Field Effect Sensors for Nucleic Acid Detection: Recent Advances and Future Perspectives
Abstract
:1. Introduction
2. Field Effect Biosensors Architecture
Sensor Type | DNA Probe/Amplification Reaction | Target DNA | Ref. Electrode | Reference |
---|---|---|---|---|
DNA-modified Field Effect Devices | ||||
EIS; FET p-Si–SiO2 | Oligo(dT20); poly(dT1000bp) | Oligo(dA18); poly(dA) (1000 bp) | Ag/AgCl | [11] |
p-channel FET; n-Si–SiO2; silanization with APTES | Adsorption ~4 × 1011 molecules/cm2 | (20,45)-mer ssDNA | Ag/AgCl liquid-junction | [12] |
p-channel FET; n-Si–SiO2 poly-l-lysine | 20-mer dsDNA; 2 × 108 molecules/cm2 | dsDNA | Ag/AgCl wires | [13] |
10-mer ssDNA | 20-mer ssDNA - mismatch detection | Liquid junction Ag/AgCl | [14] | |
p-channel Au-gate (floating) FET; n-Si–SiO2 | (12,15)-mer thiol-modified ssDNA [2.8; 3.5] × 108 molecules/cm2 | ssDNA | Ag/AgCl | [15] |
p-Channel TFT / Poly-Si TFTs | 18-mer ssDNA probes [1012;1013] molecules/cm2 | 18-mer ssDNA - mismatch detection | Ag/AgCl | [16] |
a-Si:H ISFETs | 19-Mer ssDNA 6–60 × 1012 pmol/cm2 | 19-mer ssDNA - mismatch detection | Ag/AgCl micro ref. electrode | [17] |
n-channel depletion FET; p-Si–SiO2 –Si3N4; Au Gate | Thiolated (15,25)-mer ssDNA | (15,25)-mer ssDNA | Ag/AgCl | [18,19] |
17-mer ssDNA/ 1.7 × 108 molecules/cm2 | 17-mer ssDNA | Pt & Without RE | [20,21] | |
20-mer dsDNA; 1.2 × 1013; Adsorption | 400bp cDNA | Ag/AgCl | [22] | |
Pentacene and poly(3-hexylthiophene) TFTs | (20,21)-mer ssDNA | ssDNA | Without RE | [23,24] |
Flat device - CMFET; flexible substrates | 13-mer poly-dT spacer, 18-mer ssDNA | 18bp ssDNA | Without RE (control gate) | [25,26,27] |
n-Type SiNW; p-type SiNW; SWNT | ssDNA, PNA | RT-PCR product of DEN-2; microRNA; RCA (ssDNA) | - | [28,29,30,31,32,33,34,35,36,37,38,39] |
Graphene oxide FET | PNA | LOD 100fM- mismatch detection | [40] | |
Enzyme based Field Effect Devices | ||||
ISFET- Si3N4 | SBE | dsDNA | Ag/AgCl | [41] |
CMOS- ISFET- Ta2O5 sensitive layer | DNA Sequencing | dsDNA/cDNA | - | [6] |
CMOS- ISFET- Si3N4; EIS-Ta2O5 | Real-time qPCR | dsDNA/cDNA; cytochrome P450 SNPs; GH1; cMYC | Ag/AgCl | [42,43] |
CMOS- ISFET- Si3N4; EIS-Ta2O5 | Real-time qLAMP | dsDNA/cDNA; cytochrome P450 SNPs; NAT2; cMYC | Ag/AgCl | [43,44] |
2.1. Operating Principle of Field Effect-Based Biosensors
2.2. Oxide/Electrolyte Interface & Sensitive Layer
2.3. Production Methods
3. Applications of Field Effect Biosensors
3.1. Applications of DNA-Modified Field Effect Devices
3.1.1. Thin Film Field Effect Devices
3.1.2. New Materials and Designs
3.2. Applications of Enzyme Based Field Effect Devices
4. Future Perspectives
Acknowledgments
Conflicts of Interest
References
- Drummond, T.G.; Hill, M.G.; Barton, J.K. Electrochemical DNA sensors. Nat. Biotech. 2003, 21, 1192–1199. [Google Scholar] [CrossRef]
- McKinnon, W.; Landheer, D.; Aers, G. Sensitivity of field-effect biosensors to charge, pH, and ion concentration in a membrane model. J. Appl. Phys. 2008, 104, 124701. [Google Scholar] [CrossRef]
- Shinwari, M.W.; Deen, M.J.; Landheer, D. Study of the electrolyte-insulator-semiconductor field-effect transistor (EISFET) with applications in biosensor design. Microelectron. Reliab. 2007, 47, 2025–2057. [Google Scholar] [CrossRef]
- Schöning, M.; Poghossian, A. Recent advances in biologically sensitive field-effect transistors (BioFETs). Analyst 2002, 127, 1137–1151. [Google Scholar] [CrossRef] [PubMed]
- IonTorrent, Life Technologies. Available online: http://www.iontorrent.com/welcome (accessed on 23 March 2015).
- Rothberg, J.M.; Hinz, W.; Rearick, T.M.; Schultz, J.; Mileski, W.; Davey, M.; Leamon, J.H.; Johnson, K.; Milgrew, M.J.; Edwards, M.; et al. An integrated semiconductor device enabling non-optical genome sequencing. Nature 2011, 475, 348–352. [Google Scholar] [CrossRef] [PubMed]
- Dzyadevych, S.; Soldatkin, A.; El’skaya, A.; Martelet, C.; Jaffrezic-Renault, N. Enzyme biosensors based on ion-selective field-effect transistors. Anal. Chim. Acta 2006, 568, 248–258. [Google Scholar] [CrossRef] [PubMed]
- Branquinho, R. Label-Free Detection of Biomolecules with Ta2O5-Based Field Effect Devices. Ph.D. Thesis, Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia, Lisboa, Portugal, December 2012. [Google Scholar]
- Sze, S.M.; Ng, K.K. Physics of Semiconductor Devices, 3rd ed.; John Wiley & Sons: Hoboken, New Jersey, 2006. [Google Scholar]
- Bergveld, P. Thirty years of ISFETOLOGY: What happened in the past 30 years and what may happen in the next 30 years. Sens. Actuators B Chem. 2003, 88, 1–20. [Google Scholar] [CrossRef]
- Souteyrand, E.; Cloarec, J.P.; Martin, J.R.; Wilson, C.; Lawrence, I.; Mikkelsen, S.; Lawrence, M.F. Direct Detection of the Hybridization of Synthetic Homo-Oligomer DNA Sequences by Field Effect. J. Phys. Chem. B 1997, 101, 2980–2985. [Google Scholar] [CrossRef]
- Uslu, F.; Ingebrandt, S.; Mayer, D.; Böcker-Meffert, S.; Odenthal, M.; Offenhäusser, A. Labelfree fully electronic nucleic acid detection system based on a field-effect transistor device. Biosens. Bioelectron. 2004, 19, 1723–1731. [Google Scholar] [CrossRef] [PubMed]
- Pouthas, F.; Gentil, C.; Cote, D.; Zeck, G.; Straub, B.; Bockelmann, U. Spatially resolved electronic detection of biopolymers. Phys. Rev. E 2004, 70, 31906. [Google Scholar] [CrossRef]
- Ingebrandt, S.; Han, Y.; Nakamura, F.; Poghossian, A.; Schöning, M.; Offenhäusser, A. Label-free detection of single nucleotide polymorphisms utilizing the differential transfer function of field-effect transistors. Biosens. Bioelectron. 2007, 22, 2834–2840. [Google Scholar] [CrossRef] [PubMed]
- Fritz, J.; Cooper, E.; Gaudet, S.; Sorger, P.; Manalis, S. Electronic detection of DNA by its intrinsic molecular charge. Proc. Natl. Acad. Sci. USA 2002, 99, 14142–14146. [Google Scholar] [CrossRef]
- Estrela, P.; Stewart, A.; Yan, F.; Migliorato, P. Field effect detection of biomolecular interactions. Electrochim. Acta 2005, 50, 4995–5000. [Google Scholar] [CrossRef]
- Gonçalves, D.; Prazeres, D.; Chu, V.; Conde, J. Detection of DNA and proteins using amorphous silicon ion-sensitive thin-film field effect transistors. Biosens. Bioelectron. 2008, 24, 545–551. [Google Scholar] [CrossRef] [PubMed]
- Sakata, T.; Kamahori, M.; Miyahara, Y. Immobilization of oligonucleotide probes on Si3N4 surface and its application to genetic field effect transistor. Mat. Sci. Eng. C 2004, 24, 827–832. [Google Scholar] [CrossRef]
- Sakata, T.; Kamahori, M.; Miyahara, Y. DNA analysis chip based on field-effect transistors. Jpn. J. Appl. Phys. 2005, 44, 2854–2859. [Google Scholar] [CrossRef]
- Kim, D.; Jeong, Y.; Lyu, H.; Park, H.; Kim, H.; Shin, J.; Choi, P.; Lee, J.; Lim, G.; Ishida, M. Fabrication and characteristics of a field effect transistor-type charge sensor for detecting deoxyribonucleic acid sequence. Jpn. J. Appl. Phys. 2003, 42, 4111–4115. [Google Scholar] [CrossRef]
- Kim, D.; Jeong, Y.; Park, H.; Shin, J.; Choi, P.; Lee, J.; Lim, G. An FET-type charge sensor for highly sensitive detection of DNA sequence. Biosens. Bioelectron. 2004, 20, 69–74. [Google Scholar] [CrossRef] [PubMed]
- Bandiera, L.; Cellere, G.; Cagnin, S.; Toni, A.; Zanoni, E.; Lanfranchi, G.; Lorenzelli, L. A fully electronic sensor for the measurement of cDNA hybridization kinetics. Biosens Bioelectron 2007, 22, 21082114. [Google Scholar] [CrossRef]
- Yan, F.; Mok, S.; Yu, J.; Chan, H.; Yang, M. Label-free DNA sensor based on organic thin film transistors. Biosens. Bioelectron. 2009, 24, 1241–1245. [Google Scholar] [CrossRef] [PubMed]
- Jagannathan, L.; Subramanian, V. DNA detection using organic thin film transistors: optimization of DNA immobilization and sensor sensitivity. Biosens. Bioelectron. 2009, 25, 288–293. [Google Scholar] [CrossRef] [PubMed]
- Fixe, F.; Chu, V.; Prazeres, D.; Conde, J. Single base mismatch detection by microsecond voltage pulses. Biosens. Bioelectron. 2005, 21, 888–893. [Google Scholar] [CrossRef] [PubMed]
- Barbaro, M.; Bonfiglio, A.; Raffo, L. A charge-modulated FET for detection of biomolecular processes: Conception, modeling, and simulation. IEEE Trans. Electron. Devices 2006, 53, 158–166. [Google Scholar] [CrossRef]
- Barbaro, M.; Bonfiglio, A.; Raffo, L.; Alessandrini, A.; Facci, P.; BarakBarak, I. A CMOS, fully integrated sensor for electronic detection of DNA hybridization. IEEE Electron. Device Lett. 2006, 27, 595–597. [Google Scholar] [CrossRef]
- Zhang, G.J.; Ning, Y. Silicon nanowire biosensor and its applications in disease diagnostics: A review. Anal. Chim. Acta 2012, 749, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.-P.; Ganguly, A.; Lu, C.-Y.; Chen, T.-Y.; Kuo, C.-C.; Chen, R.-S.; Tu, W.-H.; Fischer, W.; Chen, K.-H.; Chen, L.-C. Ultrasensitive in situ label-free DNA detection using a GaN nanowire-based extended-gate field-effect-transistor sensor. Anal. Chem. 2011, 83, 1938–1943. [Google Scholar] [CrossRef] [PubMed]
- Bunimovich, Y.L.; Shin, Y.S.; Yeo, W.S. Quantitative real-time measurements of DNA hybridization with alkylated nonoxidized silicon nanowires in electrolyte solution. J. Am. Chem. Soc. 2006, 128, 16323–16331. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Chen, Y.; Li, X.; Kamins, T.I.; Nauka, K. Sequence-specific label-free DNA sensors based on silicon nanowires. Nano Lett. 2004, 245–247. [Google Scholar] [CrossRef]
- Li, Z.; Rajendran, B.; Kamins, T.I.; Li, X.; Chen, Y.; Chen, Y.; Williams, R.S. Silicon nanowires for sequence-specific DNA sensing: Device fabrication and simulation. Appl. Phys. A 2005, 80, 1257–1263. [Google Scholar] [CrossRef]
- Hahm, J.; Lieber, C.M. Direct Ultrasensitive Electrical Detection of DNA and DNA Sequence Variations Using Nanowire Nanosensors. Nano Lett. 2004, 4, 51–54. [Google Scholar] [CrossRef]
- Zhang, G.J.; Zhang, G; Chua, J.H.; Chee, R.E.; Wong, E.H.; Agarwal, A.; Buddharaju, K.D.; Singh, N.; Gao, Z.Q.; Balasubramanian, N. DNA sensing by silicon nanowire: charge layer distance dependence. Nano Lett. 2008, 8, 1066–1070. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.-J.; Chua, J.; Chee, R.-E.; Agarwal, A.; Wong, S.; Buddharaju, K.; Balasubramanian, N. Highly sensitive measurements of PNA-DNA hybridization using oxide-etched silicon nanowire biosensors. Biosens. Bioelectron. 2008, 23, 1701–1707. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.J.; Chua, J.H.; Chee, R.E.; Agarwal, A.; Wong, S.M. Label-free direct detection of MiRNAs with silicon nanowire biosensors. Biosens. Bioelectron. 2009, 23, 1701–1707. [Google Scholar] [CrossRef]
- Zhang, G.J.; Zhang, L.; Huang, M.J.; Luo, Z.H.H.; Tay, G.K.I.; Lim, E.A.; Kang, T.G.; Chen, Y. Silicon nanowire biosensor for highly sensitive and rapid detection of Dengue vírus. Sens. Actuators B Chem. 2010, 146, 138–144. [Google Scholar] [CrossRef]
- Zhang, G.J.; Luo, Z.H.; Huang, M.J.; Tay, G.K.; Lim, E.J. Morpholino-functionalized silicon nanowire biosensor for sequence-specific label-free detection of DNA. Biosens. Bioelectron. 2010, 25, 2447–2453. [Google Scholar] [CrossRef] [PubMed]
- Gao, A.; Lu, N.; Wang, Y.; Dai, P.; Li, T.; Gao, X.; Wang, Y.; Fan, C. Enhanced sensing of nucleic acids with silicon nanowire field effect transistor biosensors. Nano Lett. 2012, 12, 5262–5268. [Google Scholar] [CrossRef] [PubMed]
- Cai, B.; Wang, S.; Huang, L.; Ning, Y.; Zhang, Z.; Zhang, G.J. Ultrasensitive Label-Free Detection of PNA–DNA Hybridization by Reduced Graphene Oxide Field-Effect Transistor Biosensor. ACS Nano 2014, 8, 2632–2638. [Google Scholar] [CrossRef] [PubMed]
- Veigas, B.; Branquinho, R.; Pinto, J.V.; Wojcik, P.J.; Martins, R.; Fortunato, E.; Baptista, P.V. Ion sensing (EIS) real-time quantitative monitorization of isothermal DNA amplification. Biosens. Bioelectron. 2014, 52, 50–55. [Google Scholar] [CrossRef] [PubMed]
- Wong, M.L.; Medrano, J.F. Real-time PCR for mRNA quantitation. Biotechniques 2005, 39, 75–85. [Google Scholar] [CrossRef] [PubMed]
- Branquinho, R.; Veigas, B.; Pinto, J.V.; Martins, R.; Fortunato, E.; Baptista, P.V. Real-time monitoring of PCR amplification of proto-oncogene c-MYC using a Ta₂O5 electrolyte-insulator-semiconductor sensor. Biosens. Bioelectron. 2011, 28, 44–49. [Google Scholar] [CrossRef] [PubMed]
- Toumazou, C.; Shepherd, L.; Reed, S.; Chen, G.; Patel, A.; Garner, D.; Wang, C.-J.; Ou, C.-P.; Amin-Desai, K.; Athanasiou, P.; et al. Simultaneous DNA amplification and detection using a pH-sensing semiconductor system. Nat. Methods 2013, 10, 641–646. [Google Scholar] [CrossRef] [PubMed]
- Brett, C.M.A.; Brett, A.M.O. Electrochemistry: Principles, Methods, and Applications; Oxford University Press: New York, NY, USA, 1993. [Google Scholar]
- Yates, D.E.; Levine, S.; Healy, T.W. Site-binding model of the electrical double layer at the oxide/water interface. J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases 1974, 70, 1807–1818. [Google Scholar]
- Van Hal, R.E.G.; Eijkel, J.C.T.; Bergveld, P. A novel description of ISFET sensitivity with the buffer capacity and double-layer capacitance as key parameters. Sens. Actuators B Chem. 1995, 24, 201–205. [Google Scholar] [CrossRef]
- Pai, Y.-H.; Chou, C.-C.; Shieu, F.-S. Preparation and optical properties of Ta2O5 thin films. Mater. Chem. Phys. 2008, 107, 524–527. [Google Scholar] [CrossRef]
- Porporati, A.; Roitti, S.; Sbaizero, O. Metallorganic chemical vapor deposition of Ta2O5 films. J. Eur. Ceram. Soc. 2003, 23, 247–251. [Google Scholar] [CrossRef]
- Briand, D.; Mondin, G.; Jenny, S.; van der Wal, P.D.; Jeanneret, S.; de Rooij, N.F.; Banakh, O.; Keppner, H. Metallo-organic low- pressure chemical vapor deposition of Ta2O5 using TaC12H30O5N as precursor for batch fabrication of microsystems. Thin Solid Films 2005, 493, 6–12. [Google Scholar] [CrossRef]
- Kim, J.C.; Heo, J.S.; Cho, Y.S.; Moon, S.H. Atomic layer deposition of an HfO2 thin film using Hf(O-iPr)4. Thin Solid Films 2009, 517, 5695–5699. [Google Scholar] [CrossRef]
- Kukli, K.; Ritala, M.; Leskela, M.; Sajavaara, T.; Keinonen, J.; Gilmer, D.; Bagchi, S.; Prabhu, L. Atomic layer deposition of Al2O3, ZrO2, Ta2O5, and Nb2O5 based nanolayered dielectrics. J. Non-Cryst. Solids 2002, 303, 35–39. [Google Scholar] [CrossRef]
- Cappellani, A.; Keddie, J.L.; Barradas, N.P.; Jackson, S.M. Processing and characterisation of solâ-gel deposited Ta2O5 and TiO2-Ta2O5 dielectric thin films. Solid-State Electron. 1999, 43, 1095–1099. [Google Scholar] [CrossRef]
- Yildirim, S.; Ulutas, K.; Deger, D.; Zayim, E.O.; Turhan, I. Dielectric properties of sol-gel derived Ta2O5 thin films. Vacuum 2005, 77, 329–335. [Google Scholar] [CrossRef]
- Branquinho, R.; Pinto, J.; Busani, T.; Barquinha, P.; Pereira, L.; Baptista, P.; Martins, R.; Fortunato, E. Plastic Compatible Sputtered Ta2O5 Sensitive Layer for Oxide Semiconductor TFT Sensors. J. Display Technol. 2012, 16, 723–728. [Google Scholar]
- Branquinho, R.; Salgueiro, D.; Santos, L.; Barquinha, P.; Pereira, L.; Martins, R.; Fortunato, E. Aqueous combustion synthesis of aluminum oxide thin films and application as gate dielectric in GZTO solution-based TFTs. ACS Appl. Mater. Interfaces 2014, 6, 19592–19599. [Google Scholar] [CrossRef] [PubMed]
- Branquinho, R.; Salgueiro, D.; Santa, A.; Kiazadeh, A.; Barquinha, P.; Pereira, L.; Martins, R.; Fortunato, E. Towards environmental friendly solution-based ZTO/AlOxTFTs. Semicond. Sci. Technol. 2015, 30, 024007. [Google Scholar] [CrossRef]
- Lee, C.C.; Jan, D.J. Optical properties and deposition rate of sputtered Ta2O5 films deposited by ion-beam oxidation. Thin Solid Films 2005, 483, 130–135. [Google Scholar] [CrossRef]
- Poghossian, A.; Ingebrandt, S.; Abouzar, M.H.; Schoning, M.J. Label-free detection of charged macromolecules by using a field-effect- based sensor platform: Experiments and possible mechanisms of signal generation. Appl. Phys. A 2007, 87, 517–524. [Google Scholar] [CrossRef]
- Atanassova, E.; Georgieva, M.; Spassov, D.; Paskaleva, A. High-k HfO2-Ta2O5 mixed layers: Electrical characteristics and mechanisms of conductivity. Microelectron. Eng. 2010, 87, 668–676. [Google Scholar] [CrossRef]
- Dimitrova, T.; Atanassova, E. Interface and oxide properties of rf sputtered Ta2O5-Si structures. Vacuum 1998, 51, 151–152. [Google Scholar] [CrossRef]
- Jagadeesh Chandra, S.V.; Choi, C.-J.; Uthanna, S.; Mohan Rao, G. Structural and electrical properties of radio frequency magnetron sputtered tantalum oxide films: Influence of post-deposition annealing. Mater. Sci. Semicond. Process. 2010, 13, 245–251. [Google Scholar] [CrossRef]
- Paskaleva, A.; Atanassova, E.; Dimitrova, T. Leakage currents and conduction mechanisms of Ta2O5 layers on Si obtained by RF sputtering. Vacuum 2000, 58, 470–477. [Google Scholar] [CrossRef]
- Pereira, L.; Barquinha, P.; Fortunato, E.; Martins, R.; Kang, D.; Kim, C.J.; Lim, H.; Song, I.; Park, Y. High k dielectrics for low temperature electronics. Thin Solid Films 2008, 516, 1544–1548. [Google Scholar] [CrossRef]
- Ghosh, I.; Stains, C.I.; Ooi, A.T.; Segal, D.J. Direct detection of double-stranded DNA: molecular methods and applications for DNA diagnostics. Mol. BioSyst. 2006, 2, 551–560. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.-S.; Kim, S.; Kim, M. Ion-Sensitive Field-Effect Transistor for Biological Sensing. Sensors 2009, 9, 7111–7131. [Google Scholar] [CrossRef] [PubMed]
- Schoning, M.J.; Poghossian, A. Bio FEDs (Field-Effect devices): State-of-the-art and new directions. Electroanalysis 2006, 18, 1893–1900. [Google Scholar] [CrossRef]
- Poghossian, A.; Cherstvy, A.; Ingebrandt, S.; Offenhäusser, A.; Schöning, M. Possibilities and limitations of label-free detection of DNA hybridization with field-effect-based devices. Sens. Actuators B Chem. 2005, 111–112, 470480. [Google Scholar]
- Keighley, S.D.; Li, P.; Estrela, P.; Migliorato, P. Optimization of DNA immobilization on gold electrodes for label-free detection by electrochemical impedance spectroscopy. Biosens. Bioelectron. 2008, 23, 1291–1297. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Park, H.; Jung, H.; Shin, J.; Jeong, Y.; Choi, P.; Lee, J.; Lim, G. Field Effect Transistor-based Bimolecular Sensor Employing a Pt Reference Electrode for the Detection of Deoxyribonucleic Acid Sequence. Jpn. J. Appl. Phys. 2004, 43, 3855–3859. [Google Scholar] [CrossRef]
- Han, Y.; Mayer, D.; Offenhausser, A.; Ingebrandt, S. Surface activation of thin silicon oxides by wet cleaning and silanization. Thin Solid Films 2006, 510, 175–180. [Google Scholar] [CrossRef]
- Lillis, B.; Manning, M.; Hurley, E.; Berney, H.; Duane, R.; Mathewson, A.; Sheehan, M.M. Investigation into the effect that probe immobilisation method type has on the analytical signal of an EIS DNA biosensor. Biosens. Bioelectron. 2007, 22, 1289–1295. [Google Scholar] [CrossRef] [PubMed]
- Lin, T.-W.; Kekuda, D.; Chu, C.-W. Label-free detection of DNA using novel organic-based electrolyte-insulator-semiconductor. Biosens. Bioelectron. 2010, 25, 2706–2710. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Subramanian, V. DNA hybridization detection with organic thin film transistors: Toward fast and disposable DNA microarray chips. Biosens. Bioelectron. 2007, 22, 3182–3187. [Google Scholar] [CrossRef] [PubMed]
- Stine, R.; Robinson, J.; Sheehan, P.; Tamanaha, C. Real-Time DNA Detection Using Reduced Graphene Oxide Field Effect Transistors. Adv. Mater. Weinheim 2010, 22, 5297–5300. [Google Scholar] [CrossRef] [PubMed]
- Sorgenfrei, S.; Chiu, C.Y.; Gonzalez, R.L., Jr; Yu, Y.-J.; Kim, P.; Nuckolls, C.; Shepard, K.L. Label-free single-molecule detection of DNA-hybridization kinetics with a carbon nanotube field-effect transistor. Nat. Nanotechnol. 2011, 6, 126–132. [Google Scholar] [CrossRef] [PubMed]
- Star, A.; Tu, E.; Niemann, J.; Gabriel, J.-C.; Joiner, C.; Valcke, C. Label-free detection of DNA hybridization using carbon nanotube network field-effect transistors. Proc. Natl. Acad. Sci. USA 2006, 103, 921–926. [Google Scholar] [CrossRef]
- Kulkarni, G.; Zhong, Z. Detection beyond the Debye screening length in a high-frequency nanoelectronic biosensor. Nano Lett. 2012, 12, 719–723. [Google Scholar] [CrossRef] [PubMed]
- Khan, H.U.; Roberts, M.E.; Johnson, O.; Förch, R.; Knoll, W.; Bao, Z. In situ, label-free DNA detection using organic transistor sensors. Adv. Mater. 2010, 22, 4452–4456. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.-M.; Jha, S.; Chand, R.; Lee, D.-H.; Kim, Y.-S. DNA hybridization sensor based on pentacene thin film transistor. Biosens. Bioelectron. 2011, 26, 2264–2269. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Jagannathan, L.; Subramanian, V. Label-free low-cost disposable DNA hybridization detection systems using organic TFTs. Biosens. Bioelectron. 2010, 25, 972–977. [Google Scholar] [CrossRef] [PubMed]
- Song, K.; Nakamura, Y.; Sasaki, Y.; Degawa, M.; Yang, J.; Kawarada, H. pH-sensitive diamond field-effect transistors (FETs) with directly aminated channel surface. Anal. Chim. Acta 2006, 573, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Barbaro, M.; Bonfiglio, A.; Raffo, L.; Alessandrini, A.; Facci, P.; Barák, I. Fully electronic DNA hybridization detection by a standard CMOS biochip. Sens. Actuators B Chem. 2006, 118, 41–46. [Google Scholar] [CrossRef]
- Janata, J.; Moss, S. Chemically sensitive field effect transistors. Biomed. Eng. 1976, 6, 241–245. [Google Scholar]
- Jimenez-Jorquera, C.; Orozco, J.; Baldi, A. ISFET Based Microsensors for Environmental Monitoring. Sensors 2009, 10, 61–83. [Google Scholar] [PubMed]
- Estrela, P.; Keighley, S.D.; Migliorato, P. Field Effect Potentiometric Biosensors. In Recent Advances in Analytical Electrochemistry; Ozoemena, K.I., Ed.; Transworld Research Network: Kerala, India, 2007; pp. 199–230. [Google Scholar]
- Abramson, R.D.; Myers, T.W. Nucleic acid amplification technologies. Curr. Opin. Biotechnol. 1993, 4, 41–47. [Google Scholar] [PubMed]
- Erlich, H.A.; Gelfand, D.; Sninsky, J.J. Recent advances in the polymerase chain reaction. Science 1991, 252, 1643–1651. [Google Scholar] [CrossRef] [PubMed]
- Arya, M.; Shergill, I.S.; Williamson, M.; Gommersall, L.; Arya, N.; Patel, H.R. Basic principles of real-time quantitative PCR. Expert Rev. Mol. Diagn. 2005, 5, 209–219. [Google Scholar] [CrossRef] [PubMed]
- Mackay, J.; Landt, O. Real-time PCR fluorescent chemistries. Methods Mol. Biol. 2007, 353, 237–261. [Google Scholar] [PubMed]
- Purushothaman, S.; Toumazou, C.; Ou, C. Protons and single nucleotide polymorphism detection: A simple use for the ion sensitive field effect transistor. Sens. Actuators B Chem. 2006, 114, 964–968. [Google Scholar] [CrossRef]
- Priano, G.; Gonzalez, G.; Guenther, M.; Battaglini, F. Disposable Gold Electrode Array for Simultaneous Electrochemical Studies. Electroanalysis 2007, 20, 91–97. [Google Scholar] [CrossRef]
- Sadik, O.A.; Aluoch, A.O.; Zhou, A. Status of biomolecular recognition using electrochemical techniques. Biosens. Bioelectron. 2009, 24, 2749–2765. [Google Scholar] [CrossRef] [PubMed]
- Kivlehan, F.; Mavré, F.; Talini, L.; Limoges, B.; Marchal, D. Real-time electrochemical monitoring of isothermal helicase-dependent amplification of nucleic acids. Analyst 2011, 136, 3635–3642. [Google Scholar] [CrossRef] [PubMed]
- Barquinha, P.; Pereira, L.; Fortunato, E.; Martins, R. Transparent Electronics: From Materials to Devices; John Wiley & Sons Ltd: Hoboken, NJ, USA, 2012. [Google Scholar]
- Fortunato, E.; Barquinha, P.; Martins, R. Oxide Semiconductor Thin-Film Transistors: A Review of Recent Advances. Adv. Mater. 2012, 24, 2945–2986. [Google Scholar] [CrossRef] [PubMed]
- Loi, A.; Basirico, L.; Cosseddu, P.; Lai, S.; Barbaro, M.; Bonfiglio, A.; Maiolino, P.; Baglini, E.; Denei, S.; Mastrogiovanni, F.; et al. Organic Bendable and Stretchable Field Effect Devices for Sensing Applications. IEEE Sens. J. 2013, 13, 4764–4772. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Veigas, B.; Fortunato, E.; Baptista, P.V. Field Effect Sensors for Nucleic Acid Detection: Recent Advances and Future Perspectives. Sensors 2015, 15, 10380-10398. https://doi.org/10.3390/s150510380
Veigas B, Fortunato E, Baptista PV. Field Effect Sensors for Nucleic Acid Detection: Recent Advances and Future Perspectives. Sensors. 2015; 15(5):10380-10398. https://doi.org/10.3390/s150510380
Chicago/Turabian StyleVeigas, Bruno, Elvira Fortunato, and Pedro V. Baptista. 2015. "Field Effect Sensors for Nucleic Acid Detection: Recent Advances and Future Perspectives" Sensors 15, no. 5: 10380-10398. https://doi.org/10.3390/s150510380
APA StyleVeigas, B., Fortunato, E., & Baptista, P. V. (2015). Field Effect Sensors for Nucleic Acid Detection: Recent Advances and Future Perspectives. Sensors, 15(5), 10380-10398. https://doi.org/10.3390/s150510380