Fast Fourier Transform IR Characterization of Epoxy GY Systems Crosslinked with Aliphatic and Cycloaliphatic EH Polyamine Adducts
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Characterization of the Polyamine Adducts
2.3. Epoxy Resin Crosslinking
2.4. FT-IR Analysis
3. Results and Discussion
3.1. IR Spectral Analysis of Initial Compounds
3.2. IR Spectral Analysis of GY250/EH606/EH637 System
3.3. Crosslinking Characterization by IR Spectroscopy
3.4. Estimation of the Epoxy Groups Content
4. Conclusions
References
- Potter, W.G. Epoxide Resins; Springer: New York, NY, USA, 1970. [Google Scholar]
- May, C.A.; Tanaka, G.Y. Epoxy Resin Chemistry and Technology; Marcel Dekker: New York, NY, USA, 1973. [Google Scholar]
- Bouer, R.S. Epoxy Resin Chemistry; Advances in Chemistry Series 114; American Chemical Society: Washington, DC, USA, 1979. [Google Scholar]
- Zlatkovic, S.; Raskovic, Lj.; Nikolic, G.S.; Stamenkovic, J. Investigation of emulsified hydrous epoxy systems. In Facta universitatis; Working and Living Environmental Protection Series; University of Nis: Nis, Serbian, 2005; Volume 2, pp. 401–407. [Google Scholar]
- Ellis, B. Chemistry and technology of epoxy resins; Chapman & Hall: London, UK, 1998. [Google Scholar]
- Lear, B.J. Analysis of Paints. J. Coat. Technol. Res 1981, 53, 51–57. [Google Scholar]
- Provder, T. Cure characterization in product research and development. J. Coat. Technol. Res 1989, 61, 32–50. [Google Scholar]
- Schoff, C.; Kamarchik, P. Materials characterization by thermomechanical analysis. ASTM: Philadelphia, PA, USA, 1991; pp. 138–149. [Google Scholar]
- Wang, F.W.; Lowry, R.E.; Fanconi, B.M. Novel fluorescence method for cure monitoring of epoxy resins. Polymer 1986, 207, 1529–1532. [Google Scholar]
- Levy, R.L.; Ames, D.P. A new method to characterize curing of epoxy. Org. Coatings & App. Polym. Sci., Proc. (ACS) 1983, 48, 116–120. [Google Scholar]
- Dousa, P.; Konak, C.; Fidler, V.; Dusek, K. Cure monitoring of epoxy resins by fluorescence quenching. Polym. Bull 1989, 22, 585–592. [Google Scholar]
- Lin, K.; Wang, F. Fluorescence monitoring of polarity change and gelation during epoxy cure. Polymer 1994, 35, 687–692. [Google Scholar]
- Strehmel, B.; Strehmel, V.; Younes, M. Fluorescence probes for investigation of epoxy systems and monitoring of crosslinking processes. J. Polym. Sci. Part B: Polym. Phys 1999, 37, 1367–1386. [Google Scholar]
- Mikes, F.; Baselga, J.; Paz-Abuin, S. Fluorescence probe-label methodology for in situ monitoring network forming reactions. Eur. Polym. J 2002, 38, 2393–2404. [Google Scholar]
- Gonzales-Benito, J.; Bravo, J.; Mikes, F.; Baselga, J. Fluorescence labels to monitor water absorption in epoxy resins. Polymer 2003, 44, 653–659. [Google Scholar]
- Choi, D.M.; Park, C.K.; Cho, K.; Park, C.E. Adhesion improvement of epoxy resin/polyethylene joints by plasma treatment of polyethylene. Polymer 1997, 38, 6243–6249. [Google Scholar]
- Hakala, K.; Vatanparast, R.; Li, S.; Peinado, C.; Bosch, P.; Catalina, F.; Lemmetyinen, H. Monitoring of curing process and shelf life of the epoxy−anhydride system with TICT compounds by the fluorescence technique. Macromolecules 2000, 33, 5954–5959. [Google Scholar]
- Sung, C.S.P.; Pyun, E.; Sun, H. Characterization of epoxy cure by UV-visible and fluorescence spectroscopy: azo chromophoric labeling approach. Macromolecules 1986, 19, 2922–2932. [Google Scholar]
- Song, J.C.; Sung, C.S.P. Fluorescence studies of diaminodiphenyl sulfone curing agent for epoxy cure characterization. Macromolecules 1993, 26, 4818–4824. [Google Scholar]
- Rigail-Ceden, A.; Sung, C.S.P. Fluorescence and IR characterization of epoxy cured with aliphatic amines. Polymer 2005, 46, 9378–9384. [Google Scholar]
- Keen, I.; Rintoul, L.; Fredericks, P.M. Raman and infrared microspectroscopic mapping of plasma-treated and grafted polymer surfaces. Appl. Spectrosc 2001, 55, 984–991. [Google Scholar]
- Chalmers, J.M.; Everall, N.J.; Schaeberle, M.D.; Levin, I.W.; Lewis, E.N.; Kidder, L.H.; Wilson, J.; Crocombe, R. FT-IR imaging of polymers: An industrial appraisal. Vib. Spectrosc 2002, 30, 43–49. [Google Scholar]
- Moghaddam, L.; Rintoul, L.; Halley, P.J.; Fredericks, P.M. Infrared microspectroscopic mapping of the homogeneity of extruded blends: Application to starch/polyester blends. Polym. Test 2006, 25, 16–21. [Google Scholar]
- Atta, A.M.; Shaker, N.O.; Abdou, M.I.; Abdelfatah, M. Synthesis and characterization of high thermally stable poly(Schiff) epoxy coatings. Prog. Org. Coat 2006, 56, 91–99. [Google Scholar]
- Zhang, C.L.; Feng, L.F.; Gu, X.; Hoppe, S.; Hu, G.H. Determination of the molar mass of polyamide block/graft copolymers by size-exclusion chromatography at room temperature. Polym. Test 2007, 26, 793–802. [Google Scholar]
- Lakshmi, S.M.; Reddy, B.S.R. Synthesis and characterization of new epoxy and cyanate ester resins. Eur. Polym. J 2002, 38, 795–801. [Google Scholar]
- Huang, Y.P.; Woo, E.M. Physical miscibility and chemical reactions between diglycidylether of bisphenol-A epoxy and poly(4-vinyl phenol). Polymer 2002, 43, 6795–6804. [Google Scholar]
- Glavchev, I.; Petrova, K.; Devedjiev, I. Determination of the activity of phosphorous containing compounds on the crosslinking of epoxy resins by acid anhydrides. Polym. Test 2002, 21, 243–248. [Google Scholar]
- Yarovsky, I.; Evans, E. Computer simulation of structure and properties of crosslinked polymers: application to epoxy resins. Polymer 2002, 43, 963–969. [Google Scholar]
- Nikolic, Lj.; Skala, D.; Nikolic, V; Stamenkovic, J.; Babic, D.; Ilic-Stojanovic, S. Methyl methacrylate and acrylamide crosslinked macroporous copolymers. J. Appl. Polym. Sci 2004, 91, 387–395. [Google Scholar]
- Nikolic, Lj.; Raskovic, Lj.; Stamenkovic, J.; Nikolic, V. Crosslinking of the thermoreactive polyacrylates in polymer coating. World Polym. (Serb.) 2000, 3, 6–10. [Google Scholar]
- Nikolic, Lj.; Nikolic, V; Stankovic, M.; Todorovic, Z.; Vukovic, Z. Porous poly(methylmetacrylate) and poly(methylmetacrylate-co-acrylamide). Chem. Ind. (Serb.) 2006, 60, 327–332. [Google Scholar]
- Vasilescy, M. Steady-state and time-resolved fluorescence of luminol in different solvent mixtures. Rev. Roum. Chim 1989, 34, 1819–1823. [Google Scholar]
- Mao, C.; Larson, C.L.; Tucker, S.A. Spectrochemical evaluation of diisopropylamine as a selective fluorescence quenching agent of polycyclic aromatic hydrocarbons in acetonitrile. Polycyclic Aromat. Compd 2002, 22, 99–106. [Google Scholar]
- Jacues, P.; Allonas, X.; Dossot, M. Unexpected correlation between electronic coupling and excited state redox properties in PET. J. Photochem. Photobiol. A: Chem 2001, 142, 91–97. [Google Scholar]
- Dusek, K.; Ilavsky, M.; Lunak, S. Crosslinked epoxies; Walter de Gruyter: Berlin, Germany, 1987; p. 269. [Google Scholar]
- Poisson, N.; Lachenal, G.; Sautereau, H. Near- and mid-infrared spectroscopy studies of an epoxy reactive system. Vib. Spectrosc 1996, 12, 237–247. [Google Scholar]
- Mijovic, J.; Andjelic, S. Monitoring of reactive processing by remote mid infra-red spectroscopy. Polymer 1996, 37, 1295–1303. [Google Scholar]
- Swier, S.; Van Assche, G.; Vuchelen, W.; Van Mele, B. Role of complex formation in the polymerization kinetics of modified epoxy−amine systems. Macromolecules 2005, 38, 2281–2288. [Google Scholar]
- Stepto, R.F.T.; Cail, J.I.; Taylor, D.J.R. Formation, structure and properties of polymer networks: theory and modelling. Mater. Res. Innovat 2003, 7, 4–9. [Google Scholar]
- Cabanelas, J.C.; Prolongo, S.G.; Serrano, B.; Bravo, J.; Baselga, J. Water absorption in polyaminosiloxane-epoxy thermosetting polymers. J. Mater. Proces. Technol 2003, 143, 311–315. [Google Scholar]
- Zlatkovic, S.; Lacnjevac, C.; Stamenkovic, J.; Cakic, S.; Nikolic, G.S. Study and correlation of new organic solvent free three-component waterproof epoxy/polyamine systems. Proceedings of the 1st International Congress of the Engineering, Materials and Management in the Processing Industry, Jahorina, Republic of Srpska, 2009; pp. 192–214.
- Billaud, C.; Vandeuren, M.; Legras, R.; Carlier, V. Quantitative analysis of epoxy resin cure reaction: A study by near-infrared spectroscopy. J. Appl. Spectrosc 2002, 56, 1413–1421. [Google Scholar]
- Colthup, N.B. Spectra-structure correlations in the infra-red region. J. Am Opt. Soc 1950, 40, 397–400. [Google Scholar]
- Zlatkovic, S.; Nikolic, G.S.; Stamenkovic, J. Determination of the cross-linking degree of unmodified epoxy resin by cycloaliphatic polyamine and polyamidamin hardeners by FTIR spectroscopy. Chem. Ind. (Serb.) 2003, 57, 563–567. [Google Scholar]
- Zlatkovic, S.; Nikolic, G.S.; Stamenkovic, J. ATR/FTIR spectroscopic analysis of emulsified hydrous epoxy system. Proceedings of the 4th International Conference of the Chemical Societies of the South-East European Countries on Chemical Sciences in Changing Times: Vision, Challenges and Solutions, Belgrade, Serbia, 2004; pp. 72–75.
IR (frequency, cm−1) | GY250 Epoxy resin | EH606 and EH637 Polyamine adducts | GY250/EH System |
---|---|---|---|
Ph-OH str | 3,510 weak | - | - |
C-OH str | - | - | 3,427 |
-CH-(O-CH2) epoxy, str | 3,056 | - | 3,055, disappearance |
Ar =C-H str | 3,030 | 3,029 | 3,026 |
-NH2, -NH str | - | 3,340-3,170 | -, OH overlay |
-NH2, -NH bend | - | 1,510, 1,495 | 1,511, disappearance |
-CH2-, -CH3- assym str | 2,925, 2,967 | 2,918, 2,950 | 2,921, 2,965 |
-CH2-, -CH3- sym str | 2,855, 2,872 | 2,850, 2,870 | 2,852, 2,865 |
Ar -C-H overtone | 2,000-1,600 | 2,000-1,600 | 2,000-1,600 |
-OH bend | - | - | 1,638, overlay |
Ar -C=C-H str | 1,607,1,580, 1,510 | 1,605, 1,580, 1,510 | 1,602, 1,581, 1,511 |
-CH2-, -CH3- bend | 1,455, 1,362 | 1,458, 1,374 | 1,460, 1,380 |
-C-C-O-C- str | 1,247, 1,184 | 1,250, 1,181 | 1,251, 1,182 |
-C-N- str | - | 1,109, 1,046 | 1,109 |
-O-C-C str | 1,132 | 1,081 | 1,085 |
-C-O-C- str | 1,036 | 1,025 | 1,035 |
CH2-O-CH epoxy, bend | 915 | - | 915, disappearance |
Ar 1,4 substit. ring and C-O-C (oxirane) | 831 | 829 | 826 |
Ar =C-H, C-H, | 830, 773 | 735, 698 | 729, 693 |
-C-H, -N-H bend | 574, 638 | 595, 573 | 550 |
©2010 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/)
Share and Cite
Nikolic, G.; Zlatkovic, S.; Cakic, M.; Cakic, S.; Lacnjevac, C.; Rajic, Z. Fast Fourier Transform IR Characterization of Epoxy GY Systems Crosslinked with Aliphatic and Cycloaliphatic EH Polyamine Adducts. Sensors 2010, 10, 684-696. https://doi.org/10.3390/s100100684
Nikolic G, Zlatkovic S, Cakic M, Cakic S, Lacnjevac C, Rajic Z. Fast Fourier Transform IR Characterization of Epoxy GY Systems Crosslinked with Aliphatic and Cycloaliphatic EH Polyamine Adducts. Sensors. 2010; 10(1):684-696. https://doi.org/10.3390/s100100684
Chicago/Turabian StyleNikolic, Goran, Sasa Zlatkovic, Milorad Cakic, Suzana Cakic, Caslav Lacnjevac, and Zoran Rajic. 2010. "Fast Fourier Transform IR Characterization of Epoxy GY Systems Crosslinked with Aliphatic and Cycloaliphatic EH Polyamine Adducts" Sensors 10, no. 1: 684-696. https://doi.org/10.3390/s100100684