Biomedical Use of Isothermal Microcalorimeters
Abstract
:1. General Introduction to Isothermal Microcalorimetry (IMC)
2. Main Advantages and Drawbacks of Isothermal Microcalorimetry (IMC)
3. Conventional Isothermal Microcalorimeters vs. Chip Microcalorimeters
4. Biomedical Applications of IMC
4.1. Detection of Infections
4.2. Antibiotic Testing
4.3. Implant Material and Other Biomedical Material Testing
4.4. Microcalorimetry of Engineered Tissues, Tissue Samples and Biopsies
5. Concluding Remarks
Acknowledgments
References
- Lavoisier, A; Laplace, P-S. Mémoire sur la Chaleur; Académie des Sciences: Paris, France, 1780; p. 355. [Google Scholar]
- Lavoisier, A. Traité de Chimie; Académie des Sciences: Paris, France, 1801; p. 410. [Google Scholar]
- van Herwaarden, S. Mechanical Variables Measurement; Webster, JG, Ed.; CRC Press: Boca Raton, FL, USA, 2000; pp. 11–16. [Google Scholar]
- Wadsö, I. Isothermal Microcalorimetry in Applied Biology. Thermochim. Acta 2002, 394, 305–311. [Google Scholar]
- Rong, XM; Huang, Q-Y; Jiang, D-H; Cai, P; Liang, W. Isothermal Microcalorimetry: A Review of Applications in Soil and Environmental Sciences. Pedosphere 1997, 17, 137–145. [Google Scholar]
- Russel, M; Yao, J; Chen, H; Wang, F; Zhou, Y; Choi, MMF; Zaray, G; Trebse, P. Different Technique of Microcalorimetry and Their Applications to Environmental Sciences: A Review. J. Amer. Sci 2009, 5, 194–208. [Google Scholar]
- Wadsö, I. Characterization of Microbial Activity in Soil by Use of Isothermal Microcalorimetry. J. Therm. Anal. Calorimetry 2009, 95, 843–850. [Google Scholar]
- Braissant, O; Wirz, D; Goepfert, B; Daniels, AU. Use of Isothermal Microcalorimetry to Monitor Microbial Activities. FEMS Microbiol. Lett 2010, 303, 1–8. [Google Scholar]
- Maskow, T; Kemp, R; Buchholz, F; Schubert, T; Kiesel, B; Harms, H. What Heat is Telling Us about Microbial Conversions in Nature and Technology: From Chip- to Megacalorimetry. Microbial Biotech 2009, 10, 1–16. [Google Scholar]
- Wadsö, L; Gómez Galindo, F. Isothermal Calorimetry for Biological Applications in Food Science and Technology. Food Control 2009, 20, 956–961. [Google Scholar]
- Lerchner, J; Maskow, T; Wolf, G. Chip Calorimetry and its Use for Biochemical and Cell Biological Investigations. Chem. Eng. Process 2008, 47, 991–999. [Google Scholar]
- Lewis, G; Daniels, AU. Use of Isothermal Heat-Conduction Microcalorimetry (IHCMC) for the Evaluation of Synthetic Biomaterials. J. Biomed. Mater. Res 2003, 66B, 487–501. [Google Scholar]
- Johannessen, EA; Weaver, JMR; Cobbold, PH; Cooper, JM. A Suspended Membrane Nanocalorimeter for Ultralow Volume Bioanalysis. IEEE Trans. Nanobiosci 2002, 1, 29–36. [Google Scholar]
- Wadsö, I. Applications of an Eight-Channel Isothermal Conduction Calorimeter for Cement Hydration Studies. Cem. Int 2005, 1, 94–101. [Google Scholar]
- Wang, L; Wang, B; Lin, Q. Demonstration of MEMS-Based Differential Scanning Calorimetry for Determining Thermodynamic Properties of Biomolecules. Sens. Actuat. B-Chem 2008, 134, 953–958. [Google Scholar]
- Navrotsky, A; Dorogova, M; Hellman, F; Cooke, DW; Zink, BL; Lesher, CE; Boerio-Goates, J; Woodfield, BF; Lang, B. Application of Calorimetry on a Chip to High-Pressure Materials. PNAS 2007, 104, 9187–9191. [Google Scholar]
- Lerchner, J; Wolf, A; Wolf, G; Baier, V; Kessler, E; Nietzsch, M; Krugel, M. A New Micro-Fluid Chip Calorimeter for Biochemical Applications. Thermochim. Acta 2006, 445, 144–150. [Google Scholar]
- Lerchner, J; Wolf, G; Auguet, C; Torra, V. Accuracy in Integrated Circuit (IC) Calorimeters. Thermochim. Acta 2002, 382, 65–76. [Google Scholar]
- Wadsö, I; Goldberg, RN. Standards in Isothermal Calorimetry. Pure Appl. Chem 2001, 73, 1625–1639. [Google Scholar]
- Trampuz, A; Salzmann, S; Antheaume, J; Daniels, AU. Microcalorimetry: A Novel Method for Detection of Microbial Contamination in Platelet Products. Transfusion 2007, 47, 1643–1650. [Google Scholar]
- Baldoni, D; Hermann, H; Frei, R; Trampuz, A; Steinhuber, A. Performance of Microcalorimetry for Early Detection of Methicillin Resistance in Clinical Isolates of Staphylococcus aureus. J. Clin. Microbiol 2009, 47, 774–776. [Google Scholar]
- von Ah, U; Wirz, D; Daniels, AU. Rapid Differentiation of Methicillin-Susceptible Staphylococcus aureus and Methicillin-Resistant S. aureus and MIC Determination by Isothermal Microcalorimetry. J. Clin. Microbiol 2008, 46, 2083–2087. [Google Scholar]
- Braissant, O; Wirz, D; Goepfert, B; Daniels, AU. “The Heat is on”: Rapid Microcalorimetric Detection of Mycobacteria in Culture. Tuberculosis 2010, 90, 57–59. [Google Scholar]
- Higuera-Guisset, J; Rodrıguez-Viejo, J; Chacon, M; Munoz, FJ; Vigues, N; Mas, J. Calorimetry of Microbial Growth Using a Thermopile Based Microreactor. Thermochim. Acta 2005, 427, 187–191. [Google Scholar]
- Yoon, S; Lim, M-H; Park, SC; Shin, J-S; Kim, Y-J. Neisseria meningitidis Detection Based on a Microcalorimetric Biosensor with a Split-Flow Microchannel. J. Microelectromech. Syst 2008, 17, 590–598. [Google Scholar]
- Jespersen, ND. Biochemical and Clinical Applications of Thermometric and Thermal Analysis; Elsevier Scientific Publishing Company: Amsterdam, the Netherlands, 1982; p. 254. [Google Scholar]
- James, MA. Thermal and Energetic Studies of Cellular Biological Systems; Wright: Bristol, UK, 1987; p. 221. [Google Scholar]
- Mardh, P; Ripa, T; Andersson, KE; Wadsö, I. Kinetics of the Actions of Tetracyclines on Escherichia coli as Studied by Microcalorimetry. Antimicrob. Agents Chemother 1976, 10, 604–609. [Google Scholar]
- Semenitz, E. The Antibacterial Activity of Oleandomycin and Erythromycin—A Comparative Investigation Using Microcalorimetry and MIC Determination. J. Antimicrob. Chemother 1978, 4, 455–457. [Google Scholar]
- von Ah, U; Wirz, D; Daniels, AU. Isothermal Micro Calorimetry—A New Method for MIC Determinations: Results for 12 Antibiotics and Reference Strains of E. coli and S. aureus. BMC Microbiol 2009, 9, 106. [Google Scholar]
- Li, X; Liu, Y; Zhao, R; Wu, J; Shen, X; Qu, S. Microcalorimetric Study of Escherichia coli Growth Inhibited by the Selenomorpholine Complexes. Biol. Trace Elem. Res 2000, 75, 167–175. [Google Scholar]
- Baldoni, D; Steinhuber, A; Zimmerli, W; Trampuz, A. In vitro Activity of Gallium Maltolate Against Staphylococci in Logarithmic, Stationary, and Biofilm Growth Phases: Comparison of Conventional and Calorimetric Susceptibility Testing Methods. Antimicrob. Agents Chemother 2010, 54, 157–163. [Google Scholar]
- Vig Slenters, T; Sagué, JL; Brunetto, PS; Zuber, S; Fleury, A; Mirolo, A; Robin, AY; Meuwly, M; Gordon, O; Landmann, R; Daniels, AU; Fromm, KM. Of Chains and Rings: Synthetic Strategies and Theoretical Investigations for Tuning the Structure of Silver Coordination Compounds and Their Applications. Materials 2010, 3, 3407–3429. [Google Scholar]
- Yang, LN; Xu, F; Sun, XN; Zhao, ZB; Song, GC. Microcalorimetric Studies on the Action of Different Cephalosporins. J. Therm. Anal. Calorim 2008, 93, 417–421. [Google Scholar]
- Yao, J; Tian, L; Wang, F; Chen, HL; Xu, CQ; Su, C-L; Cai, M-F; Maskow, T; Zaray, G; Wang, Y-X. Microcalorimetric Study on Effect of Chromium(III) and Chromium(VI) Species on the Growth of Escherichia coli. Chin. J. Chem 2008, 26, 101–106. [Google Scholar]
- Xi, L; Yi, L; Jun, W; Huigang, L; Songsheng, Q. Microcalorimetric Study of Staphylococcus aureus Growth Affected by Selenium Compounds. Thermochim. Acta 2002, 387, 57–61. [Google Scholar]
- Heng, Z; Congyi, Z; Cunxin, W; Jibin, W; Chaojiang, G; Jie, L; Yuwen, L. Microcalorimetric Study of Virus Infection: The Effects of Hyperthermia and a 1b Recombinant Homo Interferon on the Infection Process of BHK-21 Cells by Foot and Mouth Disease Virus. J. Therm. Anal. Calorim 2005, 79, 45–50. [Google Scholar]
- von Rege, H; Sand, W. Evaluation of Biocide Efficacy by Microcalorimetric Determination of Microbial Activity in Biofilms. J. Microbiol. Methods 1998, 33, 227–235. [Google Scholar]
- Manneck, T; Braissant, O; Ellis, W; Keiser, J. Schistosoma mansoni: Antischistosomal Activity of the Four Optical Isomers and the Two Racemates of Mefloquine on Schistosomula and Adult Worms in vitro and in vivo. Exp Parasitol. in press.
- Bargmann, LS; Bargmann, BC; Collier, JP; Currier, BH; Mayor, MB. Current Sterilization and Packaging Methods for Polyethylene. Curr. Orthop. Practice 1999, 369, 49–58. [Google Scholar]
- Daniels, AU; Charlebois, SJ; Johnson, RA; Haggard, WG; Jahan, MS; Buncick, MC. Effect of Sterilization Method on Long-Term Stability of Shelf-Stored and Clinically Retrieved UHMWPE. Proceedings of the 46th Annual Meeting of the Orthopaedic Research Society, Orlando, FL, USA, March 2000.
- Charlebois, SJ; Daniels, AU; Lewis, G. Isothermal Microcalorimetry: An Analytical Technique for Assessing the Dynamic Chemical Stability of UHMWPE. Biomaterials 2003, 24, 291–296. [Google Scholar]
- Hofmann, MP; Nazhat, SN; Gbureck, U; Barralet, JE. Real-Time Monitoring of the Setting Reaction of Brushite-Forming Cement Using Isothermal Differential Scanning Calorimetry. J. Biomed. Mater. Res. B 2006, 79, 360–364. [Google Scholar]
- Wadsö, L; Smith, AL; Shirazi, H; Mulligan, RS; Hofelich, T. A Versatile Instrument for Studying Processes in Physics, Chemistry, and Biology. J. Chem. Educ 2001, 78, 1080–1086. [Google Scholar]
- Bohner, M; Malsy, AK; Camiré, CL; Gbureck, U. Combining Particle Size Distribution and Isothermal Calorimetry Data to Determine the Reaction Kinetics of α-Tricalcium Phosphate-Water Mixtures. Acta Biomater 2006, 2, 343–348. [Google Scholar]
- Camiré, CL; Gbureck, U; Hirsiger, W; Bohner, M. Correlating Crystallinity and Reactivity in an α-Tricalcium Phosphate. Biomaterials 2005, 26, 2787–2794. [Google Scholar]
- Yang, J-M. Polymerization of Acrylic Bone Cement Using Differential Scanning Calorimetry. Biomaterials 1997, 18, 1293–1298. [Google Scholar]
- Daniels, AU; Wirz, D; Morscher, E. The Well-Cemented Total-Hip Arthroplasty; Breusch, S, Malchau, H, Eds.; Springer: Heidelberg, Germany, 2005; p. 381. [Google Scholar]
- Xu, C-H; van de Belt-Gritter, B; Busscher, HJ; van der Mei, HC; Norde, W. Calorimetric Comparison of the Interactions between Salivary Proteins and Streptococcus mutans with and without Antigen I/II. Colloid Surface B 2007, 54, 193–199. [Google Scholar]
- Postollec, F; Norde, W; van der Mei, HC; Busscher, HJ. Enthalpy of Interaction between Coaggregating and Non-Coaggregating Oral Bacterial Pairs—A Microcalorimetric Study. J. Microbiol. Methods 2003, 55, 241–247. [Google Scholar]
- Hauser-Gerspach, I; Scandiucci de Freitas, P; Daniels, AU; Meyer, J. Adhesion of Streptococcus sanguinis to Glass Surfaces Measured by Isothermal Microcalorimetry (IMC). J. Biomed. Mater. Res. B 2008, 85, 42–49. [Google Scholar]
- Kemp, RB; Guan, YH. The Application of Heat Flux Measurements to Improve the Growth of Mammalian Cells in Culture. Thermochim. Acta 2000, 349, 23–30. [Google Scholar]
- Ma, J; Qi, WT; Yang, LN; Yu, WT; Xie, YB; Wang, W; Ma, XJ; Xu, F; Sun, LX. Microcalorimetric Study on the Growth and Metabolism of Microencapsulated Microbial Cell Culture. J. Microbiol. Methods 2007, 68, 172–177. [Google Scholar]
- Pelttari, K; Wixmerten, A; Martin, I. Do We Really Need Cartilage Tissue Engineering? Swiss Med. Wkly 2009, 139, 602–609. [Google Scholar]
- Scotti, C; Wirz, D; Wolf, F; Schaefer, D; Burgin, V; Daniels, AU; Valderrabano, V; Candrian, C; Jakob, M; Martin, I; Barbero, A. Engineering Human Cell-Based, Functionally Integrated Osteochondral Grafts by Biological Bonding of Engineered Cartilage Tissues to Bony Scaffolds. Biomaterials 2010, 31, 2252–2259. [Google Scholar]
- Kemp, R; Guan, YH. Handbook of Thermal Analysis and Calorimetry: From Macromolecules to Man; Kemp, R, Ed.; Elsevier: Amsterdam, The Netherlands, 2000; pp. 557–656. [Google Scholar]
- Monti, M. Handbook of Thermal Analysis and Calorimetry: From Macromolecules to Man; Kemp, R, Ed.; Elsevier: Amsterdam, The Netherlands, 2000; pp. 657–710. [Google Scholar]
- Hill, AV. The Effect of Load on the Heat of Shortening of Muscle. Proc. Roy. Soc. London Ser. B 1964, 159, 297–318. [Google Scholar]
- Hill, AV. Trails and Trials in Physiology; E. Arnold Ltd: London, UK, 1965; p. 374. [Google Scholar]
- Curtin, NA; Woledge, RC. Chemical Change and Energy Production during Contraction of Frog Muscle: How Are Their Time Course Related? J. Physiol 1979, 288, 353–366. [Google Scholar]
- Stewart, AW. Simultaneous Heat and Fluorescence Measurements on Mammalian Slow-Twitch Muscle. Basic Appl. Myol 1991, 1, 163–175. [Google Scholar]
- Lönnbro, P; Hellstrand, P. Heat Production in Chemically Skinned Smoothed Muscle of Guinea-Pig Teania coli. J. Physiol 1991, 440, 385–402. [Google Scholar]
- Fagher, B; Liedholm, H; Monti, M; Moritz, U. Thermogenesis in Human Skeletal Muscle as Measured by Direct Microcalorimetry and Muscle Contractile Performance during Beta-Adrenoceptor Blockade. Clin. Sci. (London) 1986, 70, 435–441. [Google Scholar]
- Fagher, B; Liedholm, H; Sjogren, A; Monti, M. Effects of Terbutaline on Basal Thermogenesis of Human Skeletal Muscle and Na-K Pump after 1 Week of Oral Use—A Placebo Controlled Comparison with Propranolol. Br. J. Clin. Pharmac 1993, 35, 629–635. [Google Scholar]
- Fagher, B; Monti, M. Thermogenic Effect of Two P-Adrenoceptor Blocking Drugs, Propranolol and Carvedilol, on Skeletal Muscle in Rats. A Microcalorimetric Study. Thermochim. Acta 1995, 251, 183–183. [Google Scholar]
- Kallerhoff, M; Karnebogen, M; Singer, D; Dettenbaeh, A; Gralher, U; Ringert, R-H. Microcalorimetric Measurements Carried Out on Isolated Tumorous and Nontumorous Tissue Samples from Organs in the Urogenital Tract in Comparison to Histological and Impulse-Cytophotometric Investigations. Urol. Res 1996, 24, 83–91. [Google Scholar]
- Torres, FE; Kuhn, P; de Bruyker, D; Bell, AG; Wolkin, MV; Peeters, E; Williamson, JR; Anderson, GB; Schmitz, GP; Recht, MI; Schweizer, S; Scott, LG; Ho, JH; Elrod, SA; Schultz, PG; Lerner, RA; Bruce, RH. Enthalpy Arrays. PNAS 2004, 101, 9517–9522. [Google Scholar]
- Recht, MI; de Bruyker, D; Bell, AG; Wolkin, MV; Peeters, E; Anderson, GB; Kolatkar, AR; Bern, MW; Kuhn, P; Bruce, RH; Torres, FE. Enthalpy Array Analysis of Enzymatic and Binding Reactions. Anal. Biochem 2008, 377, 33–39. [Google Scholar]
- Zhang, Y; Tadigadapa, S. Calorimetric Biosensors with Integrated Microfluidic Channels. Biosens. Bioelectron 2004, 19, 1733–1743. [Google Scholar]
Microcalorimeter type | Volume [mL] | Detection limit [μW] | Specific sensitivity [mW × L−1] | Reference |
---|---|---|---|---|
Chip calorimeters | ||||
Johannessen et al. | 7.2 × 10−7 | 1.3 × 10−2 | 1.8 × 104 | [13] |
Zhang et al. | 1.5 × 10−5 | 5 × 10−2 | 3.3 × 103 | [69] |
Torres et al. | 5.0 × 10−4 | 1 × 10−1 | 2.0 × 102 | [67] |
Lerchner et al. | 5.0 × 10−3 | 5 × 10−2 | 1.0 × 101 | [17] |
Higuera-Guisset et al.* | 6.0 × 10−1 | 1 × 10−1 | 1.7 × 10−1 | [24] |
Conventional calorimeters | ||||
Calmetrix I-Cal 8000® | 1.25 × 102 | 2 × 101 | 1.6 × 10−1 | † |
Waters/TA TAMair® | 2 × 101 | 2.5 | 1.3 × 10−1 | † |
THT μMC® | 1.5–4.0 | 2 × 10−1 | 1.3 × 10−1–5.0 × 10−2 | † |
Waters/TA TAM48® | 1.0–4.0 | 2 × 10−1 | 2.0 × 10−1–5.0 × 10−2 | † |
Waters/TA TAM III®** | 1.0–4.0 | 2 × 10−2 | 2.0 × 10−2–5.0 × 10−3 | † |
Setaram C80® | 1.25 × 101 | 1 × 10−1 | 8.0 × 10−3 | † |
© 2010 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Braissant, O.; Wirz, D.; Göpfert, B.; Daniels, A.U. Biomedical Use of Isothermal Microcalorimeters. Sensors 2010, 10, 9369-9383. https://doi.org/10.3390/s101009369
Braissant O, Wirz D, Göpfert B, Daniels AU. Biomedical Use of Isothermal Microcalorimeters. Sensors. 2010; 10(10):9369-9383. https://doi.org/10.3390/s101009369
Chicago/Turabian StyleBraissant, Olivier, Dieter Wirz, Beat Göpfert, and A.U. Daniels. 2010. "Biomedical Use of Isothermal Microcalorimeters" Sensors 10, no. 10: 9369-9383. https://doi.org/10.3390/s101009369
APA StyleBraissant, O., Wirz, D., Göpfert, B., & Daniels, A. U. (2010). Biomedical Use of Isothermal Microcalorimeters. Sensors, 10(10), 9369-9383. https://doi.org/10.3390/s101009369