Recent Therapeutic Approaches to Modulate the Hippo Pathway in Oncology and Regenerative Medicine
Abstract
:1. Introduction
2. Opportunities to Modulate the Hippo Pathway
2.1. YAP1 in Embryogenesis and Developed Tissues
2.2. YAP1 as a Tumor-Intrinsic Oncogenic Driver
2.3. YAP1 as a Mechanism of Intrinsic and Acquired Drug Resistance
2.4. Regulation of Immunity and the Tumor Microenvironment by YAP1/TAZ
3. Targeting the YAP1/TAZ–TEAD Interaction
Entry (Ref.) | MOA | In Vitro Data | In Vivo Data |
---|---|---|---|
1 [92] | NR |
| NR |
| |||
2 [93] | Allosteric, palmitate (covalent) |
| |
| NR | ||
3 [94,95] | Allosteric, palmitate (covalent) |
| NR |
| |||
4 [96] | Allosteric, palmitate |
| NR |
5 [97] | Allosteric, palmitate (covalent) |
| NR |
6 [98] | Allosteric, palmitate |
| NR |
7 [99] | Allosteric, palmitate |
|
|
8 [100,101] | Allosteric, palmitate |
|
|
9 [102] | Allosteric, palmitate (covalent) |
| NR |
10 [103] | Allosteric, palmitate |
| NR |
11 [104] | Allosteric, palmitate |
|
|
12 [105] | Allosteric, palmitate (covalent) |
|
|
13 [106] | Allosteric, palmitate |
|
|
14 [32] | Allosteric, palmitate (covalent) |
|
|
15 [107] | Allosteric, palmitate (covalent) |
| NR |
16 [35,108] | Allosteric, palmitate (covalent) |
| NR |
17 [109] | Allosteric, palmitate |
|
|
18 [33,110,111] | Allosteric, palmitate |
|
|
19 [112] | Allosteric, palmitate |
| NR |
20 [113] | Allosteric, palmitate |
| NR |
21 [114] | Allosteric, palmitate |
| NR |
22 [115] | Allosteric, palmitate |
| NR |
23 [116] | Allosteric, palmitate |
| NR |
24 [117] | NR |
| NR |
25 [118] | NR |
|
|
26 [119] | PPI |
| NR |
27 [120] | PPI |
|
|
28 [121] | PPI |
| NR |
29 [122] | PPI |
| NR |
30 [123] | Allosteric, palmitate |
| NR |
31 [124] | PPI |
| NR |
32 [125] | PPI |
| NR |
33 [126] | PPI |
| NR |
34 [127] | PPI |
|
|
35 [128] | PPI |
| NR |
36 [129] | PPI |
|
|
37 [130] | PPI |
| NR |
38 [131] | PPI |
| NR |
39 [132] | PPI |
| NR |
40 [133,134] | PPI |
|
|
41 [135,136] | PPI |
| NR |
42 [137] | PPI |
| NR |
43 [138] | PPI |
| NR |
44 [139] | PPI |
| NR |
45 [140] | PPI |
| NR |
46 [141] | PPI |
| NR |
47 [142] | PPI |
| NR |
48 [143] | PPI |
| NR |
49 [144] | PPI |
| NR |
50 [145] | PPI |
| NR |
3.1. MGH (Entry 6)
3.2. Basilea Pharmaceutica (Entry 7)
3.3. Genentech (Entries 8–11)
3.4. Ikena Oncology (Entries 12–13)
3.5. A*STAR (Entry 17)
3.6. Vivace Therapeutics (Entries 18–24)
3.7. Astra Zeneca (Entry 28)
3.8. University of Lille (Entry 50)
4. Clinical Trials Overview
5. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AACR | American Association for Cancer Research |
ABT | 1-Aminobenzotriazole |
ALK | Anaplastic lymphoma kinase |
ANKRD1 | Ankyrin repeat domain 1 |
AXL | AXL receptor tyrosine kinase |
BCLXL | B cell lymphoma-extra large |
BMF | Bcl2-modifying factor |
CETSA | Cellular thermal shift assay |
Co-IP | Complex immunoprecipitation |
CTGF | Connective tissue growth factor |
CXCL5 | C–X–C motif chemokine 5 |
CYR61 | Cysteine-rich angiogenic inducer 61 |
DSS | Dextran sodium sulfate |
EdU | Ethynyl deoxyuridine |
EGFR | Epidermal growth factor receptor |
EML4 | Echinoderm microtubule-associated protein-like 4 |
EMT | Epithelial mesenchymal transition |
FOS | Fos proto-oncogene, AP-1 transcription factor subunit |
FP | Fluorescence polarization |
HER3 | Human epidermal growth factor receptor 3 |
HTRF | Homogeneous time-resolved fluorescence |
IP | Intraperitoneal |
ITC | Isothermal titration calorimetry |
KRAS | Kirsten rat sarcoma virus |
LATS | Large tumor suppressor kinase |
MAPK | Mitogen-activated protein kinase |
MDSC | Myeloid-derived suppressor cell |
MEK | MAPK/ERK kinase |
mKRAS | Mutant KRAS |
MMP7 | Matrix metalloproteinase-7 |
MOA | Mechanism of action |
MOE | 2′-O-methoxyethyl |
MST | Mammalian sterile 20-like kinase |
NF2 | Neurofibromin 2 |
NFAT1 | Nuclear factor of activated T cells, cytoplasmic 2 |
NR | Not reported |
NSCLC | Non-small-cell lung carcinoma |
PDB | Protein Data Bank |
PD-L1 | Programmed death-ligand 1 |
PO | Per os (oral dosing) |
PPI | Protein–protein interaction |
QD | Quaque die (once a day dosing) |
RGA | Reporter gene assay |
ROS1 | Proto-oncogene tyrosine-protein kinase |
SLUG | Snail family transcriptional repressor 2 |
SPR | Surface plasmon resonance |
SRC | Proto-oncogene tyrosine-protein kinase Src |
TAZ | WW domain-containing transcription regulator protein 1 |
TBK1 | TANK-binding kinase 1 |
TCGA | The Cancer Genome Atlas |
TEAD | TEA domain family member |
TGI | Tumor growth inhibition |
TME | Tumor microenvironment |
TREG | Regulatory T cells |
VGL4 | Vestigial like family member 4 |
YAP1 | Yes-associated protein 1 |
YBD | YAP-binding domain |
References
- Huang, J.; Wu, S.; Barrera, J.; Matthews, K.; Pan, D. The Hippo Signaling Pathway Coordinately Regulates Cell Proliferation and Apoptosis by Inactivating Yorkie, the Drosophila Homolog of YAP. Cell 2005, 122, 421–434. [Google Scholar] [CrossRef] [Green Version]
- Camargo, F.D.; Gokhale, S.; Johnnidis, J.B.; Fu, D.; Bell, G.W.; Jaenisch, R.; Brummelkamp, T.R. YAP1 increases organ size and expands undifferentiated progenitor cells. Curr. Biol. 2007, 17, 2054–2060. [Google Scholar] [CrossRef] [Green Version]
- Dong, J.; Feldmann, G.; Huang, J.; Wu, S.; Zhang, N.; Comerford, S.A.; Gayyed, M.F.; Anders, R.A.; Maitra, A.; Pan, D. Elucidation of a Universal Size-Control Mechanism in Drosophila and Mammals. Cell 2007, 130, 1120–1133. [Google Scholar] [CrossRef] [Green Version]
- Dey, A.; Varelas, X.; Guan, K.-L. Targeting the Hippo pathway in cancer, fibrosis, wound healing and regenerative medicine. Nat. Rev. Drug Discov. 2020, 19, 480–494. [Google Scholar] [CrossRef] [PubMed]
- Piccolo, S.; Dupont, S.; Cordenonsi, M. The Biology of YAP/TAZ: Hippo Signaling and Beyond. Physiol. Rev. 2014, 94, 1287–1312. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Liu, Y.; Zheng, Y.; Dong, J.; Pan, D. The TEAD/TEF Family Protein Scalloped Mediates Transcriptional Output of the Hippo Growth-Regulatory Pathway. Dev. Cell 2008, 14, 388–398. [Google Scholar] [CrossRef] [Green Version]
- Kapoor, A.; Yao, W.; Ying, H.; Hua, S.; Liewen, A.; Wang, Q.; Zhong, Y.; Wu, C.-J.; Sadanandam, A.; Hu, B.; et al. Yap1 Activation Enables Bypass of Oncogenic Kras Addiction in Pancreatic Cancer. Cell 2014, 158, 185–197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schlegelmilch, K.; Mohseni, M.; Kirak, O.; Pruszak, J.; Rodriguez, J.R.; Zhou, D.; Kreger, B.T.; Vasioukhin, V.; Avruch, J.; Brummelkamp, T.R.; et al. Yap1 Acts Downstream of α-Catenin to Control Epidermal Proliferation. Cell 2011, 144, 782–795. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, B.; Ye, X.; Yu, J.; Li, L.; Li, W.; Li, S.; Lin, J.D.; Wang, C.-Y.; Chinnaiyan, A.M.; Lai, Z.-C.; et al. TEAD mediates YAP-dependent gene induction and growth control. Genes Dev. 2008, 22, 1962–1971. [Google Scholar] [CrossRef] [Green Version]
- Zhang, N.; Bai, H.; David, K.K.; Dong, J.; Zheng, Y.; Cai, J.; Giovannini, M.; Liu, P.; Anders, R.A.; Pan, D. The Merlin/NF2 Tumor Suppressor Functions through the YAP Oncoprotein to Regulate Tissue Homeostasis in Mammals. Dev. Cell 2010, 19, 27–38. [Google Scholar] [CrossRef] [Green Version]
- Lamar, J.M.; Stern, P.; Liu, H.; Schindler, J.W.; Jiang, Z.-G.; Hynes, R.O.; Lamar, J. The Hippo pathway target, YAP, promotes metastasis through its TEAD-interaction domain. Proc. Natl. Acad. Sci. USA 2012, 109, E2441–E2450. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Liu, C.-Y.; Zha, Z.; Zhao, B.; Yao, J.; Zhao, S.; Xiong, Y.; Lei, Q.-Y.; Guan, K.-L. TEAD Transcription Factors Mediate the Function of TAZ in Cell Growth and Epithelial-Mesenchymal Transition. J. Biol. Chem. 2009, 284, 13355–13362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Currey, L.; Thor, S.; Piper, M. TEAD family transcription factors in development and disease. Development 2021, 148, 196675. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Huang, T.; Cheng, A.S.L.; Yu, J.; Kang, W.; To, K.F. The TEAD Family and Its Oncogenic Role in Promoting Tumorigenesis. Int. J. Mol. Sci. 2016, 17, 138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanchez-Vega, F.; Mina, M.; Armenia, J.; Chatila, W.K.; Luna, A.; La, K.C.; Dimitriadoy, S.; Liu, D.L.; Kantheti, H.S.; Saghafinia, S.; et al. Oncogenic Signaling Pathways in The Cancer Genome Atlas. Cell 2018, 173, 321–337. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Xu, X.; Maglic, D.; Dill, M.; Mojumdar, K.; Ng, P.K.-S.; Jeong, K.J.; Tsang, Y.H.; Moreno, D.; Bhavana, V.H.; et al. Comprehensive Molecular Characterization of the Hippo Signaling Pathway in Cancer. Cell Rep. 2018, 25, 1304–1317. [Google Scholar] [CrossRef] [Green Version]
- Zanconato, F.; Cordenonsi, M.; Piccolo, S. YAP and TAZ: A signalling hub of the tumour microenvironment. Nat. Rev. Cancer 2019, 19, 454–464. [Google Scholar] [CrossRef]
- Huh, H.D.; Kim, D.H.; Jeong, H.-S.; Park, H.W. Regulation of TEAD Transcription Factors in Cancer Biology. Cells 2019, 8, 600. [Google Scholar] [CrossRef] [Green Version]
- Henley, M.J.; Koehler, A.N. Advances in targeting ‘undruggable’ transcription factors with small molecules. Nat. Rev. Drug. Discov. 2021, 20, 669–688. [Google Scholar] [CrossRef]
- Chan, P.; Han, X.; Zheng, B.; DeRan, M.; Yu, J.; Jarugumilli, G.K.; Deng, H.; Pan, D.; Luo, X.; Wu, X. Autopalmitoylation of TEAD proteins regulates transcriptional output of the Hippo pathway. Nat. Chem. Biol. 2016, 12, 282–289. [Google Scholar] [CrossRef] [Green Version]
- Mesrouze, Y.; Meyerhofer, M.; Bokhovchuk, F.; Fontana, P.; Zimmermann, C.; Martin, T.; Delaunay, C.; Izaac, A.; Kallen, J.; Schmelzle, T.; et al. Effect of the acylation of TEAD4 on its interaction with co-activators YAP and TAZ. Protein Sci. 2017, 26, 2399–2409. [Google Scholar] [CrossRef] [Green Version]
- Noland, C.L.; Gierke, S.; Schnier, P.D.; Murray, J.; Sandoval, W.N.; Sagolla, M.; Dey, A.; Hannoush, R.N.; Fairbrother, W.J.; Cunningham, C.N. Palmitoylation of TEAD Transcription Factors Is Required for Their Stability and Function in Hippo Pathway Signaling. Structure 2016, 24, 179–186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morin-Kensicki, E.M.; Boone, B.N.; Howell, M.; Stonebraker, J.R.; Teed, J.; Alb, J.G.; Magnuson, T.R.; O’Neal, W.; Milgram, S.L. Defects in Yolk Sac Vasculogenesis, Chorioallantoic Fusion, and Embryonic Axis Elongation in Mice with Targeted Disruption of Yap. Mol. Cell. Biol. 2006, 26, 77–87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Von Gise, A.; Lin, Z.; Schlegelmilch, K.; Honor, L.B.; Pan, G.M.; Buck, J.N.; Ma, Q.; Ishiwata, T.; Zhou, B.; Camargo, F.D.; et al. YAP1, the nuclear target of Hippo signaling, stimulates heart growth through cardiomyocyte proliferation but not hypertrophy. Proc. Natl. Acad. Sci. USA 2012, 109, 2394–2399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moya, I.M.; Halder, G. Hippo–YAP/TAZ signalling in organ regeneration and regenerative medicine. Nat. Rev. Mol. Cell Biol. 2019, 20, 211–226. [Google Scholar] [CrossRef]
- Cai, J.; Zhang, N.; Zheng, Y.; De Wilde, R.F.; Maitra, A.; Pan, D. The Hippo signaling pathway restricts the oncogenic potential of an intestinal regeneration program. Genes Dev. 2010, 24, 2383–2388. [Google Scholar] [CrossRef] [Green Version]
- Hong, L.; Li, Y.; Liu, Q.; Chen, Q.; Chen, L.; Zhou, D. The Hippo Signaling Pathway in Regenerative Medicine. In Embryonic Stem Cell Protocols; Humana Press: New York, NY, USA, 2019, 1893; pp. 353–370. [Google Scholar]
- Wang, Y.; Yu, A.; Yu, F.-X. The Hippo pathway in tissue homeostasis and regeneration. Protein Cell 2017, 8, 349–359. [Google Scholar] [CrossRef] [Green Version]
- Zanconato, F.; Cordenonsi, M.; Piccolo, S. YAP/TAZ at the Roots of Cancer. Cancer Cell 2016, 29, 783–803. [Google Scholar] [CrossRef] [Green Version]
- Spanakis, E.; Calvet, L.; Dos Santos, O.; Dib, C.; Sidhu, S.; Moll, J.; Debussche, L.; Pollard, J.; Valtingojer, I. Abstract 2161: A transcriptomic signature for measuring YAP1 activity in patient samples and tumor models. In Proceedings of the AACR Annual Meeting 2021, Virtual, 10–15 April and 17–21 May 2021; Volume 81, p. 2161. [Google Scholar]
- Calvet, L.; Dos Santos, O.; Jean-Baptiste, V.; Spanakis, E.; Ruffin, Y.; Sanchez, I.; Mestadier, J.; Soubigou, S.; Feteanu, S.; Picard, P.; et al. Abstract 4858: Oncogenic HIPPO-YAP1:in vivotarget validation of YAP1 in malignant mesothelioma. In Proceedings of the AACR Annual Meeting 2020, Virtual, 24–29 April 2020; Volume 80, p. 4858. [Google Scholar]
- Kaneda, A.; Seike, T.; Danjo, T.; Nakajima, T.; Otsubo, N.; Yamaguchi, D.; Tsuji, Y.; Hamaguchi, K.; Yasunaga, M.; Nishiya, Y.; et al. The novel potent TEAD inhibitor, K-975, inhibits YAP1/TAZ-TEAD protein-protein interactions and exerts an anti-tumor effect on malignant pleural mesothelioma. Am. J. Cancer Res. 2020, 10, 4399–4415. [Google Scholar] [PubMed]
- Tang, T.T.; Konradi, A.W.; Feng, Y.; Peng, X.; Ma, M.; Li, J.; Yu, F.-X.; Guan, K.-L.; Post, L. Small Molecule Inhibitors of TEAD Auto-palmitoylation Selectively Inhibit Proliferation and Tumor Growth of NF2-deficient Mesothelioma. Mol. Cancer Ther. 2021, 20, 986–998. [Google Scholar] [CrossRef]
- Ammoun, S.; Maze, E.A.; Agit, B.; Belshaw, R.; Hanemann, C.O. Abstract 1164: Human endogenous retrovirus type K promotes proliferation of Merlin negative schwannoma and meningioma which can be inhibited by anti-retroviral and anti-TEAD drugs. In Proceedings of the AACR Annual Meeting 2021, Virtual, 10–15 April and 17–21 May 2021; Volume 81, p. 1164. [Google Scholar]
- Kurppa, K.; Liu, Y.; To, C.; Zhang, T.; Fan, M.; Vajdi, A.; Knelson, E.H.; Xie, Y.; Lim, K.; Cejas, P.; et al. Treatment-Induced Tumor Dormancy through YAP-Mediated Transcriptional Reprogramming of the Apoptotic Pathway. Cancer Cell 2020, 37, 104–122. [Google Scholar] [CrossRef]
- Pfeifer, M.; Brammeld, J.S.; Price, S.; Martin, M.; Thorpe, H.; Bornot, A.; Banks, E.; Guan, N.; Dunn, S.; Guerriero, M.L.; et al. Abstract 1100: Gain and loss of function genome-wide CRISPR screens identify Hippo signaling as an important driver of resistance in EGFR mutant lung cancer. In Proceedings of the AACR Annual Meeting 2021, Virtual, 10–15 April and 17–21 May 2021; Volume 81, p. 1100. [Google Scholar]
- Yun, M.R.; Choi, H.M.; Lee, Y.W.; Joo, H.S.; Park, C.W.; Choi, J.W.; Kim, D.H.; Na Kang, H.; Pyo, K.-H.; Shin, E.J.; et al. Targeting YAP to overcome acquired resistance to ALK inhibitors in ALK -rearranged lung cancer. EMBO Mol. Med. 2019, 11, e10581. [Google Scholar] [CrossRef]
- Yamazoe, M.; Ozasa, H.; Ohgimoto, T.; Hosoya, K.; Ajimizu, H.; Funazo, T.; Yasuda, Y.; Tsuji, T.; Yoshida, H.; Itotani, R.; et al. Abstract 1098: Activation of YAP1 confers ROS1 inhibitor resistance in ROS1-rearranged lung cancer. In Proceedings of the AACR Annual Meeting 2021, Virtual, 10–15 April and 17–21 May 2021; Volume 81, p. 1098. [Google Scholar]
- Kim, M.H.; Kim, J.; Hong, H.; Lee, S.; Lee, J.-K.; Jung, E.; Kim, J. Actin remodeling confers BRAF inhibitor resistance to melanoma cells through YAP/TAZ activation. EMBO J. 2016, 35, 462–478. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Sabnis, A.; Chan, E.; Olivas, V.; Cade, L.; Pazarentzos, E.; Asthana, S.; Neel, D.S.; Yan, J.J.; Lu, X.; et al. The Hippo effector YAP promotes resistance to RAF- and MEK-targeted cancer therapies. Nat. Genet. 2015, 47, 250–256. [Google Scholar] [CrossRef] [PubMed]
- Brammeld, J.S.; Thorpe, H.; Garcia, M.A.; Price, S.; Young, J.; Pfeifer, M.; Lupo, B.; Yusa, K.; Trusolino, L.; Garnett, M.; et al. Abstract 1081: Genome-wide CRISPR screens reveal Hippo pathway activation as a resistance mechanism in BRAF mutant colon cancer. In Proceedings of the AACR Annual Meeting 2021, Virtual, 10–15 April and 17–21 May 2021; Volume 81, p. 1081. [Google Scholar]
- Su, M.; Zhan, L.; Zhang, Y.; Zhang, J. Yes-activated protein promotes primary resistance of BRAF V600E mutant metastatic colorectal cancer cells to mitogen-activated protein kinase pathway inhibitors. J. Gastrointest. Oncol. 2021, 12, 953–963. [Google Scholar] [CrossRef] [PubMed]
- Shao, D.; Xue, W.; Krall, E.B.; Bhutkar, A.; Piccioni, F.; Wang, X.; Schinzel, A.C.; Sood, S.; Rosenbluh, J.; Kim, J.W.; et al. KRAS and YAP1 Converge to Regulate EMT and Tumor Survival. Cell 2014, 158, 171–184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kitajima, S.; Asahina, H.; Chen, T.; Guo, S.; Quiceno, L.G.; Cavanaugh, J.D.; Merlino, A.A.; Tange, S.; Terai, H.; Kim, J.W.; et al. Overcoming Resistance to Dual Innate Immune and MEK Inhibition Downstream of KRAS. Cancer Cell 2018, 34, 439–452. [Google Scholar] [CrossRef] [Green Version]
- Hong, X.; Nguyen, H.T.; Chen, Q.; Zhang, R.; Hagman, Z.; Voorhoeve, P.M.; Cohen, S.M. Opposing activities of the Ras and Hippo pathways converge on regulation of YAP protein turnover. EMBO J. 2014, 33, 2447–2457. [Google Scholar] [CrossRef] [PubMed]
- Pham, T.H.; Hagenbeek, T.J.; Lee, H.-J.; Li, J.; Rose, C.M.; Lin, E.; Yu, M.; Martin, S.E.; Piskol, R.; Lacap, J.A.; et al. Machine-Learning and Chemicogenomics Approach Defines and Predicts Cross-Talk of Hippo and MAPK Pathways. Cancer Discov. 2021, 11, 778–793. [Google Scholar] [CrossRef]
- Pascual, J.; Jacobs, J.; Sansores-Garcia, L.; Natarajan, M.; Zeitlinger, J.; Aerts, S.; Halder, G.; Hamaratoglu, F. Hippo Reprograms the Transcriptional Response to Ras Signaling. Dev. Cell 2017, 42, 667–680. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, C.D.; Yi, C. YAP/TAZ Signaling and Resistance to Cancer Therapy. Trends Cancer 2019, 5, 283–296. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.-H.; Lin, C.-C.; Wu, J.; Chao, P.-Y.; Chen, K.; Chen, P.-H.; Chi, J.-T. The Hippo Pathway Effector YAP Promotes Ferroptosis via the E3 Ligase SKP2. Mol. Cancer Res. 2021, 19, 1005–1014. [Google Scholar] [CrossRef] [PubMed]
- Sun, T.; Chi, J.-T. Regulation of ferroptosis in cancer cells by YAP/TAZ and Hippo pathways: The therapeutic implications. Genes Dis. 2021, 8, 241–249. [Google Scholar] [CrossRef] [PubMed]
- Yee, P.P.; Wei, Y.; Kim, S.-Y.; Lu, T.; Chih, S.Y.; Lawson, C.; Tang, M.; Liu, Z.; Anderson, B.; Thamburaj, K.; et al. Neutrophil-induced ferroptosis promotes tumor necrosis in glioblastoma progression. Nat. Commun. 2020, 11, 5424. [Google Scholar] [CrossRef]
- Yang, W.H.; Ding, C.K.C.; Sun, T.; Rupprecht, G.; Lin, C.C.; Hsu, D.; Chi, J.T. The Hippo Pathway Effector TAZ Regulates Ferroptosis in Renal Cell Carcinoma. Cell Rep. 2019, 28, 2501–2508. [Google Scholar] [CrossRef]
- Wu, J.; Minikes, A.M.; Gao, M.; Bian, H.; Li, Y.; Stockwell, B.R.; Chen, Z.-N.; Jiang, X. Intercellular interaction dictates cancer cell ferroptosis via NF2–YAP signalling. Nature 2019, 572, 402–406. [Google Scholar] [CrossRef]
- Chen, J.; Wan, R.; Li, Q.; Rao, Z.; Wang, Y.; Zhang, L.; Teichmann, A.T. Utilizing the Hippo pathway as a therapeutic target for combating endocrine-resistant breast cancer. Cancer Cell Int. 2021, 21, 306. [Google Scholar] [CrossRef]
- Lee, H.-C.; Ou, C.-H.; Huang, Y.-C.; Hou, P.-C.; Creighton, C.J.; Lin, Y.-S.; Hu, C.-Y.; Lin, S.-C. YAP1 overexpression contributes to the development of enzalutamide resistance by induction of cancer stemness and lipid metabolism in prostate cancer. Oncogene 2021, 40, 2407–2421. [Google Scholar] [CrossRef]
- Lee, N.-H.; Kim, S.; Hyun, J. MicroRNAs Regulating Hippo-YAP Signaling in Liver Cancer. Biomedicines 2021, 9, 347. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, Z.; Hassan, M.K.; Okasha, S.; Mitamura, T.; Keshk, S.; Konno, Y.; Kato, T.; El-Khamisy, S.F.; Ohba, Y.; Watari, H. miR-363 confers taxane resistance in ovarian cancer by targeting the Hippo pathway member, LATS2. Oncotarget 2018, 9, 30053–30065. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maley, C.C.; Aktipis, A.; Graham, T.A.; Sottoriva, A.; Boddy, A.M.; Janiszewska, M.; Silva, A.S.; Gerlinger, M.; Yuan, Y.; Pienta, K.J.; et al. Classifying the evolutionary and ecological features of neoplasms. Nat. Rev. Cancer 2017, 17, 605–619. [Google Scholar] [CrossRef]
- Morciano, G.; Vezzani, B.; Missiroli, S.; Boncompagni, C.; Pinton, P.; Giorgi, C. An Updated Understanding of the Role of YAP in Driving Oncogenic Responses. Cancers 2021, 13, 3100. [Google Scholar] [CrossRef]
- Pan, Z.; Tian, Y.; Cao, C.; Niu, G. The Emerging Role of YAP/TAZ in Tumor Immunity. Mol. Cancer Res. 2019, 17, 1777–1786. [Google Scholar] [CrossRef] [Green Version]
- Donato, E.; Biagioni, F.; Bisso, A.; Caganova, M.; Amati, B.; Campaner, S. YAP and TAZ are dispensable for physiological and malignant haematopoiesis. Leukemia 2018, 32, 2037–2040. [Google Scholar] [CrossRef] [Green Version]
- Lebid, A.; Chung, L.; Pardoll, D.M.; Pan, F. YAP Attenuates CD8 T Cell-Mediated Anti-tumor Response. Front. Immunol. 2020, 11, 580. [Google Scholar] [CrossRef] [Green Version]
- Ni, X.; Tao, J.; Barbi, J.; Chen, Q.; Park, B.V.; Li, Z.; Zhang, N.; Lebid, A.; Ramaswamy, A.; Wei, P.; et al. YAP Is Essential for Treg-Mediated Suppression of Antitumor Immunity. Cancer Discov. 2018, 8, 1026–1043. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stampouloglou, E.; Cheng, N.; Federico, A.; Slaby, E.; Monti, S.; Szeto, G.L.; Varelas, X. Yap suppresses T-cell function and infiltration in the tumor microenvironment. PLoS Biol. 2020, 18, e3000591. [Google Scholar] [CrossRef] [PubMed]
- Geng, J.; Yu, S.; Zhao, H.; Sun, X.; Li, X.; Wang, P.; Xiong, X.; Hong, L.; Xie, C.; Gao, J.; et al. The transcriptional coactivator TAZ regulates reciprocal differentiation of TH17 cells and Treg cells. Nat. Immunol. 2017, 18, 800–812. [Google Scholar] [CrossRef] [PubMed]
- Meng, K.P.; Majedi, F.S.; Thauland, T.J.; Butte, M.J. Mechanosensing through YAP controls T cell activation and metabolism. J. Exp. Med. 2020, 217, 20200053. [Google Scholar] [CrossRef] [PubMed]
- Taccioli, C.; Sorrentino, G.; Zannini, A.; Caroli, J.; Beneventano, D.; Anderlucci, L.; Lolli, M.L.; Bicciato, S.; Del Sal, G. MDP, a database linking drug response data to genomic information, identifies dasatinib and statins as a combinatorial strategy to inhibit YAP/TAZ in cancer cells. Oncotarget 2015, 6, 38854–38865. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cantini, L.; Pecci, F.; Hurkmans, D.P.; Belderbos, R.A.; Lanese, A.; Copparoni, C.; Aerts, S.; Cornelissen, R.; Dumoulin, D.W.; Fiordoliva, I.; et al. High-intensity statins are associated with improved clinical activity of PD-1 inhibitors in malignant pleural mesothelioma and advanced non-small cell lung cancer patients. Eur. J. Cancer 2021, 144, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Omori, M.; Okuma, Y.; Hakozaki, T.; Hosomi, Y. Statins improve survival in patients previously treated with nivolumab for advanced non-small cell lung cancer: An observational study. Mol. Clin. Oncol. 2018, 10, 137–143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tu, M.M.; Lee, F.Y.F.; Jones, R.T.; Kimball, A.K.; Saravia, E.; Graziano, R.F.; Coleman, B.; Menard, K.; Yan, J.; Michaud, E.; et al. Targeting DDR2 enhances tumor response to anti–PD-1 immunotherapy. Sci. Adv. 2019, 5, eaav2437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murakami, S.; Shahbazian, D.; Surana, R.; Zhang, W.; Chen, H.; Graham, G.; White, S.M.; Weiner, L.M.; Yi, C. Yes-associated protein mediates immune reprogramming in pancreatic ductal adenocarcinoma. Oncogene 2017, 36, 1232–1244. [Google Scholar] [CrossRef] [Green Version]
- Feng, J.; Yang, H.; Zhang, Y.; Wei, H.; Zhu, Z.; Zhu, B.; Yang, M.; Cao, W.; Wang, L.; Wu, Z. Tumor cell-derived lactate induces TAZ-dependent upregulation of PD-L1 through GPR81 in human lung cancer cells. Oncogene 2017, 36, 5829–5839. [Google Scholar] [CrossRef]
- Van Rensburg, H.J.; Rensburg, H.J.J.; Azad, T.; Ling, M.; Hao, Y.; Snetsinger, B.; Khanal, P.; Minassian, L.M.; Graham, C.H.; Rauh, M.J.; et al. The Hippo Pathway Component TAZ Promotes Immune Evasion in Human Cancer through PD-L1. Cancer Res. 2018, 78, 1457–1470. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.H.; Kim, C.G.; Kim, S.K.; Shin, S.J.; Choe, E.-A.; Park, S.-H.; Shin, E.-C.; Kim, J. YAP-Induced PD-L1 Expression Drives Immune Evasion in BRAFi-Resistant Melanoma. Cancer Immunol. Res. 2018, 6, 255–266. [Google Scholar] [CrossRef] [Green Version]
- Miao, J.; Hsu, P.C.; Yang, Y.-L.; Xu, Z.; Dai, Y.; Wang, Y.; Chan, G.; Huang, Z.; Hu, B.; Li, H.; et al. YAP regulates PD-L1 expression in human NSCLC cells. Oncotarget 2017, 8, 114576–114587. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Nandakumar, N.; Shi, Y.; Manzano, M.; Smith, A.; Graham, G.; Gupta, S.; Vietsch, E.E.; Laughlin, S.Z.; Wadhwa, M.; et al. Downstream of Mutant KRAS, the Transcription Regulator YAP Is Essential for Neoplastic Progression to Pancreatic Ductal Adenocarcinoma. Sci. Signal. 2014, 7, ra42. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.; Lu, X.; Dey, P.; Deng, P.; Wu, C.C.; Jiang, S.; Fang, Z.; Zhao, K.; Konaparthi, R.; Hua, S.; et al. Targeting YAP-Dependent MDSC Infiltration Impairs Tumor Progression. Cancer Discov. 2016, 6, 80–95. [Google Scholar] [CrossRef] [Green Version]
- Yu, M.; Peng, Z.; Qin, M.; Liu, Y.; Wang, J.; Zhang, C.; Lin, J.; Dong, T.; Wang, L.; Li, S.; et al. Interferon-gamma induces tumor resistance to anti-PD-1 immunotherapy by promoting YAP phase separation. Mol. Cell 2021, 81, 1216–1230. [Google Scholar] [CrossRef] [PubMed]
- Nakatani, K.; Maehama, T.; Nishio, M.; Goto, H.; Kato, W.; Omori, H.; Miyachi, Y.; Togashi, H.; Shimono, Y.; Suzuki, A. Targeting the Hippo signalling pathway for cancer treatment. J. Biochem. 2017, 161, 237–244. [Google Scholar] [CrossRef] [Green Version]
- Bae, J.S.; Kim, S.M.; Lee, H. The Hippo signaling pathway provides novel anti-cancer drug targets. Oncotarget 2017, 8, 16084–16098. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gong, R.; Yu, F.-X. Targeting the Hippo Pathway for Anti-cancer Therapies. Curr. Med. Chem. 2015, 22, 4104–4117. [Google Scholar] [CrossRef]
- Holden, J.; Cunningham, C. Targeting the Hippo Pathway and Cancer through the TEAD Family of Transcription Factors. Cancers 2018, 10, 81. [Google Scholar] [CrossRef] [Green Version]
- Jiao, S.; Wang, H.; Shi, Z.; Dong, A.; Zhang, W.; Song, X.; He, F.; Wang, Y.; Zhang, Z.; Wang, W.; et al. A peptide mimicking VGLL4 function acts as a YAP antagonist therapy against gastric cancer. Cancer Cell 2014, 25, 166–180. [Google Scholar] [CrossRef] [Green Version]
- Tian, W.; Yu, J.; Tomchick, D.R.; Pan, D.; Luo, X. Structural and functional analysis of the YAP-binding domain of human TEAD2. Proc. Natl. Acad. Sci. USA 2010, 107, 7293–7298. [Google Scholar] [CrossRef] [Green Version]
- Gibault, F.; Sturbaut, M.; Bailly, F.; Melnyk, P.; Cotelle, P. Targeting Transcriptional Enhanced Associate Domains (TEADs). J. Med. Chem. 2018, 61, 5057–5072. [Google Scholar] [CrossRef]
- Santucci, M.; Vignudelli, T.; Ferrari, S.; Mor, M.; Scalvini, L.; Bolognesi, M.L.; Uliassi, E.; Costi, M.P. The Hippo Pathway and YAP/TAZ–TEAD Protein–Protein Interaction as Targets for Regenerative Medicine and Cancer Treatment. J. Med. Chem. 2015, 58, 4857–4873. [Google Scholar] [CrossRef]
- Pobbati, A.V.; Hong, W. A combat with the YAP/TAZ-TEAD oncoproteins for cancer therapy. Theranostics 2020, 10, 3622–3635. [Google Scholar] [CrossRef] [PubMed]
- Pobbati, A.V.; Rubin, B.P. Protein-Protein Interaction Disruptors of the YAP/TAZ-TEAD Transcriptional Complex. Molecules 2020, 25, 6001. [Google Scholar] [CrossRef]
- Calses, P.C.; Crawford, J.J.; Lill, J.R.; Dey, A. Hippo Pathway in Cancer: Aberrant Regulation and Therapeutic Opportunities. Trends Cancer 2019, 5, 297–307. [Google Scholar] [CrossRef] [Green Version]
- Crawford, J.J.; Bronner, S.M.; Zbieg, J.R. Hippo pathway inhibition by blocking the YAP/TAZ–TEAD interface: A patent review. Expert Opin. Ther. Patents 2018, 28, 867–873. [Google Scholar] [CrossRef]
- Pobbati, A.V.; Han, X.; Hung, A.W.; Weiguang, S.; Huda, N.; Chen, G.-Y.; Kang, C.; Chia, C.S.B.; Luo, X.; Hong, W.; et al. Targeting the Central Pocket in Human Transcription Factor TEAD as a Potential Cancer Therapeutic Strategy. Structure 2015, 23, 2076–2086. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.; Li, L. Benzodiazepines Derivative and its preparation method and application. CN109734676A, 29 January 2019. [Google Scholar]
- Lu, W.; Wang, J.; Li, Y.; Tao, H.; Xiong, H.; Lian, F.; Gao, J.; Ma, H.; Lu, T.; Zhang, D.; et al. Discovery and biological evaluation of vinylsulfonamide derivatives as highly potent, covalent TEAD autopalmitoylation inhibitors. Eur. J. Med. Chem. 2019, 184, 111767. [Google Scholar] [CrossRef]
- Bum-Erdene, K.; Zhou, D.; Gonzalez-Gutierrez, G.; Ghozayel, M.K.; Si, Y.; Xu, D.; Shannon, H.E.; Bailey, B.J.; Corson, T.W.; Pollok, K.E.; et al. Small-Molecule Covalent Modification of Conserved Cysteine Leads to Allosteric Inhibition of the TEAD⋅Yap Protein-Protein Interaction. Cell Chem. Biol. 2019, 26, 378–389.e13. [Google Scholar] [CrossRef]
- Meroueh, S.; Bum-Erdene, K. Compounds and Methods to Attenuate Tumor Progression and Metastasis. WO2020087063A1, 30 April 2020. [Google Scholar]
- Pal, R.; Kumar, A.; Misra, G. Exploring TEAD2 as a drug target for therapeutic intervention of cancer: A multi-computational case study. Brief. Bioinform. 2021, 22, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Karatas, H.; Akbarzadeh, M.; Adihou, H.; Hahne, G.; Pobbati, A.V.; Ng, E.Y.; Guéret, S.M.; Sievers, S.; Pahl, A.; Metz, M.; et al. Discovery of Covalent Inhibitors Targeting the Transcriptional Enhanced Associate Domain Central Pocket. J. Med. Chem. 2020, 63, 11972–11989. [Google Scholar] [CrossRef] [PubMed]
- Maiti, P.; Abbineni, C.; Talluri, K.C.; Panigrahi, S.K.; Wu, X.; Jarugumilli, K.G.; Sun, Y. Novel small molecule inhibitors of tead transcription factors. WO2020190774A1, 24 September 2020. [Google Scholar]
- Richalet, F.; Weiler, S.; Reinelt, S.; Groner, A.; Lane, H.; Nuoffer, C. 1,2,4-Oxadiazol-5-one Derivatives for the Treatment of Cancer. WO2021018869A1, 4 February 2021. [Google Scholar]
- Holden, J.K.; Crawford, J.J.; Noland, C.L.; Schmidt, S.; Zbieg, J.R.; Lacap, J.A.; Zang, R.; Miller, G.M.; Zhang, Y.; Beroza, P.; et al. Small Molecule Dysregulation of TEAD Lipidation Induces a Dominant-Negative Inhibition of Hippo Pathway Signaling. Cell Rep. 2020, 31, 107809. [Google Scholar] [CrossRef] [PubMed]
- Cunningham, C.; Beroza, P.P.; Crawford, J.J.; Lee, W.; Rene, O.; Zbeig, J.R.; Liao, J.; Wang, T.; Yu, C. Carboxamide and Sulfonamide Derivatives Useful as TEAD Modulators. WO2020051099A1, 12 March 2020. [Google Scholar]
- Zbieg, J.R.; Crawford, J.J.; Cunningham, C.N. Therapeutic compounds and methods of use. WO2021097110A1, 20 May 2021. [Google Scholar]
- Zbieg, J.R.; Beroza, P.P.; Crawford, J.J. Therapeutic compounds. WO2019232216A1, 5 December 2019. [Google Scholar]
- Zbieg, J.R. Discovery of GNE-7883, a novel reversable pan-TEAD binder which functions as an allosteric inhibitor against YAP/TAZ: Hit Identification, rational design and in vivo PK/PD results. In Proceedings of the American Chemical Society National Meeting (Spring 2021), Virtual, 5–16 April 2021. [Google Scholar]
- Castro, A.C. TEAD Inhibitors and Uses Thereof. WO2020243423A1, 3 December 2020. [Google Scholar]
- Castro, A.C. TEAD Inhibitors and Uses Thereof. WO2020243415A2, 3 December 2020. [Google Scholar]
- Danjo, T.; Yamada, H.; Nakajima, T. Preparation of α,β-Unsaturated Amide Compounds Having Anti-Cancer Activity; Kyowa Hakko Kirin Co., Ltd.: Tokyo, Japan, 2018; WO2018235926A1. [Google Scholar]
- Gray, N.S.; Zhang, T.; Liu, Y.; Fan, M.; Gao, Y. Transcriptional Enhanced Associate Domain (TEAD) Transcription Factor Inhibitors and Uses Thereof; Dana-Farber Cancer Institute, Inc.: Boston, MA, USA, 2020; WO2020081572A1. [Google Scholar]
- Pobbati, A.V.; Mejuch, T.; Chakraborty, S.; Karatas, H.; Bharath, S.R.; Guéret, S.M.; Goy, P.-A.; Hahne, G.; Pahl, A.; Sievers, S.; et al. Identification of Quinolinols as Activators of TEAD-Dependent Transcription. ACS Chem. Biol. 2019, 14, 2909–2921. [Google Scholar] [CrossRef] [PubMed]
- Konradi, A.W.; Lin, T.T.-L.T. Bicyclic compounds. WO2020097389A1, 14 May 2020. [Google Scholar]
- Konradi, A.W.; Lin, T.T.-L.T. Benzosulfonyl Compounds. WO2019040380A1, 28 February 2019. [Google Scholar]
- Konradi, A.W.; Lin, T.T.-L.T. Oxadiazole Compounds. WO2019222431A1, 21 November 2019. [Google Scholar]
- Konradi, A.W.; Lin, T.T.-L.T. Bicyclic Compounds. WO2020214734A1, 22 October 2020. [Google Scholar]
- Konradi, A.W.; Lin, T.T.-L.T. Benzocarbonyl Compounds. WO2019113236A1, 13 June 2019. [Google Scholar]
- Konradi, A.W.; Lin, T.T.-L.T. Non-Fused Tricyclic Compounds. WO2018204532A1, 8 November 2018. [Google Scholar]
- Konradi, A.W.; Lin, T.T.-L.T. Heteroaryl compounds. WO2021102204A1, 27 May 2021. [Google Scholar]
- Lin, T.T.-L.T.; Konradi, A.W.; Vacca, J.; Shen, W.; Coburn, C. Preparation of Tricyclic Heterocyclic Compounds that are Useful for Treating Cancers or Congenital Diseases. WO2017058716A1, 6 April 2017. [Google Scholar]
- Lim, H.J.; Park, S.J.; Lee, C.H.; No, K.T.; Choi, J.; Jeung, H.-C.; Shin, Y.; Kim, J.W.; Jin, X. Compound inhibiting yap-tead binding, and pharmaceutical composition for preventing or treating cancer, comprising compound as active ingredient. WO2020096416A1, 14 May 2020. [Google Scholar]
- Gibault, F.; Coevoet, M.; Sturbaut, M.; Farce, A.; Renault, N.; Allemand, F.; Guichou, J.F.; Drucbert, A.S.; Foulon, C.; Magnez, R.; et al. Toward the Discovery of a Novel Class of YAP(-)TEAD Interaction Inhibitors by Virtual Screening Approach Targeting YAP(-)TEAD Protein(-)Protein Interface. Cancers 2018, 10, 140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saunders, J.T.; Holmes, B.; Benavides-Serrato, A.; Kumar, S.; Nishimura, R.N.; Gera, J. Targeting the YAP-TEAD interaction interface for therapeutic intervention in glioblastoma. J. Neuro-Oncol. 2021, 152, 217–231. [Google Scholar] [CrossRef] [PubMed]
- Adihou, H.; Gopalakrishnan, R.; Förster, T.; Guéret, S.M.; Gasper, R.; Geschwindner, S.; García, C.C.; Karatas, H.; Pobbati, A.V.; Vazquez-Chantada, M.; et al. A protein tertiary structure mimetic modulator of the Hippo signalling pathway. Nat. Commun. 2020, 11, 5425. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; He, D.; Pan, X.; Liu, L. Rational Design and Intramolecular Cyclization of Hotspot Peptide Segments at YAP-TEAD4 Complex Interface. Protein Pept. Lett. 2020, 27, 999–1006. [Google Scholar] [CrossRef] [PubMed]
- Kunig, V.B.K.; Potowski, M.; Akbarzadeh, M.; Klika Škopić, M.; dos Santos Smith, D.; Arendt, L.; Dormuth, I.; Adihou, H.; Andlovic, B.; Karatas, H.; et al. TEAD-YAP Interaction Inhibitors and MDM2 Binders from DNA-Encoded Indole-Focused Ugi Peptidomimetics. Angew. Chem. Int. Ed. Engl. 2020, 59, 20338–20342. [Google Scholar] [CrossRef]
- Smith, S.A.; Sessions, R.B.; Shoemark, D.K.; Williams, C.; Ebrahimighaei, R.; McNeill, M.C.; Crump, M.P.; McKay, T.R.; Harris, G.; Newby, A.C.; et al. Antiproliferative and Antimigratory Effects of a Novel YAP-TEAD Interaction Inhibitor Identified Using in Silico Molecular Docking. J. Med. Chem. 2019, 62, 1291–1305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, W.; Li, Y.; Song, J.; Li, C. Fluorescence polarization assay for the identification and evaluation of inhibitors at YAP-TEAD protein-protein interface. Anal. Biochem. 2019, 586, 113413. [Google Scholar]
- Nouri, K.; Azad, T.; Ling, M.; Van Rensburg, H.J.J.; Pipchuk, A.; Shen, H.; Hao, Y.; Zhang, J.; Yang, X. Identification of Celastrol as a Novel YAP-TEAD Inhibitor for Cancer Therapy by High Throughput Screening with Ultrasensitive YAP/TAZ-TEAD Biosensors. Cancers 2019, 11, 1596. [Google Scholar] [CrossRef] [Green Version]
- Zhao, W.; Li, L.; Tian, R.; Dong, Q.; Li, P.; Yan, Z.; Yang, X.; Huo, J.; Fei, Z.; Zhen, H. Truncated TEAD-binding protein of TAZ inhibits glioma survival through the induction of apoptosis and repression of epithelial-mesenchymal transition. J. Cell Biochem. 2019, 120, 17337–17344. [Google Scholar] [CrossRef]
- He, B.; Wu, T.; He, P.; Lv, F.; Liu, H. Structure-based derivation and optimization of YAP-like coactivator-derived peptides to selectively target TEAD family transcription factors by hydrocarbon stapling and cyclization. Chem. Biol. Drug Des. 2021, 97, 1129–1136. [Google Scholar] [CrossRef]
- Dominguez-Berrocal, L.; Cirri, E.; Zhang, X.; Andrini, L.; Marin, G.H.; Lebel-Binay, S.; Rebollo, A. New Therapeutic Approach for Targeting Hippo Signalling Pathway. Sci. Rep. 2019, 9, 4771. [Google Scholar] [CrossRef]
- Furet, P.; Salem, B.; Mesrouze, Y.; Schmelzle, T.; Lewis, I.; Kallen, J.; Chène, P. Structure-based design of potent linear peptide inhibitors of the YAP-TEAD protein-protein interaction derived from the YAP omega-loop sequence. Bioorg. Med. Chem. Lett. 2019, 29, 2316–2319. [Google Scholar] [CrossRef] [PubMed]
- Bowen, J.; Schneible, J.; Bacon, K.; Labar, C.; Menegatti, S.; Rao, B. Screening of Yeast Display Libraries of Enzymatically Treated Peptides to Discover Macrocyclic Peptide Ligands. Int. J. Mol. Sci. 2021, 22, 1634. [Google Scholar] [CrossRef] [PubMed]
- Kaan, H.Y.K.; Sim, A.Y.L.; Tan, S.K.J.; Verma, C.; Song, H. Targeting YAP/TAZ-TEAD protein-protein interactions using fragment-based and computational modeling approaches. PLoS ONE 2017, 12, e0178381. [Google Scholar] [CrossRef] [Green Version]
- Wei, X.; Jia, Y.; Lou, H.; Ma, J.; Huang, Q.; Meng, Y.; Sun, C.; Yang, Z.; Li, X.; Xu, S.; et al. Targeting YAP suppresses ovarian cancer progression through regulation of the PI3K/Akt/mTOR pathway. Oncol. Rep. 2019, 42, 2768–2776. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Lin, Z.; Zhou, Z.; Shen, H.C.; Yan, S.F.; Mayweg, A.V.; Xu, Z.; Qin, N.; Wong, J.C.; Zhang, Z.; et al. Structure-Based Design and Synthesis of Potent Cyclic Peptides Inhibiting the YAP-TEAD Protein-Protein Interaction. ACS Med. Chem. Lett. 2014, 5, 993–998. [Google Scholar] [CrossRef] [PubMed]
- Olson, J.M.; Crook, Z.; Bradley, P.H. Peptide Compositions and Methods of Use Thereof for Disrupting TEAD Interactions. WO2018136614A1, 26 July 2018. [Google Scholar]
- Crook, Z.R.; Sevilla, G.P.; Friend, D.; Brusniak, M.-Y.; Bandaranayake, A.D.; Clarke, M.; Gewe, M.; Mhyre, A.J.; Baker, D.; Strong, R.K.; et al. Mammalian display screening of diverse cystine-dense peptides for difficult to drug targets. Nat. Commun. 2017, 8, 2244. [Google Scholar] [CrossRef]
- Li, Y.; Liu, S.; Ng, E.Y.; Li, R.; Poulsen, A.; Hill, J.; Pobbati, A.V.; Hung, A.W.; Hong, W.; Keller, T.H.; et al. Structural and ligand-binding analysis of the YAP-binding domain of transcription factor TEAD4. Biochem. J. 2018, 475, 2043–2055. [Google Scholar] [CrossRef]
- Zheng, W.; Lan, J.; Feng, L.; Chen, Z.; Feng, S.; Gao, Y.; Ren, F.; Chen, Y. Structure-Based Optimization of Conformationally Constrained Peptides to Target Esophageal Cancer TEAD Transcription Factor. Int. J. Pept. Res.Ther. 2020, 27, 923–930. [Google Scholar] [CrossRef]
- Wu, D.; Luo, L.; Yang, Z.; Chen, Y.; Quan, Y.; Min, Z. Targeting Human Hippo TEAD Binding Interface with YAP/TAZ-Derived, Flexibility-Reduced Peptides in Gastric Cancer. Int. J. Pept. Res.Ther. 2020, 27, 119–128. [Google Scholar] [CrossRef]
- Gao, S.; Wang, Y.; Ji, L. Rational design and chemical modification of TEAD coactivator peptides to target hippo signaling pathway against gastrointestinal cancers. J. Recept. Signal Transduct. 2021, 41, 408–415. [Google Scholar] [CrossRef] [PubMed]
- Barth, M.; Contal, S.; Montalbetti, C.; Spitzer, L. New compounds inhibitors of the yap/taz-tead interaction and their use in the treatment of malignant mesothelioma. WO2017064277A1, 20 April 2017. [Google Scholar]
- Barth, M.; Contal, S. New compounds inhibitors of the yap/taz-tead interaction and their use in the treatment of malignant mesothelioma. WO2018185266A1, 11 October 2018. [Google Scholar]
- Barth, M.; Contal, S.; Junien, J.-L.; Massardier, C.; Montalbetti, C.; Soude, A. Inhibitors of the yap/taz-tead interaction and their use in the treatment of cancer. EP3632908A1, 8 April 2020. [Google Scholar]
- Barth, M.; Contal, S.; Junien, J.-L.; Massardier, C.; Montalbetti, C.; Soude, A. Inhibitors of the yap/taz-tead interaction and their use in the treatment of cancer. WO2020070181A1, 9 April 2020. [Google Scholar]
- Bailly, F.; Gibault, F.; Sturbaut, M.; Coevoet, M.; Pugnière, M.; Burtscher, A.; Allemand, F.; Melnyk, P.; Hong, W.; Rubin, B.P. Design, Synthesis and Evaluation of a Series of 1,5-Diaryl-1,2,3-triazole-4-carbohydrazones as Inhibitors of the YAP-TAZ/TEAD Complex. ChemMedChem 2021, 16, 1–23. [Google Scholar]
- Wu, X. TEAD Transcription Factor Autopalmitoylation Inhibitors. WO2017053706A1, 30 March 2017. [Google Scholar]
- Kim, Y.; Luo, X.; MacLeod, R.; Freier, S.M.; Bui, H.H. Modulators of YAP1 Expression. WO2020160453A1, 6 August 2020. [Google Scholar]
- Macleod, R. The discovery and characterization of ION-537: A next generation antisense oligonucleotide inhibitor of YAP1 in preclinical cancer models. In Proceedings of the AACR Annual Meeting 2021, Virtual, 10–15 April and 17–21 May 2021. [Google Scholar]
- Bordas, V. Biaryl Derivatives as YAP/TAZ-TEAD Protein-Protein Interaction Inhibitors. WO2021186324A1, 23 September 2021. [Google Scholar]
- Han, Z.; Ruthel, G.; Dash, S.; Berry, C.T.; Freedman, B.D.; Harty, R.N.; Shtanko, O. Angiomotin regulates budding and spread of Ebola virus. J. Biol. Chem. 2020, 295, 8596–8601. [Google Scholar] [CrossRef] [PubMed]
- Genovese, N.J.; Firpo, M.T.; Dambournet, D. Compositions and Methods for Increasing the Culture Density of a Cellular Biomass within a Cultivation Infrastructure. WO2018208628A1, 15 November 2018. [Google Scholar]
Compound (Ref.) | Structure | Phase | Disease Indication | Sponsor (Trial Number) |
---|---|---|---|---|
VT3989 | Not disclosed | I |
| Vivace Therapeurics (NCT04665206) |
ION537 [147,148] | AksAdsGdsTdsGdsTdsAdsTdsGdsTdsmGdsAksGesAksAesGk | I | ||
| Ionis Pharmaceuticals (NCT04659096) | |||
IAG933 | Not disclosed | I |
| Novartis (NCT04857372) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barry, E.R.; Simov, V.; Valtingojer, I.; Venier, O. Recent Therapeutic Approaches to Modulate the Hippo Pathway in Oncology and Regenerative Medicine. Cells 2021, 10, 2715. https://doi.org/10.3390/cells10102715
Barry ER, Simov V, Valtingojer I, Venier O. Recent Therapeutic Approaches to Modulate the Hippo Pathway in Oncology and Regenerative Medicine. Cells. 2021; 10(10):2715. https://doi.org/10.3390/cells10102715
Chicago/Turabian StyleBarry, Evan R., Vladimir Simov, Iris Valtingojer, and Olivier Venier. 2021. "Recent Therapeutic Approaches to Modulate the Hippo Pathway in Oncology and Regenerative Medicine" Cells 10, no. 10: 2715. https://doi.org/10.3390/cells10102715
APA StyleBarry, E. R., Simov, V., Valtingojer, I., & Venier, O. (2021). Recent Therapeutic Approaches to Modulate the Hippo Pathway in Oncology and Regenerative Medicine. Cells, 10(10), 2715. https://doi.org/10.3390/cells10102715