google Scholar] [CrossRef] [PubMed]
- Farr, K.P.; Khalil, A.A.; Grau, C. Patient-reported lung symptoms and quality of life before and after radiation therapy for non-small cell lung cancer: Correlation with radiation pneumonitis and functional imaging. Acta Oncol. 2019, 58, 1523–1527. [Google Scholar] [CrossRef] [PubMed]
Risk Factors | Type | Remarks |
---|---|---|
Treatment-related risk factors | Total radtion dose | Commonly seen with doses greater than 40 Gy. Higher the mean lung dose, greater the risk and severity of RILI [50]. Higher dose fraction, Volume of lung receiving at least 20 Gy > 10% (V20 > 10%) and mean lung dose > 6 Gy are associated with higher grade RILI [51]. |
Fractionation and dose rate | ||
Irriated lung volume | ||
Irradiation technique | Newer radiation delivery techniques IMRT, SBRT, and proton beam therapy have reduced the incidence of clinically significant RILI. | |
Chemothreapy | Induction and concurrent chemotherapy increases the risk of RILI. | |
Immunotherapy | Immune checkpoint inhibitor (ICI) therapy, concurrently or sequentialy increases the risk of RILI. | |
Patient-related risk factors | Age and sex | RILI should be considered in patients of all ages and sex. Higher the age is likely associated with greater risk of RILI. In one retrospective review grade II or higher RILI was significantly increased in patients >70 years of age [52]. |
Smoking status | Smoking may have protective impact in development of RILI. | |
Pre-existing lung disease like COPD, ILD | Data regarding impact of COPD is conflicting, some reports indicating increased risk of RILI. ILD is a significant risk factor for development of RILI and is associated with increased mortality. | |
Tumor type, location and size | Concurrent endocrine therapy in women with breast cancer have increased risk of RILI. Higher tumor volume and mid-lower lung zone location. |
Grade | Incidence | Clinical | Radiologic |
---|---|---|---|
1 | 20–24% | Asymptomatic to minimally symptomatic | ground glass opacities, less than 25% of lung involvement |
2 | 18–22% | symptomatic requiring treatment, limitation of ADLs, but no oxygen requirement | extensive ground glass opacities extending beyond therapy field with signs of no to minimal focal consolidation, involvement of 25 to 50% of lung |
3 | 8–16% | symptoms with oxygen requirement | clear evidence of focal consolidation with or without evidence of fibrosis, more than 50% involvement |
4 | 2–4% | severe symptoms with persistent oxygen requirement or assisted ventilation | dense consolidations, atelectasis, traction bronchiectasis with significant pulmonary volume loss |
CT chest axial (image A) and coronal (image B) showing well-defined 2 cm nodular lesion in the Right Middle Lobe (RML) denoted by an arrow. | |
Post radiation therapy axial CT chest (image C), 1.5 months later showing ground-glass opacity and patchy airspace consolidation in RML conforming to the area of radiation field denoted by an arrow. | |
Same patient post-radiation therapy coronal CT chest (image D), 1.5 months later showing ground-glass opacity and patchy airspace consolidation in RML conforming to the area of radiation field denoted by an arrow. | |
Axial CT chest (image E) showing irregular 5.5 cm mass lesion with spiculated margins in the Right Lower Lobe (RLL) with the background of emphysematous lungs denoted by an arrow. | |
Axial CT chest (image F) showing predominantly ground-glass opacity and patchy focal consolidation in the RLL conforming to the area of radiation field denoted by an arrow. | |
Axial CT chest (image G) showing dense fibrosis and bronchiectasis in the right upper lobe (RUL) post radiotherapy denoted by an arrow. |
Author (Year), Study Drug | Total Patients (N) | Methods | Results | Remarks |
---|---|---|---|---|
Henkenberens et al. (2016), corticosteroids [87] | 24 | 24 patients with NSCLC received radiation therapy and developed grade II RILI were treated with high dose inhaled corticosteroid (Budesonide 800 mcg twice daily) for 14 days followed by oral prednisolone (0.5 mg/kg bodyweight, at least 50 mg/day). Median follow up 18 months. | 18 patients showed significant symptomatic patients after ICS treatment. 6 patients who did not respond to ICS, had significant clinical improvement with oral prednisolone. | 16/18 responders to ICS did not have underlying COPD and were treated for a median of 7.7 months with ICS |
Kharofa et al. (2012), angiotensin-converting enzyme (ACE) inhibitor [52] | 162 | Retrospective study, 162 patients with NSCLC treated with radiation therapy were included. The use of ACE inhibitors, steroids, statins were assessed for relationship with grade II RILI or higher. | 64% patients had grade III disease. ACE inhibitor users had significantly lower rates of grade II or higher RILI (2% vs. 11%, p = 0.032). | 38% patients were ACE inhibitor users. V20 ≤ 37% and mean lung dose ≤ 20 Gy. |
Sio et al. (2019), angiotensin-converting enzyme (ACE) inhibitor [110] | 23 | Double-blinded, placebo controlled randomized controlled trial (RCT) of patients receiving radiation therapy assigned to 20 mg lisinopril daily or the placebo group. Multiple patient related outcome surveys used to evaluate the primary endpoint. | 12 patients received lisinopril and 11 received placebo. Patients in the treatment arm had less cough, shortness of breath on exertion and fewer symptoms of lung cancer (p < 0.05) | Accrual was less than expected. All patients received concurrent chemotherapy. |
Sasse et al. (2006), Amifostine [117] | 1451 | Meta-analysis of 15 RCT comparing the use of amifostine plus radiotherapy with radiotherapy alone. | Lower odds of acute pneumonitis in the amifostine group (OR, 0.15; CI, 0.07–0.31; p < 0.00001) | Amifostine also significantly reduced the risk of developing mucositis, esophagitis, xerostomia and dysphagia. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahi, M.S.; Parekh, J.; Pednekar, P.; Parmar, G.; Abraham, S.; Nasir, S.; Subramaniyam, R.; Jeyashanmugaraja, G.P.; Gunasekaran, K. Radiation-Induced Lung Injury—Current Perspectives and Management. Clin. Pract. 2021, 11, 410-429. https://doi.org/10.3390/clinpract11030056
Rahi MS, Parekh J, Pednekar P, Parmar G, Abraham S, Nasir S, Subramaniyam R, Jeyashanmugaraja GP, Gunasekaran K. Radiation-Induced Lung Injury—Current Perspectives and Management. Clinics and Practice. 2021; 11(3):410-429. https://doi.org/10.3390/clinpract11030056
Chicago/Turabian StyleRahi, Mandeep Singh, Jay Parekh, Prachi Pednekar, Gaurav Parmar, Soniya Abraham, Samar Nasir, Rajamurugan Subramaniyam, Gini Priyadharshini Jeyashanmugaraja, and Kulothungan Gunasekaran. 2021. "Radiation-Induced Lung Injury—Current Perspectives and Management" Clinics and Practice 11, no. 3: 410-429. https://doi.org/10.3390/clinpract11030056
APA StyleRahi, M. S., Parekh, J., Pednekar, P., Parmar, G., Abraham, S., Nasir, S., Subramaniyam, R., Jeyashanmugaraja, G. P., & Gunasekaran, K. (2021). Radiation-Induced Lung Injury—Current Perspectives and Management. Clinics and Practice, 11(3), 410-429. https://doi.org/10.3390/clinpract11030056