Integrating Paper Chromatography with Electrochemical Detection for the Trace Analysis of TNT in Soil
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Sample Preparations
2.3. Measurements
2.4. Paper Probe Characterization
2.5. Soil Sample Analysis
3. Results and Discussion
3.1. Design of the Paper Probe
3.2. Square Wave Chromato-Voltammograms
3.3. Integrating Paper Chromatography
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Santhiago, M.; Kubota, L.T. A new approach for paper-based analytical devices with electrochemical detection based on graphite pencil electrodes. Sens. Actuators B Chem. 2013, 177, 224–230. [Google Scholar] [CrossRef]
- Santhiago, M.; Henry, C.S.; Kubota, L.T. Low cost, simple three dimensional electrochemical paper-based analytical device for determination of p-nitrophenol. Electrochim. Acta 2014, 130, 771–777. [Google Scholar] [CrossRef]
- Nery, E.W.; Kubota, L.T. Sensing approaches on paper-based devices: A review. Anal. Bioanal. Chem. 2013, 405, 7573–7595. [Google Scholar] [CrossRef] [PubMed]
- Liana, D.D.; Raguse, B.; Gooding, J.J.; Chow, E. Recent Advances in Paper-Based Sensors. Sensors 2012, 12, 11505–11526. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.W.; Du, D.; Hua, X.; Yu, X.Y.; Lin, Y.H. Paper-Based Electrochemical Biosensors: From Test Strips to Paper-Based Microfluidics. Electroanalysis 2014, 26, 1214–1223. [Google Scholar] [CrossRef]
- Dungchai, W.; Chailapakul, O.; Henry, C.S. Electrochemical Detection for Paper-Based Microfluidics. Anal. Chem. 2009, 81, 5821–5826. [Google Scholar] [CrossRef] [PubMed]
- Carvalhal, R.F.; Kfouri, M.S.; Piazetta, M.H.D.; Gobbi, A.L.; Kubota, L.T. Electrochemical Detection in a Paper-Based Separation Device. Anal. Chem. 2010, 82, 1162–1165. [Google Scholar] [CrossRef] [PubMed]
- Nie, Z.; Nijhuis, C.A.; Gong, J.; Chen, X.; Kumachev, A.; Martinez, A.W.; Narovlyansky, M.; Whitesides, G.M. Electrochemical sensing in paper-based microfluidic devices. Lab Chip 2010, 10, 477–483. [Google Scholar] [CrossRef] [PubMed]
- Ho, T.D.; Zhang, C.; Hantao, L.W.; Anderson, J.L. Ionic Liquids in Analytical Chemistry: Fundamentals, Advances, and Perspectives. Anal. Chem. 2013, 86, 262–285. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.H.; Vigier, K.D.; Royer, S.; Jerome, F. Deep eutectic solvents: Syntheses, properties and applications. Chem. Soc. Rev. 2012, 41, 7108–7146. [Google Scholar] [CrossRef] [PubMed]
- Shahbaz, K.; Mjalli, F.S.; Hashim, M.A.; ALNashef, I.M. Using Deep Eutectic Solvents for the Removal of Glycerol from Palm Oil-Based Biodiesel. J. Appl. Sci. 2010, 10, 3349–3354. [Google Scholar] [CrossRef]
- Dossi, N.; Toniolo, R.; Terzi, F.; Impellizzieri, F.; Bontempelli, G. Pencil leads doped with electrochemically deposited Ag and AgCl for drawing reference electrodes on paper-based electrochemical devices. Electrochim. Acta 2014, 146, 518–524. [Google Scholar] [CrossRef]
- Galik, M.; O’Mahony, A.M.; Wang, J. Cyclic and Square-Wave Voltammetric Signatures of Nitro-Containing Explosives. Electroanalysis 2011, 23, 1193–1204. [Google Scholar] [CrossRef]
- Johnson, B.; Nasir, M.; Siefert, R.; Leska, I.; Erickson, J.; Charles, P.; Melde, B.; Taft, J. Electrochemical Detection with Preconcentration: Nitroenergetic Contaminants. Chemosensors 2014, 2, 131–144. [Google Scholar] [CrossRef]
- Wang, J. Electrochemical Sensing of Explosives. Electroanalysis 2007, 19, 415–423. [Google Scholar] [CrossRef]
- Trammell, S.A.; Zabetakis, D.; Moore, M.; Verbarg, J.; Stenger, D.A. Square wave voltammetry of TNT at gold electrodes modified with self-assembled monolayers containing aromatic structures. PLoS ONE 2014, 9, e115966. [Google Scholar] [CrossRef] [PubMed]
- Bard, A.J.; Faulkner, L.R. Electrochemical Methods: Fundamentals and Applications; John Wiley & Sons, Inc.: New York, NY, USA, 2001. [Google Scholar]
- Harris, D.C. Quantitative Chemical Analysis, 7th ed.; W.H. Freeman and Co.: New York, NY, USA, 2007; p. 86. [Google Scholar]
- Tabassum, N.; Rafique, U.; Balkhair, K.S.; Ashraf, M.A. Chemodynamics of Methyl Parathion and Ethyl Parathion: Adsorption Models for Sustainable Agriculture. Biomed. Res. Int. 2014, 2014, 831989. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ryan, P.; Zabetakis, D.; Stenger, D.A.; Trammell, S.A. Integrating Paper Chromatography with Electrochemical Detection for the Trace Analysis of TNT in Soil. Sensors 2015, 15, 17048-17056. https://doi.org/10.3390/s150717048
Ryan P, Zabetakis D, Stenger DA, Trammell SA. Integrating Paper Chromatography with Electrochemical Detection for the Trace Analysis of TNT in Soil. Sensors. 2015; 15(7):17048-17056. https://doi.org/10.3390/s150717048
Chicago/Turabian StyleRyan, Patrick, Daniel Zabetakis, David A. Stenger, and Scott A. Trammell. 2015. "Integrating Paper Chromatography with Electrochemical Detection for the Trace Analysis of TNT in Soil" Sensors 15, no. 7: 17048-17056. https://doi.org/10.3390/s150717048
APA StyleRyan, P., Zabetakis, D., Stenger, D. A., & Trammell, S. A. (2015). Integrating Paper Chromatography with Electrochemical Detection for the Trace Analysis of TNT in Soil. Sensors, 15(7), 17048-17056. https://doi.org/10.3390/s150717048