Human Rotavirus Reverse Genetics Systems to Study Viral Replication and Pathogenesis
Abstract
:1. Introduction
2. Partially Plasmid-Based Reverse Genetics Systems for RVAs
3. Entirely Plasmid-Based Reverse Genetics Systems for Animal RVAs
4. Entirely Plasmid-Based Reverse Genetics Systems for HuRVAs
5. Reverse Genetics Approach for the Generation of RVA Mono-Reassortants
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ávila-Pérez, G.; Nogales, A.; Martín, V.; Almazán, F.; Martínez-Sobrido, L. Reverse Genetic Approaches for the Generation of Recombinant Zika Virus. Viruses 2018, 10, 597. [Google Scholar] [CrossRef] [Green Version]
- Neumann, G.; Kawaoka, Y. Reverse Genetics Systems for the Generation of Segmented Negative-Sense RNA Viruses Entirely from Cloned cDNA. Curr. Top. Microbiol. Immunol. 2004, 283, 43–60. [Google Scholar] [CrossRef]
- Estes, M.K.; Greenberg, H.B. Rotaviruses. In Fields Virology, 6th ed.; Knipe, D.M., Howley, P.M., Cohen, J.I., Griffin, D.E., Lamb, R.A., Martin, M.A., Racaniello, V.R., Roizman, B., Eds.; Wolters Kluwer Health/Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2013; pp. 1347–1401. [Google Scholar]
- Desselberger, U.; Richards, J.; Tchertanov, L.; Lepault, J.; Lever, A.; Burrone, O.; Cohen, J. Further characterisation of rotavirus cores: Ss(+)RNAs can be packaged in vitro but packaging lacks sequence specificity. Virus. Res. 2013, 178, 252–263. [Google Scholar] [CrossRef] [Green Version]
- Settembre, E.C.; Chen, J.Z.; Dormitzer, P.R.; Grigorieff, N.; Harrison, S.C. Atomic model of an infectious rotavirus particle. EMBO J. 2010, 30, 408–416. [Google Scholar] [CrossRef]
- Viskovska, M.; Anish, R.; Church, M.E.; Chow, D.-C.; Hurwitz, A.M.; Brown, N.; Palzkill, T.; Estes, M.K.; Prasad, B.V.V. Probing the Sites of Interactions of Rotaviral Proteins Involved in Replication. J. Virol. 2014, 88, 12866–12881. [Google Scholar] [CrossRef] [Green Version]
- Tate, J.E.; Burton, A.H.; Boschi-Pinto, C.; Parashar, U.D. World Health Organization–Coordinated Global Rotavirus Surveil-lance Network. Global, regional, and national estimates of rotavirus mortality in children. Clin. Infect. Dis. 2016, 62, S96–S105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Troeger, C.; Khalil, I.A.; Rao, P.C.; Cao, S.; Blacker, B.F.; Ahmed, T.; Armah, G.; Bines, J.E.; Brewer, T.G.; Colombara, D.V.; et al. Rotavirus Vaccination and the Global Burden of Rotavirus Diarrhea Among Children Younger Than 5 Years. JAMA Pediatr. 2018, 172, 958–965. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Albrey, M.B.; Murphy, A.M. Letter: Rotavirus growth in bovine monolayers. Lancet 1976, 3, 753. [Google Scholar] [CrossRef]
- Banatvala, J.; Totterdell, B.; Chrystie, I.; Woode, G. In-vitro detection of human rotaviruses. Lancet 1975, 306, 821. [Google Scholar] [CrossRef]
- Purdham, D.R.; Purdham, P.A.; Evans, N.; McNeish, A.S. Letter: Isolation of human rotavirus using human embryonic gut monolayers. Lancet 1975, 2, 977. [Google Scholar] [CrossRef]
- Sato, K.; Inaba, Y.; Shinozaki, T.; Fujii, R.; Matumoto, M. Isolation of human rotavirus in cell cultures: Brief report. Arch. Virol. 1981, 69, 155–160. [Google Scholar] [CrossRef] [PubMed]
- Urasawa, T.; Urasawa, S.; Taniguchi, K. Sequential Passages of Human Rotavirus in MA-104 Cells. Microbiol. Immunol. 1981, 25, 1025–1035. [Google Scholar] [CrossRef]
- Komoto, S.; Kugita, M.; Sasaki, J.; Taniguchi, K. Generation of Recombinant Rotavirus with an Antigenic Mosaic of Cross-Reactive Neutralization Epitopes on VP4. J. Virol. 2008, 82, 6753–6757. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wyatt, R.G.; James, H.D.; Pittman, A.L.; Hoshino, Y.; Greenberg, H.B.; Kalica, A.R.; Flores, J.; Kapikian, A.Z. Direct isolation in cell culture of human rotaviruses and their characterization into four serotypes. J. Clin. Microbiol. 1983, 18, 310–317. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, D.; Both, G. Completion of the genomic sequence of the simian rotavirus SA11: Nucleotide sequences of segments 1, 2, and 3. Virology 1990, 177, 324–331. [Google Scholar] [CrossRef]
- Komoto, S.; Sasaki, J.; Taniguchi, K. Reverse genetics system for introduction of site-specific mutations into the double-stranded RNA genome of infectious rotavirus. Proc. Natl. Acad. Sci. USA 2006, 103, 4646–4651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanai, Y.; Komoto, S.; Kawagishi, T.; Nouda, R.; Nagasawa, N.; Onishi, M.; Matsuura, Y.; Taniguchi, K.; Kobayashi, T. Entirely plasmid-based reverse genetics system for rotaviruses. Proc. Natl. Acad. Sci. USA 2017, 114, 2349–2354. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, K.M.; Mühlberger, E. Marburg Virus Reverse Genetics Systems. Viruses 2016, 8, 178. [Google Scholar] [CrossRef] [Green Version]
- Elliott, R.M.; Blakqori, G. Molecular Biology of Orthobunyaviruses. In Bunyavirudae, Molecular and Cellular Biology; Plyusnin, A., Elliott, R.M., Eds.; Caister Academic Press: Norfolk, UK, 2011; pp. 1–39. [Google Scholar]
- Ishii, K.; Ueda, Y.; Matsuo, K.; Matsuura, Y.; Kitamura, T.; Kato, K.; Izumi, Y.; Someya, K.; Ohsu, T.; Honda, M.; et al. Structural analysis of vaccinia virus DIs strain: Application as a new replication-deficient viral vector. Virology 2002, 302, 433–444. [Google Scholar] [CrossRef]
- Johne, R.; Reetz, J.; Kaufer, B.B.; Trojnar, E. Generation of an avian-mammalian rotavirus reassortant by using a helper vi-rus-dependent reverse genetics system. J. Virol. 2015, 90, 1439–1443. [Google Scholar] [CrossRef] [Green Version]
- Komoto, S.; Wakuda, M.; Ide, T.; Niimi, G.; Maeno, Y.; Higo-Moriguchi, K.; Taniguchi, K. Modification of the trypsin cleavage site of rotavirus VP4 to a furin-sensitive form does not enhance replication efficiency. J. Gen. Virol. 2011, 92, 2914–2921. [Google Scholar] [CrossRef] [PubMed]
- Troupin, C.; Dehée, A.; Schnuriger, A.; Vende, P.; Poncet, D.; Garbarg-Chenon, A. Rearranged Genomic RNA Segments Offer a New Approach to the Reverse Genetics of Rotaviruses. J. Virol. 2010, 84, 6711–6719. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Navarro, A.; Trask, S.D.; Patton, J.T. Generation of genetically stable recombinant rotaviruses containing novel genome rear-rangements and heterologous sequences by reverse genetics. J. Virol. 2013, 87, 6211–6220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trask, S.D.; Taraporewala, Z.F.; Boehme, K.W.; Dermody, T.S.; Patton, J.T. Dual selection mechanisms drive efficient sin-gle-gene reverse genetics for rotavirus. Proc. Natl. Acad. Sci. USA 2010, 107, 18652–18657. [Google Scholar] [CrossRef] [Green Version]
- Taniguchi, K.; Nishikawa, K.; Kobayashi, N.; Urasawa, T.; Wu, H.; Gorziglia, M.; Urasawa, S. Differences in Plaque Size and VP4 Sequence Found in SA11 Virus Clones Having Simian Authentic VP4. Virology 1994, 198, 325–330. [Google Scholar] [CrossRef]
- Komoto, S.; Kanai, Y.; Fukuda, S.; Kugita, M.; Kawagishi, T.; Ito, N.; Sugiyama, M.; Matsuura, Y.; Kobayashi, T.; Taniguchi, K. Reverse Genetics System Demonstrates that Rotavirus Nonstructural Protein NSP6 Is Not Essential for Viral Replication in Cell Culture. J. Virol. 2017, 91, e00695-17. [Google Scholar] [CrossRef] [Green Version]
- Komoto, S.; Fukuda, S.; Ide, T.; Ito, N.; Sugiyama, M.; Yoshikawa, T.; Murata, T.; Taniguchi, K. Generation of Recombinant Rotaviruses Expressing Fluorescent Proteins by Using an Optimized Reverse Genetics System. J. Virol. 2018, 92, 00588-18. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Tacuba, L.; Feng, N.; Meade, N.J.; Mellits, K.H.; Jaïs, P.H.; Yasukawa, L.L.; Resch, T.K.; Jiang, B.; López, S.; Ding, S.; et al. An Optimized Reverse Genetics System Suitable for Efficient Recovery of Simian, Human, and Murine-Like Rotaviruses. J. Virol. 2020, 94, 01294-20. [Google Scholar] [CrossRef]
- Jaïs, P.H.; Decroly, E.; Jacquet, E.; Le Boulch, M.; Jaïs, A.; Jean-Jean, O.; Eaton, H.; Ponien, P.; Verdier, F.; Canard, B.; et al. C3P3-G1: First generation of a eukaryotic artificial cytoplasmic expression system. Nucleic Acids Res. 2019, 47, 2681–2698. [Google Scholar] [CrossRef] [Green Version]
- Gombold, J.L.; Ramig, R.F. Analysis of reassortment of genome segments in mice mixedly infected with rotaviruses SA11 and RRV. J. Virol. 1986, 57, 110–116. [Google Scholar] [CrossRef] [Green Version]
- Falkenhagen, A.; Patzina-Mehling, C.; Rückner, A.; Vahlenkamp, T.W.; Johne, R. Generation of simian rotavirus reassortants with diverse VP4 genes using reverse genetics. J. Gen. Virol. 2019, 100, 1595–1604. [Google Scholar] [CrossRef]
- Falkenhagen, A.; Patzina-Mehling, C.; Gadicherla, A.K.; Strydom, A.; O’Neill, H.G.; Johne, R. Generation of Simian Rotavirus Reassortants with VP4- and VP7-Encoding Genome Segments from Human Strains Circulating in Africa Using Reverse Genetics. Viruses 2020, 12, 201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Falkenhagen, A.; Huyzers, M.; van Dijk, A.; Johne, R. Rescue of Infectious Rotavirus Reassortants by a Reverse Genetics System Is Restricted by the Receptor-Binding Region of VP4. Viruses 2021, 13, 363. [Google Scholar] [CrossRef] [PubMed]
- Fukuda, S.; Hatazawa, R.; Kawamura, Y.; Yoshikawa, T.; Murata, T.; Taniguchi, K.; Komoto, S. Rapid generation of rotavirus single-gene reassortants by means of eleven plasmid-only based reverse genetics. J. Gen. Virol. 2020, 101, 806–815. [Google Scholar] [CrossRef] [PubMed]
- Patzina-Mehling, C.; Falkenhagen, A.; Trojnar, E.; Gadicherla, A.K.; Johne, R. Potential of avian and mammalian species A rotaviruses to reassort as explored by plasmid only-based reverse genetics. Virus. Res. 2020, 286, 198027. [Google Scholar] [CrossRef]
- Papa, G.; Venditti, L.; Arnoldi, F.; Schraner, E.M.; Potgieter, C.; Borodavka, A.; Eichwald, C.; Burrone, O.R. Recombinant Rotaviruses Rescued by Reverse Genetics Reveal the Role of NSP5 Hyperphosphorylation in the Assembly of Viral Factories. J. Virol. 2019, 94, 01110-19. [Google Scholar] [CrossRef] [Green Version]
- Papa, G.; Venditti, L.; Braga, L.; Schneider, E.; Giacca, M.; Petris, G.; Burrone, O.R. CRISPR-Csy4-Mediated Editing of Rotavirus Double-Stranded RNA Genome. Cell Rep. 2020, 32, 108205. [Google Scholar] [CrossRef]
- Hatazawa, R.; Fukuda, S.; Kumamoto, K.; Matsushita, F.; Nagao, S.; Murata, T.; Taniguchi, K.; Matsui, T.; Komoto, S. Strategy for generation of replication–competent recombinant rotaviruses expressing multiple foreign genes. J. Gen. Virol. 2021, 102, 001587. [Google Scholar] [CrossRef]
- Philip, A.A.; Herrin, B.E.; Garcia, M.L.; Abad, A.; Katen, S.P.; Patton, J.T. Collection of Recombinant Rotaviruses Expressing Fluorescent Reporter Proteins. Microbiol. Resour. Announc. 2019, 8, e00523-19. [Google Scholar] [CrossRef] [Green Version]
- Philip, A.A.; Perry, J.L.; Eaton, H.E.; Shmulevitz, M.; Hyser, J.M.; Patton, J.T. Generation of Recombinant Rotavirus Expressing NSP3-UnaG Fusion Protein by a Simplified Reverse Genetics System. J. Virol. 2019, 93, 01616-19. [Google Scholar] [CrossRef]
- Philip, A.A.; Patton, J.T. Expression of Separate Heterologous Proteins from the Rotavirus NSP3 Genome Segment Using a Translational 2A Stop-Restart Element. J. Virol. 2020, 94, 00959-20. [Google Scholar] [CrossRef]
- Philip, A.A.; Patton, J.T. Rotavirus as an Expression Platform of Domains of the SARS-CoV-2 Spike Protein. Vaccines 2021, 9, 449. [Google Scholar] [CrossRef]
- Ghosh, S.; Kobayashi, N. Whole-genomic analysis of rotavirus strains: Current status and future prospects. Futur. Microbiol. 2011, 6, 1049–1065. [Google Scholar] [CrossRef]
- Papp, H.; Borzák, R.; Farkas, S.; Kisfali, P.; Lengyel, G.; Molnár, P.; Melegh, B.; Matthijnssens, J.; Jakab, F.; Martella, V.; et al. Zoonotic transmission of reassortant porcine G4P[6] rotaviruses in Hungarian pediatric patients identified sporadically over a 15year period. Infect. Genet. Evol. 2013, 19, 71–80. [Google Scholar] [CrossRef]
- Matthijnssens, J.; Ciarlet, M.; Heiman, E.; Arijs, I.; Delbeke, T.; McDonald, S.M.; Palombo, E.A.; Iturriza-Gómara, M.; Maes, P.; Patton, J.; et al. Full Genome-Based Classification of Rotaviruses Reveals a Common Origin between Human Wa-Like and Porcine Rotavirus Strains and Human DS-1-Like and Bovine Rotavirus Strains. J. Virol. 2008, 82, 3204–3219. [Google Scholar] [CrossRef] [Green Version]
- Barbé, L.; Le Moullac-Vaidye, B.; Echasserieau, K.; Bernardeau, K.; Carton, T.; Bovin, N.; Nordgren, J.; Svensson, L.; Ru-voën-Clouet, N.; Le Pendu, J. Histo-blood group antigen-binding specificities of human rotaviruses are associated with gas-troenteritis but not with in vitro infection. Sci. Rep. 2018, 8, 12961. [Google Scholar] [CrossRef]
- Böhm, R.; Fleming, F.E.; Maggioni, A.; Dang, V.T.; Holloway, G.; Coulson, B.; Von Itzstein, M.; Haselhorst, T. Revisiting the role of histo-blood group antigens in rotavirus host-cell invasion. Nat. Commun. 2015, 6, 5907. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delorme, C.; Brüssow, H.; Sidoti, J.; Roche, N.; Karlsson, K.-A.; Neeser, J.-R.; Teneberg, S. Glycosphingolipid Binding Specificities of Rotavirus: Identification of a Sialic Acid-Binding Epitope. J. Virol. 2001, 75, 2276–2287. [Google Scholar] [CrossRef] [Green Version]
- Guo, C.-T.; Nakagomi, O.; Mochizuki, M.; Ishida, H.; Kiso, M.; Ohta, Y.; Suzuki, T.; Miyamoto, D.; Hidari, R.I.-P.J.; Suzuki, Y. Ganglioside GMia on the Cell Surface Is Involved in the Infection by Human Rotavirus KUN and MO Strains. J. Biochem. 1999, 126, 683–688. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.; Crawford, S.E.; Czako, R.; Cortes-Penfield, N.W.; Smith, D.F.; Le Pendu, J.; Estes, M.K.; Prasad, B.V.V. Cell attachment protein VP8* of a human rotavirus specifically interacts with A-type histo-blood group antigen. Nat. Cell Biol. 2012, 485, 256–259. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.; Ramani, S.; Czako, R.; Sankaran, B.; Yu, Y.; Smith, D.F.; Cummings, R.D.; Estes, M.K.; Prasad, B.V.V. Structural basis of glycan specificity in neonate-specific bovine-human reassortant rotavirus. Nat. Commun. 2015, 6, 8346. [Google Scholar] [CrossRef] [PubMed]
- Le Pendu, J.; Nyström, K.; Ruvoën-Clouet, N. Host–pathogen co-evolution and glycan interactions. Curr. Opin. Virol. 2014, 7, 88–94. [Google Scholar] [CrossRef]
- Yu, X.; Coulson, B.S.; Fleming, F.E.; Dyason, J.C.; von Itzstein, M.; Blanchard, H. Novel Structural Insights into Rotavirus Recognition of Ganglioside Glycan Receptors. J. Mol. Biol. 2011, 413, 929–939. [Google Scholar] [CrossRef] [PubMed]
- Ramig, R.F. The effects of host age, virus dose, and virus strain on heterologous rotavirus infection of suckling mice. Microb. Pathog. 1988, 4, 189–202. [Google Scholar] [CrossRef]
- Kitaoka, S.; Suzuki, H.; Numazaki, Y.; Konno, T.; Ishida, N. The effect of trypsin on the growth and infectivity of human rotavirus. Tohoku J. Exp. Med. 1986, 149, 437–447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Offit, P.A.; Clark, H.F.; Stroop, W.G.; Twist, E.M.; Plotkin, S.A. The cultivation of human rotavirus, strain ‘Wa’, to high titer in cell culture and characterization of the viral structural polypeptides. J. Virol. Methods 1983, 7, 29–40. [Google Scholar] [CrossRef]
- Komoto, S.; Fukuda, S.; Kugita, M.; Hatazawa, R.; Koyama, C.; Katayama, K.; Murata, T.; Taniguchi, K. Generation of infec-tious recombinant human rotaviruses from just 11 cloned cDNAs encoding the rotavirus genome. J. Virol. 2019, 93, e02207-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Urasawa, S.; Taniguchi, K.; Chiba, S. Serotype determination of human rotavirus isolates and antibody prevalence in pediatric population in Hokkaido, Japan. Arch. Virol. 1984, 81, 1–12. [Google Scholar] [CrossRef]
- Wyatt, R.; James, W.; Bohl, E.; Theil, K.; Saif, L.; Kalica, A.; Greenberg, H.; Kapikian, A.; Chanock, R. Human rotavirus type 2: Cultivation in vitro. Science 1980, 207, 189–191. [Google Scholar] [CrossRef]
- Bányai, K.; László, B.; Duque, J.; Steele, A.D.; Nelson, E.A.S.; Gentsch, J.R.; Parashar, U.D. Systematic review of regional and temporal trends in global rotavirus strain diversity in the pre rotavirus vaccine era: Insights for understanding the impact of rotavirus vaccination programs. Vaccine 2012, 30, A122–A130. [Google Scholar] [CrossRef]
- Santos, N.; Hoshino, Y. Global distribution of rotavirus serotypes/genotypes and its implication for the development and im-plementation of an effective rotavirus vaccine. Rev. Med. Virol. 2005, 5, 29–56. [Google Scholar] [CrossRef]
- Greenberg, H.; Flores, J.; Kalica, A.R.; Wyatt, R.G.; Jones, R. Gene Coding Assignments for growth Restriction, Neutralization and Subgroup Specificities of the W and DS-1 Strains of Human Rotavirus. J. Gen. Virol. 1983, 64, 313–320. [Google Scholar] [CrossRef]
- Kawagishi, T.; Nurdin, J.A.; Onishi, M.; Nouda, R.; Kanai, Y.; Tajima, T.; Ushijima, H.; Kobayashi, T. Reverse Genetics System for a Human Group A Rotavirus. J. Virol. 2020, 94, 00963-19. [Google Scholar] [CrossRef]
- Esona, M.D.; Foytich, K.; Wang, Y.; Shin, G.; Wei, G.; Gentsch, J.R.; Glass, R.I.; Jiang, B. Molecular characterization of human rotavirus vaccine strain CDC-9 during sequential passages in vero cells. Hum. Vaccines 2010, 6, 247–253. [Google Scholar] [CrossRef]
- Kudo, S.; Zhou, Y.; Cao, X.-R.; Yamanishi, S.; Nakata, S.; Ushijima, H. Molecular Characterization in the VP7, VP4 and NSP4 Genes of Human Rotavirus Serotype 4 (G4) Isolated in Japan and Kenya. Microbiol. Immunol. 2001, 45, 167–171. [Google Scholar] [CrossRef] [Green Version]
- Clark, H.F.; Hoshino, Y.; Bell, L.M.; Groff, J.; Hess, G.; Bachman, P.; Offit, P.A. Rotavirus isolate WI61 representing a pre-sumptive new human serotype. J. Clin. Microbiol. 1987, 25, 1757–1762. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greenberg, H.; Kalica, A.R.; Wyatt, R.G.; Jones, R.W.; Kapikian, A.Z.; Chanock, R.M. Rescue of noncultivatable human rotavirus by gene reassortment during mixed infection with ts mutants of a cultivatable bovine rotavirus. Proc. Natl. Acad. Sci. USA 1981, 78, 420–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoshino, Y.; Saif, L.J.; Sereno, M.M.; Chanock, R.M.; Kapikian, A.Z. Infection immunity of piglets to either VP3 or VP7 outer capsid protein confers resistance to challenge with a virulent rotavirus bearing the corresponding antigen. J. Virol. 1988, 62, 744–748. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoshino, Y.; Saif, L.J.; Kang, S.Y.; Sereno, M.M.; Chen, W.K.; Kapikian, A.Z. Identification of group A rotavirus genes asso-ciated with virulence of a porcine rotavirus and host range restriction of a human rotavirus in the gnotobiotic piglet model. Virology 1995, 209, 274–280. [Google Scholar] [CrossRef] [Green Version]
- Hoshino, Y.; Jones, R.W.; Chanock, R.M.; Kapikian, A.Z. Construction of four double gene substitution human x bovine rota-virus reassortant vaccine candidates: Each bears two outer capsid human rotavirus genes, one encoding P serotype 1A and the other encoding G serotype 1, 2, 3, or 4 specificity. J. Med. Virol. 1997, 51, 319–325. [Google Scholar] [CrossRef]
- Kalica, A.R.; Flores, J.; Greenberg, H.B. Identification of the rotaviral gene that codes for hemagglutination and prote-ase-enhanced plaque formation. Virology 1983, 125, 194–205. [Google Scholar] [CrossRef]
- Kobayashi, N.; Taniguchi, K.; Urasawa, T. Efficient production of antigenic mosaic reassortants of rotavirus with the aid of anti-VP4 and anti-VP7 neutralizing monoclonal antibodies. J. Virol. Methods 1993, 44, 25–34. [Google Scholar] [CrossRef]
- Kobayashi, N.; Kojima, K.; Taniguchi, K.; Urasawa, T.; Urasawa, S. Genotypic diversity of reassortants between simian ro-tavirus SA11 and human rotaviruses having different antigenic specificities and RNA patterns. Res. Virol. 1994, 145, 303–311. [Google Scholar] [CrossRef]
- Alam, M.M.; Kobayashi, N.; Ishino, M.; Naik, T.N.; Taniguchi, K. Analysis of genetic factors related to preferential selection of the NSP1 gene segment observed in mixed infection and multiple passage of rotaviruses. Arch. Virol. 2006, 151, 2149–2159. [Google Scholar] [CrossRef]
- Midthun, K.; Greenberg, H.B.; Hoshino, Y.; Kapikian, A.Z.; Wyatt, R.G.; Chanock, R.M. Reassortant rotaviruses as potential live rotavirus vaccine candidates. J. Virol. 1985, 53, 949–954. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Midthun, K.; Hoshino, Y.; Kapikian, A.Z.; Chanock, R.M. Single gene substitution rotavirus reassortants containing the major neutralization protein (VP7) of human rotavirus serotype 4. J. Clin. Microbiol. 1986, 24, 822–826. [Google Scholar] [CrossRef] [Green Version]
- Okada, J.; Kobayashi, N.; Taniguchi, K.; Shiomi, H. Functional analysis of the heterologous NSP1 genes in the genetic back-ground of simian rotavirus SA11. Arch. Virol. 1999, 144, 1439–1449. [Google Scholar] [CrossRef]
- Okada, J.; Kobayashi, N.; Taniguchi, K.; Urasawa, S. Analysis on reassortment of rotavirus NSP1 genes lacking coding region for cysteine-rich zinc finger motif. Arch. Virol. 1999, 144, 345–353. [Google Scholar] [CrossRef]
- Ramig, R.F.; Gombold, J.L. Rotavirus temperature-sensitive mutants are genetically stable and participate in reassortment during mixed infection of mice. Virology 1991, 182, 468–474. [Google Scholar] [CrossRef]
- Graham, A.; Kudesia, G.; Allen, A.M.; Desselberger, U. Reassortment of Human Rotavirus Possessing Genome Rearrangements with Bovine Rotavirus: Evidence for Host Cell Selection. J. Gen. Virol. 1987, 68, 115–122. [Google Scholar] [CrossRef]
- Nakagomi, O.; Hoshino, Y.; Flores, J.; Kapikian, A.Z. Genetic analysis of a human rotavirus that belongs to subgroup I but has an RNA pattern typical of subgroup II human rotaviruses. J. Clin. Microbiol. 1987, 25, 1159–1164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nibert, M.L.; Margraf, R.L.; Coombs, K. Nonrandom segregation of parental alleles in reovirus reassortants. J. Virol. 1996, 70, 7295–7300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ward, R.L.; Nakagomi, O.; Knowlton, D.R.; McNeal, M.M.; Huda, N.; Clemens, J.D.; A Sack, D. Formation and selection of intergenogroup reassortants during cell culture adaptation of rotaviruses from dually infected subjects. J. Virol. 1991, 65, 2699–2701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heiman, E.M.; McDonald, S.M.; Barro, M.; Taraporewala, Z.F.; Bar-Magen, T.; Patton, J.T. Group A Human Rotavirus Genomics: Evidence that Gene Constellations Are Influenced by Viral Protein Interactions. J. Virol. 2008, 82, 11106–11116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McDonald, S.M.; Matthijnssens, J.; McAllen, J.K.; Hine, E.; Overton, L.; Wang, S.; Lemey, P.; Zeller, M.; Van Ranst, M.; Spiro, D.J.; et al. Evolutionary Dynamics of Human Rotaviruses: Balancing Reassortment with Preferred Genome Constellations. PLoS Pathog. 2009, 5, e1000634. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Komoto, S.; Fukuda, S.; Murata, T.; Taniguchi, K. Human Rotavirus Reverse Genetics Systems to Study Viral Replication and Pathogenesis. Viruses 2021, 13, 1791. https://doi.org/10.3390/v13091791
Komoto S, Fukuda S, Murata T, Taniguchi K. Human Rotavirus Reverse Genetics Systems to Study Viral Replication and Pathogenesis. Viruses. 2021; 13(9):1791. https://doi.org/10.3390/v13091791
Chicago/Turabian StyleKomoto, Satoshi, Saori Fukuda, Takayuki Murata, and Koki Taniguchi. 2021. "Human Rotavirus Reverse Genetics Systems to Study Viral Replication and Pathogenesis" Viruses 13, no. 9: 1791. https://doi.org/10.3390/v13091791
APA StyleKomoto, S., Fukuda, S., Murata, T., & Taniguchi, K. (2021). Human Rotavirus Reverse Genetics Systems to Study Viral Replication and Pathogenesis. Viruses, 13(9), 1791. https://doi.org/10.3390/v13091791