Galvanostatic Entrapment of Penicillinase into Polytyramine Films and its Utilization for the Potentiometric Determination of Penicillin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Chemicals
2.2. Instrumentation/Electrodes
2.3. Potentiometric Biosensing
2.4. Preparation of Milk Samples
2.5. Preparation of Amoxycillin Samples
2.6. Preparation of Samples for XPS Analysis
2.7. Preparation of Samples for SEM Analysis
2.8. Titration Procedure
3. Results and Discussion
3.1. Surface Characterisation of PTy-PNCnase Films by SEM and XPS
3.2. Optimization of Galvanostatic Polymerization Conditions
3.2.1. Influence of Tyramine and Penicillinase Concentrations
3.2.2. Effect of Addition of a Supporting Electrolyte and Penicillin
3.2.3. Effect of the Applied Current Density and Polymerisation Time
3.3. Optimization of Measurement Condition
3.4. Analytical Applications
4. Conclusions
References
- Yigit, M.; Ersoy, L. Determination of tyramine in cheese by LC-UV. J. Pharm. Biomed. Anal 2003, 31, 1223–1228. [Google Scholar]
- Dubois, J.E.; Lacaze, M.C.; Pham, M.C. Obtaining thin film of “reactive polymers” on metal surfaces by electrochemical polymerization. Part III. Amino substituted polyphenylene oxide films. Application to preparation of ferrocene electroactive films. J. Electroanal. Chem 1981, 117, 233–241. [Google Scholar]
- Situmorang, M.; Gooding, J.J.; Hibbert, D.; Barnett, D. Electrodeposited polytyramine as an immobilisation matrix for enzyme biosensors. Biosens. Bioelectronics 1998, 13, 953–962. [Google Scholar]
- Cole, M.; Thissen, H.; Losic, D.; Voelcker, N.H. A new approach to the immobilisation of poly (ethylene oxide) for the reduction of non-specific protein adsorption on conductive substrates. Surf. Sc 2007, 601, 1716–1725. [Google Scholar]
- Situmorang, M.; Gooding, J.J.; Hibbert, D.B.; Barnett, D. Immobilisation of enzyme throughout a polytyramine matrix: a versatile procedure for fabricating biosensors. Anal. Chim. Acta. 1999, 394, 211–223. [Google Scholar]
- Losic, D.; Cole, M.; Thissen, H.; Voelcker, N.H. Ultrathin polytyramine films by electropolymerisation on highly doped p-type silicon electrodes. Surf. Sc 2005, 584, 245–257. [Google Scholar]
- Tenreiro, A.M.; Nabais, C.; Correia, J.P.; Fernandez, F.M.S.S.; Romero, J.R.; Abrantes, L.M. Progress in the understanding of tyramine electropolymerisation mechanism. J. Solid State Electrochem 2007, 11, 1059–1069. [Google Scholar]
- Tsui, I.; Eguchi, H.; Yasukouchi, K.; Unoki, M.; Taniguchi, I. Enzyme immunosensors based on electropolymerized polytyramine modified electrodes. Biosens. Bioelectronics 1990, 5, 87–101. [Google Scholar]
- Cooper, J.C.; Schubert, F. A biosensor for L-amino acids using polytyramine for enzyme immobilization. Electroanalysis 1994, 6, 957–961. [Google Scholar]
- Debenedetto, G.E.; Palmisano, F.; Zambonin, P.G. Flow-through tyrosinase enzyme reactor based on reticulated vitreous carbon functionalized by an electrochemically synthesized film. Anal. Chim. Acta 1996, 326, 149–154. [Google Scholar]
- Palmisano, F.; De Benedetto, G.E.; Zambonin, C.G. Lactate amperometric biosensor based on an electrosynthesized bilayer film with covalently immobilized enzyme. Analyst 1997, 122, 365–369. [Google Scholar]
- Tenreiro, A.; Cordas, C.M.; Abrantes, L.M. Oligonucleotide Immobilisation on Polytyramine-Modified Electrodes Suitable for Electrochemical DNA Biosensors. Portug. Electrochim. Acta 2003, 21, 361–370. [Google Scholar]
- Tran, L.D.; Piro, B.; Pham, T.; Ledoan, C.; Angiari, C.; Dao, Le. H.; Teston, F. A polytyramine film for covalent immobilization of oligonucleotides and hybridization. Synth. Met 2003, 139, 251–262. [Google Scholar]
- Suprun, E.V.; Budnikov, H.C.; Evtugyn, G.A.; Brainina, Kh. Z. Bienzyme sensor based on thick-film carbon electrode modified with electropolymerised tyramine. Bioelectrochemistry 2004, 63, 281–284. [Google Scholar]
- Miao, Y.; Chen, J.; Hu, Y. Electrodeposited non-conducting polytyramine for the development of glucose biosensors. Anal. Biochem 2005, 339, 41–45. [Google Scholar]
- Nakabayashi, Y.; Wakuda, M.; Imai, H. Amperometric Glucose Sensors Fabricated by Electrochemical Polymerization of Phenols on Carbon Paste Electrodes Containing Ferrocene as an Electron Transfer Mediator. Anal. Sc 1998, 14, 1069–1076. [Google Scholar]
- Nakabayashi, Y.; Yoshikawa, H. Amperometric biosensors for sensing of hydrogen peroxide based on electron transfer between horseradish peroxidase and ferrocene as a mediator. Anal. Sc 2000, 16, 609–613. [Google Scholar]
- Miscoria, S.A.; Barrera, G.D.; Rivas, G.A. Glucose biosensors based on the immobilisation of glucose oxidase and polytyramine on rodhinised glassy carbon and screen printed electrodes. Sens. Actuators 2006, 115, 205–211. [Google Scholar]
- Spatura, T.; Marcu, M.; Banu, A.; Roman, E.; Spataru, N. Electrodeposition of platinum on polytyramine-modified electrodes for electrocatalytic applications. Electrochim. Acta 2009, 54, 3316–3319. [Google Scholar]
- Adeloju, S.B.; Moline, A.N. Fabrication of ultra-thin polypyrrole–glucose oxidase film from supporting electrolyte-free monomer solution for potentiometric biosensing of glucose. Biosens. Bioelectronics 2001, 16, 133–139. [Google Scholar]
- Hall, E.A.H.; Gooding, J.J.; Hall, C.E. Redox enzyme linked electrochemical sensors: Theory meets practice. Mikrochim. Acta 1995, 121, 119–145. [Google Scholar]
- Trojanowicz, M.; Hitchman, M.L. A potentiometric polypyrrole-based glucose biosensor. Electroanalysis 1996, 8, 263–266. [Google Scholar]
- Guerrieri, A.; De Benedetto, G.G.; Palmisano, F.; Zambonin, P.G. Electrosynthesized non-conducting polymers as permselective membranes in amperometric enzyme electrodes: a glucose biosensor based on a co-crosslinked glucose oxidase/overoxidized polypyrrole bilayer. Biosens. Bioelectronics 1998, 13, 103–112. [Google Scholar]
- Adeloju, S.B.; Shaw, S.J.; Wallace, G.G. Polypyrrole-based amperometric flow injection biosensor for urea. Anal. Chim. Acta 1996, 323, 107–113. [Google Scholar]
- Adeloju, S.B.; Shaw, S.J.; Wallace, G.G. Pulsed-amperometric detection of urea in blood samples on a conducting polypyrrole-urease biosensor. Anal. Chim. Acta 1997, 341, 155–160. [Google Scholar]
- Gorchkov, D.V.; Soldatkin, A.P.; Maupas, H.; Martelet, N.; Jaffrezic-Renault, C. Correlation between the electrical charge properties of polymeric membranes and the characteristics of ion field effect transistors or penicillinase based enzymatic field effect transistors. Anal. Chim. Acta 1996, 331, 217–223. [Google Scholar]
- Nishizawa, M.; Matsue, T.; Uchida, I. Penicillin sensor based on a microarray electrode coated with pH-responsive polypyrrole. Anal. Chem 1992, 64, 2642–2644. [Google Scholar]
- Sohail, M.; Adeloju, S.B. Electroimmobilization of nitrate reductase and nicotinamide adenine dinucleotide into polypyrrole films for potentiometric detection of nitrate. Sens. Actuators. B 2008, 133, 333–339. [Google Scholar]
- Kulp, T.J.; Camins, J.; Angel, S.M.; Munkholm, C.; Walt, D.R. Polymer immobilized enzyme optrodes for the detection of penicillin. Anal. Chem 1987, 50, 2849–2853. [Google Scholar]
- Chao, H.-P.; Lee, W.-C. A bioelectrode for penicillin detection based on gluten-membrane-entrapped microbial cells. Biotech. Appl. Biochem 2000, 32, 9–14. [Google Scholar]
- Sharma, S.; Johnson, R.W.; Desai, T.A. XPS and AFM analysis of antifouling PEG interfaces for microfabricated silicon biosensors. Biosens. Bioelectronics 2004, 20, 227–239. [Google Scholar]
- Adeloju, S.B.; Shaw, S.J.; Wallace, G.G. Polypyrrole-based potentiometric biosensor for urea part 1. Incorporation of urease. Anal. Chim. Acta 1993, 281, 611–620. [Google Scholar]
- Grime, J.K.; Tan, B. Direct titrations of antibiotics with iodate solution, part 1. Titration of some selected penicillins. Anal. Chim. Acta 1979, 105, 361–368. [Google Scholar]
- Situmorang, M.; Gooding, J.J.; Hibbert, D.B.; Barnett, D. Development of potentiometric biosensors using electrodeposited polytyramine as the enzyme immobilization matrix. Electroanalysis 2001, 13, 1469–1474. [Google Scholar]
- Parag, S.S.; Shrikant, A.S.; Rekha, S.S. Clavulanic acid: A review. Biotech. Advan 2008, 26, 335–351. [Google Scholar]
- Grunwald, L.; Petz, M. Food processing effects on residues: penicillins in milk and yoghurt. Anal. Chim. Acta 2003, 483, 73–79. [Google Scholar]
- Cacciatore, G.; Petz, M.; Rachid, S.; Hakenbeck, R.; Bergwerff, A.A. Development of an optical biosensor assay for detection of β-lactam antibiotics in milk using the penicillin-binding protein 2x*. Anal. Chim. Acta 2004, 520, 105–115. [Google Scholar]
- Poghossian, A.; Abouzar, M.H.; Razavi, A.; Backer, M.; Bijnens, N.; Williams, O.A.; Haenen, K.; Moritz, W.; Wagner, P.; Schoning, M.J. Nanocystalline-diamond thin films with high pH and penicillin sensitivity prepared on a capacitive Si-SiO2 structure. Electrochim. Acta 2009, 54, 5981–5985. [Google Scholar]
- Siqueira, J.R., Jr.; Abouzar, M.H.; Poghossian, A.; Zucollotto, V.; Oliveira, O.N., Jr.; Schoning, M.J. Penicillin biosensor based on a capacitive field-effect structure functionalized with a dendrimer/carbon nanotube multilayer. Biosens. Bioelectronics 2009, 25, 497–501. [Google Scholar]
- Gaudin, V.; Fontaine, J.; Maris, P. Screening of penicillin residues in milk by a surface Plasmon resonance-based biosensor assay: comparison of chemical and enzymatic sample pretreatment. Anal. Chim. Acta 2001, 436, 191–198. [Google Scholar]
- Stred’ansky, M.; Pizzariello, A.; Stred’anska, S.; Miertus, S. Amperometric pH-sensing biosensors for urea, penicillin, and oxalacetate. Anal. Chim. Acta 2000, 415, 151–157. [Google Scholar]
Element | Binding Energy (eV) | Standard Deviation (eV) | Peak Assignment |
---|---|---|---|
C 1s (1,2) | 285.0 | 0.0 | hydrocarbons CHx reference carbon |
C 1s (3) | 286.5 | 0.1 | C-O, C-N |
C 1s (4) | 288.3 | 0.0 | C=O |
O 1s | 531.5 | 0.1 | C-O |
N 1s | 398.3 | 0.1 | N-H |
S 2p | 168.0 | 0.8 | Sulfur |
Amount in Tablet (mg)a | Conc. Found Biosensor (mg)b | % Recovery Biosensor | Conc. Found Titration (mg)c | % Recovery Titration |
---|---|---|---|---|
Amoxycillin 500 Clavulanic Acid 125 | 544 ± 43 | 109 ± 9 | 525 ± 20 | 105 ± 4 |
Amoxycillin 500 Clavulanic Acid 125 | 466 ± 32 | 93 ± 6 | 545 ± 40 | 109 ± 8 |
Amoxycillin 500 Clavulanic Acid 125 | 526 ± 15 | 105 ± 3 | 505 ± 20 | 101 ± 4 |
Average | 512 ± 30 | 102 ± 6 | 525 ± 27 | 105 ± 5 |
Penicillin G Added (ppm) a | Penicillin G Found (ppm) b | % Recovery |
---|---|---|
1 | 1.1 ± 0.8 | 110 ± 80 |
5 | 4.6 ± 1.6 | 92 ± 32 |
10 | 7.8 ± 0.8 | 78 ± 16 |
20 | 18 ± 2.7 | 90 ± 14 |
© 2010 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Ismail, F.; Adeloju, S.B. Galvanostatic Entrapment of Penicillinase into Polytyramine Films and its Utilization for the Potentiometric Determination of Penicillin. Sensors 2010, 10, 2851-2868. https://doi.org/10.3390/s100402851
Ismail F, Adeloju SB. Galvanostatic Entrapment of Penicillinase into Polytyramine Films and its Utilization for the Potentiometric Determination of Penicillin. Sensors. 2010; 10(4):2851-2868. https://doi.org/10.3390/s100402851
Chicago/Turabian StyleIsmail, Fatma, and Samuel B. Adeloju. 2010. "Galvanostatic Entrapment of Penicillinase into Polytyramine Films and its Utilization for the Potentiometric Determination of Penicillin" Sensors 10, no. 4: 2851-2868. https://doi.org/10.3390/s100402851
APA StyleIsmail, F., & Adeloju, S. B. (2010). Galvanostatic Entrapment of Penicillinase into Polytyramine Films and its Utilization for the Potentiometric Determination of Penicillin. Sensors, 10(4), 2851-2868. https://doi.org/10.3390/s100402851