Easily Extractable Glomalin-Related Soil Protein as Foliar Spray Improves Nutritional Qualities of Late Ripening Sweet Oranges
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.2. Preparation of Exogenous EE-GRSP Solution
2.3. Measurements of Variables
2.4. Statistical Analysis
3. Results and Discussion
3.1. Responses on Mycorrhizal Growth
3.2. Responses on External Fruit Quality Parameters
3.3. Responses on Internal Fruit Quality Parameters
3.4. Responses on Mineral Composition of Fruit Pulp
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wu, Q.S.; Srivastava, A.K.; Zou, Y.N. AMF-induced tolerance to drought stress in citrus: A review. Sci. Hortic. 2013, 164, 77–87. [Google Scholar] [CrossRef]
- Wu, Q.S.; Sun, P.; Srivastava, A.K. AMF diversity in citrus rhizosphere. Ind. J. Agric. Sci. 2017, 87, 653–656. [Google Scholar]
- Peterson, R.L.; Massicotte, H.B.; Melville, L.H. Mycorrhizas: Anatomy and Cell Biology; NRC Research Press: Ottawa, ON, Canada, 2004; pp. 55–80. [Google Scholar]
- Zhang, F.; Wang, P.; Zou, Y.N.; Wu, Q.S.; Kuča, K. Effects of mycorrhizal fungi on root-hair growth and hormone levels of taproot and lateral roots in trifoliate orange under drought stress. Arch. Agron. Soil Sci. 2019, 65, 1316–1330. [Google Scholar] [CrossRef]
- Wu, Q.S.; Gao, W.Q.; Srivastava, A.K.; Zhang, F.; Zou, Y.N. Nutrient acquisition and fruit quality of Ponkan mandarin in response to AMF inoculation. Ind. J. Agric. Sci. 2020, 90, 1563–1567. [Google Scholar]
- Yang, L.; Zou, Y.N.; Tian, Z.H.; Wu, Q.S.; Kuča, K. Effects of beneficial endophytic fungal inoculants on plant growth and nutrient absorption of trifoliate orange seedlings. Sci. Hortic. 2021, 277, 109815. [Google Scholar] [CrossRef]
- Wu, Q.S.; He, J.D.; Srivastava, A.K.; Zou, Y.N.; Kuča, K. Mycorrhizas enhance drought tolerance of citrus by altering root fatty acid compositions and their saturation levels. Tree Physiol. 2019, 39, 1149–1158. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Zou, Y.N.; Wu, Q.S.; Kuča, K. Arbuscular mycorrhizas modulate root polyamine metabolism to enhance drought tolerance of trifoliate orange. Environ. Exp. Bot. 2020, 171, 103962. [Google Scholar] [CrossRef]
- Zou, Y.N.; Zhang, F.; Srivastava, A.K.; Wu, Q.S.; Kuča, K. Arbuscular mycorrhizal fungi regulate polyamine homeostasis in roots of trifoliate orange for improved adaptation to soil moisture deficit stress. Front. Plant Sci. 2021, 11, 600792. [Google Scholar] [CrossRef]
- Ijdo, M.; Cranenbrouck, S.; Declerck, S. Methods for large-scale production of AM fungi: Past, present, and future. Mycorrhiza 2011, 21, 1–16. [Google Scholar] [CrossRef]
- Holatko, J.; Brtnicky, M.; Kucerik, J.; Kotianova, M.; Elbl, J.; Kintl, A.; Kynicky, J.; Benada, O.; Datta, R.; Jansa, J. Glomalin-truths, myths, and the future of this elusive soil glycoprotein. Soil Biol. Biochem. 2020, 153, 108116. [Google Scholar] [CrossRef]
- Wu, Q.S.; Li, Y.; Zou, Y.N.; He, X.H. Arbuscular mycorrhiza mediates glomalin-related soil protein production and soil enzyme activities in the rhizosphere of trifoliate orange grown under different P levels. Mycorrhiza 2015, 25, 121–130. [Google Scholar] [CrossRef] [PubMed]
- Peng, S.L.; Guo, T.; Liu, G.C. The effects of arbuscular mycorrhizal hyphal networks on soil aggregations of purple soil in southwest China. Soil Biol. Biochem. 2013, 57, 411–417. [Google Scholar] [CrossRef]
- Zou, Y.N.; Srivastava, A.K.; Wu, Q.S.; Huang, Y.M. Glomalin-related soil protein and water relations in mycorrhizal citrus (Citrus tangerina) during soil water deficit. Arch. Agron. Soil Sci. 2014, 60, 1103–1114. [Google Scholar] [CrossRef]
- Rillig, M.C.; Wright, S.F.; Nichols, K.A.; Schmidt, W.F.; Torn, M.S. Large contribution of arbuscular mycorrhizal fungi to soil carbon pools in tropical forest soils. Plant Soil 2001, 233, 167–177. [Google Scholar] [CrossRef]
- He, J.D.; Chi, G.G.; Zou, Y.N.; Shu, B.; Wu, Q.S.; Srivastava, A.K.; Kuča, K. Contribution of glomalin-related soil proteins to soil organic carbon in trifoliate orange. Appl. Soil Ecol. 2020, 154, 103592. [Google Scholar] [CrossRef]
- Meng, L.L.; He, J.D.; Zou, Y.N.; Wu, Q.S.; Kuča, K. Mycorrhiza-released glomalin-related soil protein fractions contribute to soil total nitrogen in trifoliate orange. Plant Soil Environ. 2020, 66, 183–189. [Google Scholar] [CrossRef]
- Zhang, Z.H.; Wang, Q.; Wang, H.; Nie, S.M.; Liang, Z.W. Effects of soil salinity on the content, composition, and ion binding capacity of glomalin-related soil protein. Sci. Total Environ. 2017, 581–582, 657–665. [Google Scholar] [CrossRef] [PubMed]
- Bamouh, A.; Bouras, H.; Nakro, A. Effect of foliar potassium fertilization on yield and fruit quality of strawberry, raspberry and blueberry. Acta Hortic. 2019, 1265, 255–262. [Google Scholar] [CrossRef]
- Islam, M.Z.; Mele, M.A.; Baek, J.P.; Kang, H.M. Cherry tomato qualities affected by foliar spraying with boron and calcium. Hortic. Environ. Biotechnol. 2016, 57, 46–52. [Google Scholar] [CrossRef]
- Islam, M.Z.; Mele, M.A.; Choi, K.Y.; Kang, H.M. The effect of silicon and boron foliar application on the quality and shelf life of cherry tomatoes. Zemdirb. Agric. 2018, 105, 159–164. [Google Scholar] [CrossRef]
- Wang, S.; Wu, Q.S.; He, X.H. Exogenous easily extractable glomalin-related soil protein promotes soil aggregation, relevant soil enzyme activities and plant growth in trifoliate orange. Plant Soil Environ. 2015, 61, 66–71. [Google Scholar] [CrossRef] [Green Version]
- Chi, G.G.; Srivastava, A.K.; Wu, Q.S. Exogenous easily extractable glomalin-related soil protein improves drought tolerance of trifoliate orange. Arch. Agron. Soil Sci. 2018, 64, 1341–1350. [Google Scholar] [CrossRef]
- Wu, Q.S.; Srivastava, A.K.; Wang, S.; Zeng, J.X. Exogenous application of EE-GRSP and changes in citrus rhizosphere properties. Ind. J. Agric. Sci. 2015, 85, 802–806. [Google Scholar]
- Torres, N.; Giocoechea, N.; Antolin, M.C. Influence of irrigation strategy and mycorrhizal inoculation on fruit quality in different clones of Tempranillo grown under elevated temperatures. Agric. Water Manag. 2018, 202, 285–298. [Google Scholar] [CrossRef]
- Castellanos-Morales, V.; Villegas, J.; Wendelin, S.; Vierheilig, H.; Eder, R.; Cardenas-Navarro, R. Root colonisation by the arbuscular mycorrhizal fungus Glomus intraradices alters the quality of strawberry fruits (Fragaria × Ananassa duch.) at different nitrogen levels. J. Sci. Food Agric. 2010, 90, 1774–1782. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of protein utilizing the principle of protein-dye binding. Analyt. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Phillips, J.M. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans. Br. Mycol. Soc. 1970, 55, 158–161. [Google Scholar] [CrossRef]
- Ames, R.N.; Bethlenfalvay, G.J. Mycorrhizal fungi and the integration of plant and soil nutrient dynamics. J. Plant Nutri. 1987, 10, 1313–1321. [Google Scholar] [CrossRef]
- Von Caemmerer, S.; Griffiths, H. Stomatal responses to CO2 during a diel Crassulacean acid metabolism cycle in Kalanchoe daigremontiana and Kalanchoe pinnata. Plant Cell Environ. 2009, 32, 567–576. [Google Scholar] [CrossRef]
- Association of Official Analytical Chemists (AOAC). Official Methods of Analysis; Association of Official Analytical Chemists: Washington, DC, USA, 1991. [Google Scholar]
- Zhao, X.Y.; Zhou, S.; Wang, G.; Xing, G.; Shi, W.; Xu, R.K.; Zhu, Z.L. Nitrogen balance in a highly fertilized rice-wheat double-cropping system in Southern China. Soil Sci. Soc. Am. J. 2012, 76, 1068–1078. [Google Scholar] [CrossRef]
- Wu, Q.S.; Lou, Y.G.; Li, Y. Plant growth and tissue sucrose metabolism in the system of trifoliate orange and arbuscular mycorrhizal fungi. Sci. Hortic. 2015, 181, 189–193. [Google Scholar] [CrossRef]
- Schindler, F.V.; Mercer, E.J.; Rice, J.A. Chemical characteristics of glomalin-related soil protein (GRSP) extracted from soils of varying organic matter content. Soil Biol. Biochem. 2007, 39, 320–329. [Google Scholar] [CrossRef]
- Gavito, M.E.; Jakobsen, I.; Mikkelsen, T.N.; Mora, F. Direct evidence for modulation of photosynthesis by an arbuscular mycorrhiza-induced carbon sink strength. New Phytol. 2019, 223, 896–907. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sui, B.Q.; Xu, S.J.; Yue, L.N.; Zeng, M. Effect of the reduction of phosphorus fertilizer and inoculation with AM fungi on the AM formation in the citrus and on the fruit quality. South Chin. Agric. 2007, 1, 5–7. [Google Scholar]
- Hamza, A.; Bamouh, A.; El Guilli, M.; Bouabid, R. Response of ‘Cadoux’ clementine to foliar potassium fertilization: Effects on fruit production and quality. Acta Hortic. 2015, 1065, 1785–1793. [Google Scholar] [CrossRef]
- Cercos, M.; Soler, G.; Iglesias, D.J.; Gadea, J.; Forment, J.; Talon, M. Global analysis of gene expression during development and ripening of citrus fruit flesh. A proposed mechanism for citric acid utilization. Plant Mol. Biol. 2006, 62, 513–527. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Yang, J.; Zhang, S.Y.; Zhang, F.Q.; Ding, S.L. Research progress on relationship between potassium nutrition and photosynthesis physiology and fruit quality of fruit trees. Guangdong Agric. Sci. 2006, 33, 126–129. [Google Scholar]
- Storey, R.; Treeby, M.T. Seasonal changes in nutrient concentrations of navel orange fruit. Sci. Hortic. 2000, 84, 67–82. [Google Scholar] [CrossRef]
Sweet Orange Variety | EE-GRSP Treatments | Root AMF Colonization (%) | Soil Mycorrhizal Length (cm/g Soil) |
---|---|---|---|
LLN | EE-GRSP | 38.02 ± 0.09a | 10.02 ± 0.46c |
Non-EE-GRSP | 20.23 ± 0.19c | 3.48 ± 0.09d | |
RRV | EE-GRSP | 33.89 ± 0.15b | 26.20 ± 0.58a |
Non-EE-GRSP | 14.10 ± 0.07d | 12.51 ± 0.25b | |
Significance | |||
EE-GRSP treatments | ** | ** | |
Sweet orange varieties | ** | ** | |
Interaction | ** | ** |
Sweet Orange Variety | EE-GRSP Treatments | Fruit Weight (g/Fruit) | Coloration Value | Polar Diameter (mm) | Equatorial Diameter (mm) |
---|---|---|---|---|---|
LLN | EE-GRSP | 228.50 ± 3.61a | 78.34 ± 2.84a | 74.8 ± 0.9a | 78.01 ± 0.65a |
Non-EE-GRSP | 188.79 ± 6.81b | 79.79 ± 1.88a | 67.9 ± 0.8b | 70.70 ± 0.68b | |
RRV | EE-GRSP | 157.62 ± 3.53c | 73.83 ± 2.64b | 65.6 ± 0.8c | 65.28 ± 0.64c |
Non-EE-GRSP | 129.75 ± 2.99d | 70.94 ± 2.09c | 62.1 ± 0.4d | 62.03 ± 0.71d | |
Significance | |||||
EE-GRSP treatments | ** | * | ** | ** | |
Sweet orange varieties | ** | ** | ** | ** | |
Interaction | ** | ** | ** | ** |
Sweet Oranges | EE-GRSP Treatments | Vc Content (mg/g) | Soluble Solid Content (%) | Titrable Acidity (%) | Solids-Acid Ratio | Sucrose (mg/g DW) | Fructose (mg/g DW) | Glucose (mg/g DW) |
---|---|---|---|---|---|---|---|---|
LLN | EE-GRSP | 4.80 ± 0.03a | 13.16 ± 0.31a | 0.35 ± 0.04d | 38.15 ± 2.27a | 135.26 ± 2.03b | 462.66 ± 5.36c | 86.06 ± 1.96a |
Non-EE-GRSP | 4.17 ± 0.04b | 12.58 ± 0.48a | 0.44 ± 0.06c | 29.25 ± 1.01b | 103.73 ± 0.90c | 419.68 ± 3.38d | 70.91 ± 1.50c | |
RRV | EE-GRSP | 3.74 ± 0.04c | 10.41 ± 0.44b | 2.89 ± 0.02a | 3.61 ± 0.16c | 154.21 ± 4.54a | 613.75 ± 5.17a | 81.85 ± 1.49b |
Non-EE-GRSP | 4.18 ± 0.03b | 10.09 ± 0.66b | 2.67 ± 0.05b | 3.77 ± 0.26c | 134.54 ± 3.90b | 531.45 ± 5.96b | 61.45 ± 1.28d | |
Significance | ||||||||
EE-GRSP treatments | ** | * | ** | * | ** | ** | ** | |
Sweet orange varieties | ** | ** | ** | ** | ** | ** | ** | |
Interaction | ** | NS | ** | ** | ** | ** | ** |
Sweet Oranges | EE-GRSP Treatments | N (g/kg) | P (g/kg) | K (g/kg) | Cu (mg/kg) | Fe (mg/kg) | Si (mg/kg) | Zn (mg/kg) |
---|---|---|---|---|---|---|---|---|
LLN | EE-GRSP | 7.47 ± 0.28b | 2.47 ± 0.14a | 12.88 ± 0.14a | 208.90 ± 1.33c | 44.72 ± 0.71a | 15.38 ± 0.50b | 47.15 ± 0.59d |
Non-EE-GRSP | 6.20 ± 0.21c | 1.39 ± 0.09c | 11.72 ± 0.09b | 250.60 ± 2.40b | 33.75 ± 0.47b | 13.62 ± 0.91c | 53.83 ± 1.27c | |
RRV | EE-GRSP | 5.69 ± 0.24d | 1.53 ± 0.07b | 12.88 ± 0.07a | 305.07 ± 1.52a | 32.92 ± 0.59c | 16.84 ± 0.96a | 72.67 ± 0.46a |
Non-EE-GRSP | 8.37 ± 0.41a | 1.60 ± 0.05b | 12.86 ± 0.05a | 171.42 ± 1.60d | 22.37 ± 0.57d | 12.05 ± 0.10d | 61.09 ± 0.61b | |
Significance | ||||||||
EE-GRSP treatments | ** | ** | * | ** | ** | ** | ** | |
Sweet orange varieties | ** | ** | * | ** | ** | ** | ** | |
Interaction | ** | ** | * | ** | NS | ** | ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meng, L.-L.; Liang, S.-M.; Srivastava, A.K.; Li, Y.; Liu, C.-Y.; Zou, Y.-N.; Kuča, K.; Hashem, A.; Fathi Abd_Allah, E.; Wu, Q.-S. Easily Extractable Glomalin-Related Soil Protein as Foliar Spray Improves Nutritional Qualities of Late Ripening Sweet Oranges. Horticulturae 2021, 7, 228. https://doi.org/10.3390/horticulturae7080228
Meng L-L, Liang S-M, Srivastava AK, Li Y, Liu C-Y, Zou Y-N, Kuča K, Hashem A, Fathi Abd_Allah E, Wu Q-S. Easily Extractable Glomalin-Related Soil Protein as Foliar Spray Improves Nutritional Qualities of Late Ripening Sweet Oranges. Horticulturae. 2021; 7(8):228. https://doi.org/10.3390/horticulturae7080228
Chicago/Turabian StyleMeng, Lu-Lu, Sheng-Min Liang, Anoop Kumar Srivastava, Yan Li, Chun-Yan Liu, Ying-Ning Zou, Kamil Kuča, Abeer Hashem, Elsayed Fathi Abd_Allah, and Qiang-Sheng Wu. 2021. "Easily Extractable Glomalin-Related Soil Protein as Foliar Spray Improves Nutritional Qualities of Late Ripening Sweet Oranges" Horticulturae 7, no. 8: 228. https://doi.org/10.3390/horticulturae7080228
APA StyleMeng, L. -L., Liang, S. -M., Srivastava, A. K., Li, Y., Liu, C. -Y., Zou, Y. -N., Kuča, K., Hashem, A., Fathi Abd_Allah, E., & Wu, Q. -S. (2021). Easily Extractable Glomalin-Related Soil Protein as Foliar Spray Improves Nutritional Qualities of Late Ripening Sweet Oranges. Horticulturae, 7(8), 228. https://doi.org/10.3390/horticulturae7080228