Recent Developments of Magnetoresistive Sensors for Industrial Applications
Abstract
:1. Introduction
2. The Anisotropic Magnetoresistive (AMR) Effect in Thin Films
- Magnetocrystalline anisotropy: Directional dependence of magnetic properties due to the crystalline structure of the sample.
- Shape anisotropy: Directional dependence of magnetic properties due to the outer shape of the sample.
- Magnetoelastic anisotropy: Tensions cause a change of the magnetic behavior of the sample.
- Exchange anisotropy: A result of interactions between antiferromagnetic and ferromagnetic materials. Does not occur in AMR sensors, since no antiferromagnetic materials are used.
3. Designs and Commercial Solutions of AMR Sensors
4. The Giant Magnetoresistive (GMR) Effect in Thin Films and Granular Alloys
5. Designs and Commercial Applications of GMR Sensors
6. Current Developments
6.1. MR Sensors on Flexible Substrates
6.2. Flexible AMR Sensors at the IMPT
6.2.1. Flexible AMR Sensors for Industrial Applications
6.2.2. AMR Sensor for Magnetic Storage Application on Technical Surfaces
6.3. MR Sensors for Three-Dimensional Measurement
6.4. 3D GMR Sensor at the IMPT
6.5. MR Sensors for High-Temperature Conditions
6.6. High-Temperature GMR Sensor at the IMPT
7. Conclusions and Outlook
Acknowledgments
Conflicts of Interest
References
- Thomson, W. On the Electro-Dynamic Qualities of Metals:--Effects of Magnetization on the Electric Conductivity of Nickel and of Iron. Proc. R. Soc. Lond. 1856, 8, 546–550. [Google Scholar] [CrossRef]
- Daughton, J.M. GMR applications. J. Magn. Magn. Mater. 1999, 192, 334–342. [Google Scholar] [CrossRef]
- Reig, C.; Cardoso, S.; Mukhopadhyay, S.C. Giant Magnetoresistance (GMR) Sensors; Smart Sensors, Measurement and Instrumentation; Springer Berlin Heidelberg: Berlin/Heidelberg, Germany, 2013; Volume 6. [Google Scholar]
- Gijs, M.A.M. Magnetic bead handling on-chip: New opportunities for analytical applications. Microfluid. Nanofluid. 2004, 1, 22–40. [Google Scholar] [CrossRef]
- Hall, D.A.; Gaster, R.S.; Lin, T.; Osterfeld, S.J.; Han, S.; Murmann, B.; Wang, S.X. GMR biosensor arrays: A system perspective. Biosens. Bioelectron. 2010, 25, 2051–2057. [Google Scholar] [CrossRef] [PubMed]
- Baibich, M.; Broto, J.; Fert, A.; Nguyen van Dau, F.; Petroff, F.; Etienne, P.; Creuzet, G.; Friederich, A.; Chazelas, J. Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys. Rev. Lett. 1988, 61, 2472–2475. [Google Scholar] [CrossRef] [PubMed]
- McGuire, T.; Potter, R. Anisotropic magnetoresistance in ferromagnetic 3d alloys. IEEE Trans. Magn. 1975, 11, 1018–1038. [Google Scholar] [CrossRef]
- Cullity, B.D.; Graham, C.D. Introduction to Magnetic Materials; Wiley-IEEE Press: Hoboken, NJ, USA, 2008. [Google Scholar]
- Kwiatkowski, W.; Tumanski, S. The permalloy magnetoresistive sensors-properties and applications. J. Phys. E 1986, 19, 502–515. [Google Scholar] [CrossRef]
- NXP Semiconductors Netherlands B.V. NXP Magnetoresistive Sensor KMZ60 Leaflet. Available oneline: http://www.nxp.com/documents/leaflet/75017177.pdf (accessed on 4 November 2015).
- AFF755B MagnetoResistive Field Sensor Data Sheet. Available oneline: http://sensitec.com/upload/SENSITEC/PDF_Downloads/Datenblatt/Sensitec_AFF755B_DSE_03.pdf (accessed on 4 November 2015).
- Grimes, C.A. Sputter deposition of magnetic thin films onto plastic: The effect of undercoat and spacer layer composition on the magnetic properties of multilayer permalloy thin films. IEEE Trans. Magn. 1995, 31, 4109–4111. [Google Scholar] [CrossRef]
- AMR Sensordesgins. Available oneline: https://sensitec.wordpress.com/2013/06/15/amr-sensordesigns/ (accessed on 4 November 2015).
- Binasch, G.; Grünberg, P.; Saurenbach, F.; Zinn, W. Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Phys. Rev. B 1989, 39, 4828–4830. [Google Scholar] [CrossRef]
- Baibich, M.N.; Broto, J.M.; Fert, A.; van Dau, F.N.; Petroff, F. Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattices. Phys. Rev. Lett. 1988, 61, 2472–2475. [Google Scholar] [CrossRef] [PubMed]
- Grünberg, P.; Schreiber, R.; Pang, Y.; Brodsky, M.B.; Sowers, H. Layered Magnetic Structures: Evidence for Antiferromagnetic Coupling of Fe Layers across Cr Interlayers. Phys. Rev. Lett. 1986, 57, 2442–2445. [Google Scholar] [CrossRef] [PubMed]
- Parkin, S.S.P.; More, N.; Roche, K.P. Oscillations in Exchange Coupling and Magnetoresistance in Metallic Superlattice Structures: Co/Ru, Co/Cr, and Fe/Cr. Phys. Rev. Lett. 1990, 64, 2304–2308. [Google Scholar] [CrossRef] [PubMed]
- Reig, C.; Cubells-Beltran, M.-D.; Muñoz, D.R. Magnetic Field Sensors Based on Giant Magnetoresistance (GMR) Technology: Applications in Electrical Current Sensing. Sensors 2009, 9, 7919–7942. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, U. Magnetic Multilayers and Giant Magnetoresistance: Fundamentals and Industrial Applications; Springer Berlin Heidelberg: Berlin/Heidelberg, Germany, 1999. [Google Scholar]
- Vergara, J.; Madurga, V. Effect of annealing processes on the magneto-resistance in pulsed laser ablated-deposited Ag90Co10 and Co10Cu90 films. J. Non. Cryst. Solids 2001, 287, 385–389. [Google Scholar] [CrossRef]
- Tsymbal, E.Y.; Pettifor, D.G. Perspectives of giant magnetoresistance. Solid State Phys. Adv. Res. Appl. 2001, 56, 113–237. [Google Scholar]
- Wakoh, K.; Hihara, T.; Konno, T.J.; Sumiyama, K.; Suzuki, K. Comparative GMR study of Fe/Cu granular films deposited by co-evaporation and cluster beam techniques. Mater. Sci. Eng. A 1996, 217–218, 326–330. [Google Scholar] [CrossRef]
- Pereira de Azevedo, M.M.; Kakazei, G.N.; Kravetz, A.F.; Amaral, V.S.; Pogorelov, Y.G.; Sousa, J.B. GMR in co-evaporated Co-Ag granular thin films. J. Magn. Magn. Mater. 1999, 196–197, 40–42. [Google Scholar] [CrossRef]
- Luciński, T.; Reiss, G.; Mattern, N.; van Loyen, L. The absence of antiferromagnetic coupling and GMR effect in evaporated permalloy/Cu multilayers, in situ transport properties. J. Magn. Magn. Mater. 1998, 189, 39–46. [Google Scholar] [CrossRef]
- Fullerton, E.E.; Conover, M.J.; Mattson, J.E.; Sowers, C.H.; Bader, S.D. 150% magnetoresistance in sputtered Fe/Cr(100) superlattices. Appl. Phys. Lett. 1993, 63. [Google Scholar] [CrossRef]
- Berkowitz, A.E.; Mitchell, J.R.; Carey, M.J.; Young, A.P.; Zhang, S.; Spada, F.E.; Parker, F.T.; Hutten, A.; Thomas, G. Giant magnetoresistance in heterogeneous Cu-Co alloys. Phys. Rev. Lett. 1992, 68, 3745–3748. [Google Scholar] [CrossRef] [PubMed]
- Bailey, W.E.; Zhu, N.-C.; Sinclair, R.; Wang, S.X. Structural comparisons of ion beam and dc magnetron sputtered spin valves by high-resolution transmission electron microscopy. J. Appl. Phys. 1996, 79. [Google Scholar] [CrossRef]
- Dise, J.; Schmidt, R.; Wu, J.; Stearrett, R.; Haughey, K.; Xiao, J.; Nowak, E. CenterSpintronics and Biodetection Team. Magnetic Domain Analysis of GMR Spin Valves with CoFe Electrodes via Magnetic Force Microscopy. Am. Phys. Soc. 2013, 1, 14003. [Google Scholar]
- Guilfoyle, S.J.; Pollard, R.J.; Grundy, P.J. Low-energy ion-beam-assisted deposition and GMR of granular magnetic alloys. J. Phys. D Appl. Phys. 1996, 29, 29–33. [Google Scholar] [CrossRef]
- Sano, M.; Araki, S.; Ohta, M.; Noguchi, K.; Morita, H.; Matsuzaki, M. Exchange coupling and GMR properties in ion beam sputtered hematite spin-valves. IEEE Trans. Magn. 1998, 34, 372–374. [Google Scholar] [CrossRef]
- Majumdar, A.K.; Hebard, A.F.; Singh, A.; Temple, D. Spin-dependent electrical transport in ion-beam sputter deposited Fe-Cr multilayers. Phys. Rev. B 2002, 65, 054408. [Google Scholar] [CrossRef]
- Clarke, R.; Barlett, D.; Tsui, F.; Chen, B.; Uher, C. An alternate route to giant magnetoresistance in MBE-grown Co–Cu superlattices (invited). J. Appl. Phys. 1994, 75. [Google Scholar] [CrossRef]
- Howson, M.A.; Hickey, B.J.; Xu, J.; Greig, D. Magnetisation and giant magnetoresistance of Co/Cu(111)-oriented MBE-grown magnetic multilayers: Antiferromagnetic coupling and in-plane anisotropy. J. Magn. Magn. Mater. 1993, 126, 416–418. [Google Scholar] [CrossRef]
- Onishi, M.; Ishihara, R.; Kida, A.; Doi, M.; Asano, H.; Matsui, M. GMR effect of [Co(Fe)/Cu] multilayer prepared by MBE and IBS methods. J. Magn. Magn. Mater. 2004, 272–276, E1413–E1415. [Google Scholar] [CrossRef]
- Wang, S.X. Advances in Giant Magnetoresistance Biosensors With Magnetic Nanoparticle Tags: Review and Outlook. IEEE Trans. Magn. 2008, 44, 1687–1702. [Google Scholar] [CrossRef]
- Mukhopadhyay, S.C.M.S.C.; Chomsuwan, K.C.K.; Gooneratne, C.P.G.C.P.; Yamada, S.Y.S. A Novel Needle-Type SV-GMR Sensor for Biomedical Applications. IEEE Sens. J. 2007, 7, 401–408. [Google Scholar] [CrossRef]
- Gatzen, H.H. Thin Film Head Technologies in MEMS Applications Fabrication of a Dual Stripe MR-Sensor. In Proximity, Magnetic Storage Industry Source Book; Balzers Publication: Balzers, Liechtenstein, 1999; pp. 34–35. [Google Scholar]
- Gatzen, H.H.; Schwabe, M.S. Technological Investigations for the Manufacture of Giant Magnetoresistive (GMR) Structures. In Proceedings of the SICAN Fall Conference, Hannover, Germany, November 1997.
- Becker, C.; Bartos, A.; Gatzen, H.H. Exchange Biasing of Oxidized NiFe 81/19. IEEE Trans. Magn. 2002, 38, 2770–2772. [Google Scholar] [CrossRef]
- Moodera, J.S.; Kinder, L.R.; Wong, T.M.; Meservey, R. Large Magnetoresistance at Room Temperature in Ferromagnetic Thin Film Tunnel Junctions. Phys. Rev. Lett. 1995, 74, 3273–3276. [Google Scholar] [CrossRef] [PubMed]
- Yuasa, S.; Nagahama, T.; Fukushima, A.; Suzuki, Y.; Ando, K. Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions. Nat. Mater. 2004, 3, 868–871. [Google Scholar] [CrossRef] [PubMed]
- Leitis, K.; Halim, T. Modeling of a 3D magnetic field (AMR) sensor. In Proceedings of the 2011 IEEE International Conference on Microwaves, Communications, Antennas and Electronic Systems (COMCAS 2011), Tel Aviv, Israel, 7–9 November 2011; pp. 1–4.
- Cheung, S.Y.; Coleri, S.; Dundar, B.; Ganesh, S.; Tan, C.-W.; Varaiya, P. Traffic Measurement and Vehicle Classification with a Single Magnetic Sensor. Calif. Partners Adv. Transit. Highw. 2005, 1917, 173–181. [Google Scholar] [CrossRef]
- Ger, T.-R.; Huang, H.-T.; Huang, C.-Y.; Lai, M.-F. Single cell detection using 3D magnetic rolled-up structures. Lab Chip 2013, 13, 4225–4230. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Mei, Y.; Kaltofen, R.; Mönch, J.I.; Schumann, J.; Freudenberger, J.; Klauß, H.-J.; Schmidt, O.G. Towards Flexible Magnetoelectronics: Buffer-Enhanced and Mechanically Tunable GMR of Co/Cu Multilayers on Plastic Substrates. Adv. Mater. 2008, 20, 3224–3228. [Google Scholar] [CrossRef]
- Svedberg, M.; Nikolajeff, F.; Thornell, G. On the integration of flexible circuit boards with hot embossed thermoplastic structures for actuator purposes. Sens. Actuators A Phys. 2006, 125, 534–547. [Google Scholar] [CrossRef]
- Shaheen, S.E.; Brabec, C.J.; Sariciftci, N.S.; Padinger, F.; Fromherz, T.; Hummelen, J.C. 2.5% efficient organic plastic solar cells. Appl. Phys. Lett. 2001, 78. [Google Scholar] [CrossRef]
- Ju, S.; Facchetti, A.; Xuan, Y.; Liu, J.; Ishikawa, F.; Ye, P.; Zhou, C.; Marks, T.J.; Janes, D.B. Fabrication of fully transparent nanowire transistors for transparent and flexible electronics. Nat. Nanotechnol. 2007, 2, 378–384. [Google Scholar] [CrossRef] [PubMed]
- Choe, G.; Steinback, M. Surface roughness effects on magnetoresistive and magnetic properties of NiFe thin films. J. Appl. Phys. 1999, 85. [Google Scholar] [CrossRef]
- Thornton, J.A.; Hoffman, D.W. Stress-related effects in thin films. Thin Solid Films 1989, 171, 5–31. [Google Scholar] [CrossRef]
- Lisfi, A.; Lodder, J.C. Microstructural and magnetic properties of metallic thin films obliquely sputtered on polymer. J. Magn. Magn. Mater. 2002, 242–245, 370–373. [Google Scholar] [CrossRef]
- Dedrick, J.; Kraemer, K.L. Who captures value from science-based innovation? The distribution of benefits from GMR in the hard disk drive industry. Res. Policy 2015, 44, 1615–1628. [Google Scholar] [CrossRef]
- Parkin, S.S.P. Flexible giant magnetoresistance sensors. Appl. Phys. Lett. 1996, 69. [Google Scholar] [CrossRef]
- Parkin, S.S.P.; Roche, K.P.; Suzuki, T. Giant Magnetoresistance in Antiferromagnetic Co/Cu Multilayers Grown on Kapton. Jpn. J. Appl. Phys. 1992, 31, L1246–L1249. [Google Scholar] [CrossRef]
- Yan, F.; Xue, G.; Wan, F. A flexible giant magnetoresistance sensor prepared completely by electrochemical synthesis. J. Mater. Chem. 2002, 12, 2606–2608. [Google Scholar] [CrossRef]
- Griesbach, T.; Wurz, M.C.; Rissing, L. Design, Fabrication, and Testing of a Modular Magnetic Field Microsensor on a Flexible Polymer Foil. IEEE Trans. Magn. 2012, 48, 3843–3846. [Google Scholar] [CrossRef]
- Griesbach, T.; Wurz, M.C.; Rissing, L. Application of Sacrificial Layers for the Modular Micro Sensor Fabrication on a Flexible Polymer Substrate. In Proceedings of the Sensor and Test Conference, Nuremberg, Germany, 7–9 June 2011; pp. 5–10.
- Griesbach, T.; Wurz, M.C.; Rissing, L. Development and Fabrication of Modular Micro Sensors on Flexible Polymer Foils. In Proceedings of the 1st International Conference on System-Integrated Intelligence: Challenges for Product and Production Engineering, Hannover, Germany, 27–29 June 2012; pp. 66–68.
- Jogschies, L.; Heitmann, J.; Klaas, D.; Rissing, L. Investigations on Strain Behaviour of Polymer Substrates During a Separation Process. Procedia Technol. 2014, 15, 221–229. [Google Scholar] [CrossRef]
- Hubert, A.; Schäfer, R. Magnetic Domains, 1st ed.; Springer-Verlag: Berlin/Heidelberg, Germany, 1998. [Google Scholar]
- Tumanski, S. Thin Film Magnetoresistive Sensors; Institute of Physics Publishing: Bristol, UK, 2001. [Google Scholar]
- Overmeyer, L.; Rissing, L.; Wurz, M.C.; Dumke, M.; Franke, S.; Griesbach, T.; Belski, A. Component-integrated sensors and communication for gentelligent devices. In Proceedings of the 2011 IEEE International Conference on Industrial Engineering and Engineering Management, Singapore, 6–9 December 2011; pp. 499–503.
- Wu, K.-H.; Gatzen, H.H. Development of a System for Data Storage on Machine Components. In Proceedings of the I PROMS 2008, the 4th Virtual Conference of the EU-funded FP6 I PROMS Network of Excellence on Innovative Production Machines and Systems, Wales, UK, 1–14 July 2008; pp. 454–459.
- Wu, K.-H. Magnetische Datenspeicherung auf Bauteiloberflächen; TEWISS-Technik und Wissen GmbH: Garbsen, Germany, 2010. [Google Scholar]
- Bouquet, F.L. Engineering Properties of Kapton(R); Systems Company: Graham, WA, USA, 1990. [Google Scholar]
- Taptimthong, P.; Rittinger, J.; Wurz, M.C.; Rissing, L. Flexible Magnetic Writing/Reading System: Polyimide Film as Flexible Substrate. Procedia Technol. 2014, 15, 230–237. [Google Scholar] [CrossRef]
- Rittinger, J.; Taptimthong, P.; Jogschies, L.; Wurz, M.C.; Rissing, L. Impact of different polyimide-based substrates on the soft magnetic properties of NiFe thin films. Proc. SPIE 2015, 9517R. [Google Scholar] [CrossRef]
- Roumenin, C.; Dimitrov, K.; Ivanov, A. Integrated vector sensor and magnetic compass using a novel 3D Hall structure. Sens. Actuators A Phys. 2001, 92, 119–122. [Google Scholar] [CrossRef]
- Dixiang, C.D.C.; Mengchun, P.M.P.; Feilu, L.F.L. Study on Accurate 3D Magnetic Field Measurement System. In Proceedings of the 2007 8th International Conference on Electronic Measurement and Instruments, ICEMI’07, Xi’an, China, 16–19 August 2007; pp. 680–683.
- Kejik, P.; Schurig, E.; Bergsma, F.; Popovic, R.S. First fully CMOS-integrated 3D Hall probe. In Proceedings of International Conference on Solid State Sensors and Actuators and Microsystems, TRANSDUCERS’05, Seoul, Korea, 5–9 June 2005; Volume 1, pp. 317–320.
- Ettelt, D.; Rey, P.; Jourdan, G.; Walther, A.; Robert, P.; Delamare, J. 3D Magnetic Field Sensor Concept for Use in Inertial Measurement Units (IMUs). J. Microelectromech. Syst. 2014, 23, 324–333. [Google Scholar] [CrossRef]
- Da Silva, F.C.S.; Halloran, S.T.; Yuan, L.; Pappas, D.P. A z-component magnetoresistive sensor. Appl. Phys. Lett. 2008, 92. [Google Scholar] [CrossRef]
- Jeng, J.-T.; Chiang, C.-Y.; Chang, C.-H.; Lu, C.-C. Vector Magnetometer with Dual-Bridge GMR Sensors. IEEE Trans. Magn. 2014, 50, 1–4. [Google Scholar] [CrossRef]
- Luong, V.S.; Jeng, J.-T.; Lai, B.-L.; Hsu, J.-H.; Chang, C.-R.; Lu, C.-C. Design of Three-Dimensional Magnetic Field Sensor with Single Bridge of Spin-Valve Giant Magnetoresistance Films. In Proceedings of the 2015 IEEE Magnetics Conference (INTERMAG), Beijing, China, 11–15 May 2015.
- Chiang, C.-Y.; Jeng, J.-T.; Lai, B.-L.; Luong, V.S.; Lu, C.-C. Tri-axis magnetometer with in-plane giant magnetoresistance sensors for compass application. J. Appl. Phys. 2015, 117. [Google Scholar] [CrossRef]
- Chen, J.; Wurz, M.C.; Belski, A.; Rissing, L. Designs and Characterizations of Soft Magnetic Flux Guides in a 3-D Magnetic Field Sensor. IEEE Trans. Magn. 2012, 48, 1481–1484. [Google Scholar] [CrossRef]
- Chen, J.; Flick, E.; Gatzen, H.H. Minimizing oxygen inclusion when electroplating high saturation density CoFe for microelectromechanical system. J. Appl. Phys. 2010, 107, 09A311. [Google Scholar] [CrossRef]
- Chen, J.; Cvetkovic, S.; Rissing, L. Integration of Electroplated CoFe in Trenc Type Flux Guides for Magnetic MEMS Applications. In Proceedings of the Transactions 222nd ECS Meeting, Honolulu, HI, USA, 7–12 October 2012; Volume 48, pp. 157–166.
- Kruppe, R.; Wienecke, A.; Rissing, L. Optimization of Mechanical and Magnetic Properties in High, Electroplated Co–Fe-Flux Guides. IEEE Trans. Magn. 2014, 50, 1–4. [Google Scholar] [CrossRef]
- Cvetkovic, S.; Kruppe, R.; Rissing, L. Thinning Process Optimization for an Ultra-thin 3D Magnetic Field Sensor. In Proceedings Smart System Integration, Zurich, Switzerland, 21–22 March 2012; p. 107.
- Cvetkovic, S.; Kruppe, R.; Rissing, L. Technology Development for Packaging of the GMR-Sensor via Eutectic Bonding. In Proceedings of Smart System Integration, Amsterdam, The Netherlands, 13–14 March 2013; p. 17.
- Kruppe, R.; Rissing, L. Influence of Deposition Parameters on Mechanical Stress and Magnetic Properties in Thick, Electroplated Co-Fe Flux Guides. ECS Trans. 2015, 64, 33–38. [Google Scholar] [CrossRef]
- Mao, S.; Gangopadhyay, S.; Amin, N.; Murdock, E. NiMn-pinned spin valves with high pinning field made by ion beam sputtering. Appl. Phys. Lett. 1996, 69. [Google Scholar] [CrossRef]
- Saito, M.; Hasegawa, N.; Koike, F.; Seki, H.; Kuriyama, T. PtMn single and dual spin valves with synthetic ferrimagnet pinned layers. J. Appl. Phys. 1999, 85. [Google Scholar] [CrossRef]
- Lenssen, K.-M.; Adelerhof, D.; Gassen, H.; Kuiper, A.E.; Somers, G.H.; van Zon, J.B.A. Robust giant magnetoresistance sensors. Sens. Actuators A Phys. 2000, 85, 1–8. [Google Scholar] [CrossRef]
- Giebeler, C.; Adelerhof, D.J.; Kuiper, A.E.T.; van Zon, J.B.A.; Oelgeschläger, D.; Schulz, G. Robust GMR sensors for angle detection and rotation speed sensing. Sens. Actuators A Phys. 2001, 91, 16–20. [Google Scholar] [CrossRef]
- Prakash, S.; Pentek, K. Reliability of PtMn-based spin valves. IEEE Trans. Magn. 2001, 37, 1123–1131. [Google Scholar] [CrossRef]
- Bever, T.; Pruegl, K.; Raberg, W.; Strasser, A.; Zimmer, J. Sensors and Measuring Systems 2014. In Proceedings of the Sensoren und Messsysteme 2014, Nuremberg, Germany, 3–4 June 2014; pp. 1–4.
- Wienecke, A.; Wurz, M.C. Integrierte Sensorik für Hochtemperaturumgebungen. In Proceedings of the MikroSystemTechnik Kongress 2013, Aachen, Germany, 14–16 October 2013.
- Wienecke, A.; Rissing, L. Relationship Between Thermal Stability and Layer-Stack/Structure of NiMn-Based GMR Systems. IEEE Trans. Magn. 2015, 51, 1–4. [Google Scholar] [CrossRef]
- Wienecke, A.; Kruppe, R.; Rissing, L. Influence of growth conditions on exchange bias of NiMn-based spin valves. J. Appl. Phys. 2015, 117, 17C108. [Google Scholar] [CrossRef]
- Wienecke, A.; Rissing, L. Development of a Magnetic Field Sensor for Temperatures up to 250 °C. Oil Gas Eur. Mag. 2015, 3, OG36–37. [Google Scholar]
- Klaas, D.; Wienecke, A.; Wurz, M.C.; Rissing, L.; Freytag, P.; Maier, H.J. Smart System Integration: Moulding of Magnetic Field Sensors into AlSi9Cu3(Fe)-Alloys. In Proceedings of SMTA Pan Pacific Microelectronics Symposium, Kauai, HI, USA, 2–5 February 2015.
- Klaas, D.; Rittinger, J.; Taptimthong, P.; Duesing, J.; Wurz, M.C.; Rissing, L. Verwendung von Schattenmasken zur Direktstrukturierung individuell adaptierbarer Sensorik auf technischen Oberflächen. In Proceedings of the MikroSystemTechnik Kongress 2015, Karlsruhe, Germany, 26–28 October 2015.
- Klaas, D.; Taptimthong, P.; Jogschies, L.; Rissing, L. Component Integrated Sensors: Deposition of Thin Insulation Layers on Functional Surfaces. Procedia Technol. 2014, 15, 114–121. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jogschies, L.; Klaas, D.; Kruppe, R.; Rittinger, J.; Taptimthong, P.; Wienecke, A.; Rissing, L.; Wurz, M.C. Recent Developments of Magnetoresistive Sensors for Industrial Applications. Sensors 2015, 15, 28665-28689. https://doi.org/10.3390/s151128665
Jogschies L, Klaas D, Kruppe R, Rittinger J, Taptimthong P, Wienecke A, Rissing L, Wurz MC. Recent Developments of Magnetoresistive Sensors for Industrial Applications. Sensors. 2015; 15(11):28665-28689. https://doi.org/10.3390/s151128665
Chicago/Turabian StyleJogschies, Lisa, Daniel Klaas, Rahel Kruppe, Johannes Rittinger, Piriya Taptimthong, Anja Wienecke, Lutz Rissing, and Marc Christopher Wurz. 2015. "Recent Developments of Magnetoresistive Sensors for Industrial Applications" Sensors 15, no. 11: 28665-28689. https://doi.org/10.3390/s151128665
APA StyleJogschies, L., Klaas, D., Kruppe, R., Rittinger, J., Taptimthong, P., Wienecke, A., Rissing, L., & Wurz, M. C. (2015). Recent Developments of Magnetoresistive Sensors for Industrial Applications. Sensors, 15(11), 28665-28689. https://doi.org/10.3390/s151128665