Multitemporal Observations of Sugarcane by TerraSAR-X Images
Abstract
:1. Introduction
2. Study Area and Data Used
2.1. Study Area
2.2. TerraSAR Date
2.3. SPOT Data
2.4. Ground Measurements
3. Results and Discussion
3.1. Sensitivity of Radar Signal to Sugarcane Height
3.1.1. TerraSAR data at 31°
3.1.2. TerraSAR data at 47°
3.1.3. TerraSAR data at 17° and 58°
3.1.4. Ratios of polarizations and incidences
3.2. Correlation Between TerraSAR Signal and NDVI
3.3. Temporal Backscatter and Sugarcane Harvest Detection
4. Summary and Conclusions
Acknowledgments
References
- FAOSTATS. http://faostat.fao.org/ (accessed on 25 May 2008).
- Grunow, M; Günther, HO; Westinner, R. Supply optimization for the production of raw sugar. Int. J. Prod. Economics 2007, 110, 224–239. [Google Scholar]
- Lejars, C; Le Gal, JP; Auzoux, S. A decision support approach for cane supply management within a sugar mill area. Comp. Electr. Agric 2008, 60, 239–249. [Google Scholar]
- Lebourgeois, V; Begue, A; Degenne, P; Bappel, E. Improving sugarcane harvest and planting monitoring for smallholders with geospatial technology: The Reunion Island experience. Int. Sugar J 2007, 109, 109–117. [Google Scholar]
- Almeida, TIR; De Souza Filho, CR; Rossetto, R. ASTER and Landsat ETM+ images applied to sugarcane yield forecast. Int. J. Remote Sens 2006, 27, 4057–4069. [Google Scholar]
- Fortes, C; Dematte, JAM. Discrimination of sugarcane varieties using Landsat 7 ETM+ spectral data. Int. J. Remote Sens 2006, 27, 1395–1412. [Google Scholar]
- Gers, C; Schmidt, E. Using SPOT 4 Satellite Imagery to Monitor Area Harvested by Small Scale Sugarcane Farmers at Umfolozi. Proceedings of the 75th South Africa Sugar Technologists’ Association (SASTA), Durban, South Africa, 31 July–3 August 2001; pp. 28–33.
- Ulaby, FT; Moore, RK; Fung, AK. Microwave Remote Sensing, Active and Passive, from Theory to Applications; Artech House, Inc.: Norwood, MA, USA, 1986; Volume 3. [Google Scholar]
- Fung, AK. Microwave Scattering and Emission Models and Their Applications; Artech House, Inc.: London, UK, 1994. [Google Scholar]
- Le Toan, T; Lopes, A; Huet, M. On the Relationship Between Radar Backscattering Coefficient and Vegetation Canopy Characteristics. Proceedings of International Geoscience and Remote Sensing Symposium (IGARSS’84), Strasburg, France, 27–30 August 1984; pp. 155–160.
- Bouman, BAM. Crop parameter estimation from ground-based X-band (3-cm wave) radar backscattering data. Remote Sens. Environ 1991, 37, 193–205. [Google Scholar]
- Brisco, B; Brown, RJ. Agricultural Applications with Radar. In Principles and Applications in Imaging Radar; Henderson, FM, Lewis, AJ, Eds.; Wiley: New York, NY, USA, 1998; pp. 381–406. [Google Scholar]
- Shao, Y; Fan, X; Liu, H; Xiao, J; Ross, S; Brisco, B; Brown, R; Staples, G. Rice monitoring and production estimation using multitemporal RADARSAT. Remote Sens. Environ 2001, 76, 310–325. [Google Scholar]
- Inoue, Y; Kurosu, T; Maeno, H; Uratsuka, S; Kozu, T; Dabrowska-Zielinska, K; Qi, J. Season-long daily measurements of multifrequency (Ka, Ku, X, C and L) and full-polarization backscatter signatures over paddy rice and their relationship with biological variables. Remote Sens. Environ 2002, 81, 194–204. [Google Scholar]
- Blaes, X; Vanhalle, L; Defourny, P. Efficiency of crop identification based on optical and SAR image time series. Remote Sens. Environ 2005, 96, 352–365. [Google Scholar]
- Chakraborty, M; Manjunath, KR; Panigrahy, S; Kundu, N; Parihar, JS. Rice crop parameter retrieval using multi-temporal, multi-incidence angle RADARSAT SAR data. ISPRS J. Photog. Remote Sens 2005, 59, 310–322. [Google Scholar]
- Baghdadi, N; Boyer, N; Todoroff, P; El Hajj, M; Begue, A. Potentiel of SAR sensors TerraSAR-X, ASAR/ENVISAT, and PALSAR/ALOS for monitoring sugarcane crops on Reunion Island. Remote Sens. Environ 2009, 113, 1724–1738. [Google Scholar]
- Lin, H; Chen, J; Pei, Z; Zhang, S; Hu, X. Monitoring sugarcane growth using ENVISAT ASAR data. IEEE Trans. Geosci. Remote Sens 2009, 47, 2572–2580. [Google Scholar]
- Baronti, S; Del Frate, F; Ferrazzoli, P; Paloscia, S; Pampaloni, P; Schiavon, G. SAR polarimetric features of agricultural areas. Int. J. Remote Sens 1995, 16, 2639–2656. [Google Scholar]
- McNairm, H; Hochheim, K; Rabe, N. Applying polarimetric radar imagery for mapping the productivity of wheat crops. Can. J. Remote Sens 2004, 30, 517–524. [Google Scholar]
- Paloscia, S. An empirical approach to estimating leaf area index from multifrequency SAR data. Int. J. Remote Sens 1998, 19, 359–364. [Google Scholar]
- Kim, SB; Kim, BW; Kong, YK; Kim, YS. Radar backscattering measurements of rice crop using X-band scatterometer. IEEE Trans. Geosci. Remote Sens 2000, 38, 1467–1471. [Google Scholar]
- Raunet, M. Le milieu physique et les sols de La Réunion: Conséquences pour la mise en valeur agricole. Centre de Coopération Internationale en Recherche Agronomique pour le Développement-Institut de Recherches Agronomiques Tropicales (CIRAD-IRAT), Montpellier, France, 1991; p. 438.
- Images Spot: copyright CNES, Distribution Spot image. http://kalideos.cnes.fr (accessed on 21 July 2007).
- DeBoissezon, H; Sand, A. Reference Remote Sensing Data Bases: Temporal Series of Calibrated and Ortho-rectified Satellite Images for Scientific Use. Proceedings of Recent Advances in Quantitative Remote Sensing, Valencia, Spain, September 2006.
- Fritz, T. TerraSAR-X Ground Segment Level 1b Product Format Specification (10.12.2007) Doc.: TX-GS-DD-3307. 2007, 1.3, 257. Avalable online: http://www.dlr.de/tsx/documentation/TX-GS-DD-3307_Level-1b-Product-Format-Specification_1.3.pdf.
- Cookmartin, G; Saich, P; Quegan, S; Cordey, R; Burgess-Allen, P; Sowter, A. Modeling microwave with crops and comparison with ERS-2 SAR observations. IEEE Trans. Geosci. Remote Sens 2000, 38, 658–669. [Google Scholar]
- Schoups, G; Troch, PA; Verhoest, N. Soil moisture influences on the radar backscattering of sugar beet fields. Remote Sens. Environ 1998, 65, 184–194. [Google Scholar]
- Lang, RH. Electromagnetic backscattering from a distribution of lossy scatterers. Radio Sci 1981, 16, 15–30. [Google Scholar]
- Karam, AM; Amar, F; Fung, AK; Mougin, E; Lopes, A; Levine, DM; Beaudoin, A. A microwave polarimetric scattering model for forest canopies based on vector radiative transfer theory. Remote Sens. Environ 1995, 53, 16–30. [Google Scholar]
- Baghdadi, N; Bernier, M; Gauthier, R; Neeson, I. Evaluation of C-band SAR data for wetlands mapping. Int. J. Remote Sens 2001, 22, 71–88. [Google Scholar]
- Beauchemin, M; Thomson, K; Edwards, G. Modelling forest stands with MIMICS: implications for calibration. Can. J. Remote Sens 1995, 21, 518–526. [Google Scholar]
- Shi, J; Dozier, J; Rott, H. Snow mapping in alpine regions with synthetic aperture radar. IEEE Trans. Geosci. Remote Sens 1994, 32, 152–158. [Google Scholar]
- Ulaby, FT; Moore, RK; Fung, AK. Microwave Remote Sensing; Addison-Wesley: New York, NY, USA, 1982; Volume 2. [Google Scholar]
- Le Toan, T; Laur, H; Mougin, E; Lopes, A. Multitemporal and dual-polarization observations of agricultural vegetation covers by X-band SAR images. IEEE Trans. Geosci. Remote Sens 1989, 27, 709–718. [Google Scholar]
- Le Toan, T; Ribbes, F; Wang, LF; Floury, N; Ding, KH; Kong, JA; Fujita, M; Kurosu, T. Rice crop mapping and monitoring using ERS-1 data based on experimental and modelling results. IEEE Trans. Geosci. Remote Sens 1997, 35, 41–56. [Google Scholar]
Incidence Angle (°) | Polarization | Imaging mode | Date (dd/mm/yyyy) | Resolution Azimuth × Range |
---|---|---|---|---|
17 | HH | Spotlight | 16/03/2009; 07/04/2009; 29/04/2009; 10/05/2009 | 1.7 m × 1.48 − 3.49 m |
VV | Spotlight | 01/06/2009; 23/06/2009 | 1.7 m × 1.48 − 3.49 m | |
HH/VV | Spotlight | 04/07/2009; 15/07/2009; 26/07/2009; 06/08/2009; 17/08/2009; 28/08/2009; 08/09/2009; 19/09/2009; 30/09/2009; 27/12/2009; 07/01/2010 | 3.4 m × 1.48 − 3.49 m | |
31 | HH | Spotlight | 18/03/2009; 01/05/2009; 23/05/2009 | 3.4 m × 1.48 − 3.49 m |
VV | Spotlight | 25/06/2009 | 3.4 m × 1.48 − 3.49 m | |
VH/VV | Stripmap | 20/12/2008; 11/01/2009; 24/02/2009; 02/02/2009; 20/01/2010 | 6.6 m × 1.7 − 3.49 m | |
HH/HV | Stripmap | 22/01/2009; 13/02/2009; 18/12/2009 | 6.6 m × 1.7 − 3.49 m | |
37 | VV | Stripmap | 01/08/2009; 03/09/2009; 06/10/2009; 17/10/2009; 28/10/2009; 08/11/2009; 11/12/2009; 13/01/2010 | 3.3 m × 1.7 − 3.49 m |
47 | HH | Spotlight | 17/05/2009 | 1.7 m × 1.48 − 3.49 m |
VV | Spotlight | 08/06/2009; 30/06/2009 | 1.7 m × 1.48 − 3.49 m | |
VH/VV | Stripmap | 14/12/2008; 25/12/2008; 27/01/2009; 18/02/2008; 14/01/2010 | 6.6 m × 1.7 − 3.49 m | |
HH/HV | Stripmap | 16/01/2009; 07/02/2009; 12/12/2009 | 6.6 m × 1.7 − 3.49 m | |
59 | HH | Spotlight | 17/03/2009; 08/04/2009; 30/04/2009; 11/05/2009 | 1.7 m × 1.48 − 3.49 m |
VV | Spotlight | 02/06/2009; 24/06/2009 | 1.7 m × 1.48 − 3.49 m | |
HH/VV | Spotlight | 05/07/2009; 27/07/2009; 09/09/2009; 01/10/2009; 28/12/2009; 08/01/2010 | 3.4 m × 1.48 − 3.49 m | |
VH/VV | Stripmap | 16/07/2009; 07/08/2009; 29/08/2009; 20/09/2009 | 6.6 m × 1.7 − 3.49 m |
SAR sensor | Date (dd/mm/yyyy) |
---|---|
SPOT-4 | 21/08/2008; 25/02/2009; 22/04/2009; 19/05/2009; 14/06/2009; 10/08/2009 15/08/2009; 21/09/2009; 21/10/2009 |
SPOT-5 | 24/07/2008; 21/10/2008; 17/12/2008; 21/03/2009; 24/07/2009; 22/12/2009 |
Day from germination | 30 | 90 | 150 | 210 | 300 |
---|---|---|---|---|---|
Cane height Htvd (cm) | 10 ± 5 | 66 ± 15 | 110 ± 20 | 200 ± 25 | 344 ± 27 |
Stem number per m2 | 5 ± 3 | 15 ± 8 | 25 ± 10 | 16 ± 5 | 10 ± 4 |
Stem radius (cm) | 0.208 ± 0.04 | 0.586 ± 0.05 | 0.964 ± 0.05 | 1.342 ± 0.06 | 1.6 ± 0.06 |
Stem water content (%) | 90 ± 5 | 90 ± 5 | 85 ± 4 | 79 ± 4 | 70 ± 3 |
Leafs number per m2 | 24 ± 9 | 72 ± 15 | 120 ± 20 | 83 ± 20 | 60 ± 15 |
Leaf thickness (mm) | 0.26 ± 0.02 | 0.26 ± 0.02 | 0.26 ± 0.02 | 0.26 ± 0.02 | 0.26 ± 0.02 |
Leaf length (m) | 0.3 ± 0.1 | 0.9 ± 0.15 | 1.4 ± 0.3 | 1.6 ± 0.35 | 1.5 ± 0.3 |
Leaf width (cm) | 2.2 ± 0.25 | 3.7 ± 0.3 | 4.4 ± 0.36 | 4.9 ± 0.38 | 5.4 ± 0.4 |
Leaf water content (%) | [10–32] | [10–32] | [10–32] | [10–32] | [10–32] |
© 2010 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Baghdadi, N.; Cresson, R.; Todoroff, P.; Moinet, S. Multitemporal Observations of Sugarcane by TerraSAR-X Images. Sensors 2010, 10, 8899-8919. https://doi.org/10.3390/s101008899
Baghdadi N, Cresson R, Todoroff P, Moinet S. Multitemporal Observations of Sugarcane by TerraSAR-X Images. Sensors. 2010; 10(10):8899-8919. https://doi.org/10.3390/s101008899
Chicago/Turabian StyleBaghdadi, Nicolas, Rémi Cresson, Pierre Todoroff, and Soizic Moinet. 2010. "Multitemporal Observations of Sugarcane by TerraSAR-X Images" Sensors 10, no. 10: 8899-8919. https://doi.org/10.3390/s101008899
APA StyleBaghdadi, N., Cresson, R., Todoroff, P., & Moinet, S. (2010). Multitemporal Observations of Sugarcane by TerraSAR-X Images. Sensors, 10(10), 8899-8919. https://doi.org/10.3390/s101008899