Monitoring of Weekly Sleep Pattern Variations at Home with a Contactless Biomotion Sensor
Abstract
:1. Introduction
2. Subjects and Methods
2.1. Subjects
Number of Participants | 2914 |
Male/Female | 2446/468 |
Age | 47.9 ± 11.6 |
Number of Weeks | 24,899 |
Average Nightly Time in Bed (min) | 414.2 ± 63.4 |
Average Nightly Sleep Efficiency (%) | 87.3 ± 8.2 |
2.2. Contactless Biomotion Sensor
2.3. Web-Based Application
2.4. Data Analysis
3. Results
3.1. All Subjects
Index | Weekdays | Weekend | p |
---|---|---|---|
Bedtime (HH:MM) | 11:46 p.m. ± 87.2 | 00:12 a.m. ± 102.0 | <0.001 |
Wake-up Time (HH:MM) | 06:32 a.m. ± 80.6 | 07:26 a.m. ± 105.0 | <0.001 |
Sleep Midpoint (HH:MM) | 03:09 a.m. ± 77.2 | 03:49 a.m. ± 96.4 | <0.001 |
Time in Bed (min) | 406 ± 65.9 | 434 ± 75.4 | <0.001 |
Total Sleep Time (min) | 354 ± 60.1 | 376 ± 70.2 | <0.001 |
Sleep Efficiency (%) | 87.4 ± 8.2 | 87.1 ± 8.8 | 0.089 |
Initial Sleep Index (min) | 38.8 ± 29.5 | 38.4 ± 33.7 | 0.613 |
3.2. Differences between the Genders and Age Deciles
Index | Sunday | Monday | Tuesday | Wednesday | Thursday | Friday | Saturday |
---|---|---|---|---|---|---|---|
Bedtime (HH:MM) | 11:40 p.m. ± 96.4 | 11:44 p.m. ± 93.2 | 11:47 p.m. ± 93.9 | 11:48 p.m. ± 92.3 | 11:51 p.m. ± 96.5 | 00:15 a.m. ± 107.1 | 00:09 a.m. ± 109.3 |
Wake-up Time (HH:MM) | 06:33 a.m. ± 87.9 | 06:32 a.m. ± 86.3 | 06:31 a.m. ± 86.0 | 06:33 a.m. ± 84.8 | 06:34 a.m. ± 87.6 | 07:21 a.m. ± 109.7 | 07:31 a.m. ± 112.6 |
Sleep Midpoint (HH:MM) | 03:07 a.m. ± 84.0 | 03:08 a.m. ± 81.9 | 03:09 a.m. ± 82.1 | 03:10 a.m. ± 80.5 | 03:12 a.m. ± 84.1 | 03:48 a.m. ±100.0 | 03:50 a.m. ± 102.5 |
Time in Bed (min) | 413 ± 76.3 | 408 ± 73.5 | 404 ± 74.1 | 405 ±74.0 | 402 ± 75.3 | 425 ± 84.1 | 442 ± 85.1 |
Total Sleep Time (min) | 360 ± 70.2 | 354 ± 68.3 | 352 ± 68.6 | 353 ± 68.6 | 351 ± 69.1 | 369 ± 77.7 | 383 ± 80.5 |
Sleep Efficiency (%) | 87.4 ± 9.1 | 87.2 ± 9.2 | 87.5 ± 8.9 | 87.5 ± 9.1 | 87.7 ± 8.8 | 87.1 ± 9.1 | 87.0 ± 9.5 |
Initial Sleep Index (min) | 42.8 ± 42.2 | 39.5 ± 37.8 | 37.5 ± 35.8 | 37.4 ± 36.3 | 36.7 ± 34.4 | 36.0 ± 35.5 | 40.7 ± 41.7 |
3.3. Differences among Weekdays
Age Decile | N | MSmax − MSmed | BTmax − BTmed | WTmax − WTmin |
---|---|---|---|---|
20s | 165 | 47 ± 41 | 61 ± 48 | 46 ± 57 |
30s | 513 | 43 ± 42 | 57 ± 49 | 44 ± 51 |
40s | 960 | 44 ± 53 | 58 ± 61 | 42 ± 58 |
50s | 793 | 38 ± 34 | 52 ± 44 | 37 ± 45 |
60s | 359 | 40 ± 34 | 52 ± 45 | 42 ± 43 |
70s | 124 | 35 ± 25 | 47 ± 40 | 40 ± 29 |
Age Decile | N | MSmax – MSmed ≧ 60 (%) | BTmax – BTmed ≧ 120 (%) | WTmax - WTmed ≧ 120 (%) |
---|---|---|---|---|
20s | 166 | 22.9 ± 1.9 | 12.2 ± 1.1 | 10.3 ± 1.0 |
30s | 523 | 20.3 ± 1.2 | 10.0 ± 0.7 | 10.2 ± 1.0 |
40s | 959 | 19.5 ± 0.8 | 9.4 ± 0.6 | 8.1 ± 0.4 |
50s | 810 | 18.8 ± 0.9 | 10.2 ± 0.7 | 7.1 ± 0.3 |
60s | 360 | 18.0 ± 1.2 | 8.7 ± 0.8 | 6.2 ± 0.7 |
70s | 125 | 18.0 ± 2.2 | 8.7 ± 1.3 | 6.7 ± 1.3 |
4. Discussion
5. Conclusions
Acknowledgements
Author Contributions
Conflicts of Interest
References
- Pablo, V.; Candelaria, R.; Aída, G. Delaying and extending sleep during weekends: Sleep recovery or circadian effect? Chronobiol. Int. 1996, 13, 191–198. [Google Scholar]
- Ling-Ling, T.; Sheng-Ping, L. Sleep patterns in college students: Gender and grade differences. J. Psychosom. Res. 2004, 56, 231–237. [Google Scholar]
- Korczak, A.L.; Martynhak, B.J.; Pedrazzoli, M.; Brito, A.F.; Louzada, F.M. Influence of chronotype and social zeitgebers on sleep/wake patterns. Braz. J. Med. Biol. Res. 2008, 41, 914–919. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Micheal, G.; Amy, R.W.; Allison, G.H.; Lauren, H.; Russell, R.; Charles, A.C. The sleep and technology use of Americans: Findings from the National Sleep Foundation’s 2011 sleep in America poll. J. Clin. Sleep Med. 2013, 9, 1291–1299. [Google Scholar]
- Tadahiro, O.; Yoshitaka, K.; Sayaka, A.; Kazuo, M.; Makoto, U.; Tsuneto, A.; Naohisa, U.; Shigeyuki, N.; Takeshi, M.; Akatsuki, K.; et al. A cross-sectional study of the association between working hours and sleep duration among the Japanese working population. J. Occup. Health 2013, 55, 307–311. [Google Scholar]
- Roenneberg, T.; Wirz-Justice, A.; Merrow, M. Life between Clocks: Daily Temporal Patterns of Human Chronotypes. J. Biol. Rhythms 2003, 18, 80–90. [Google Scholar]
- Wittmann, M.; Dinich, J.; Merrow, M.; Roenneberg, T. Social jetlag: Misalignment of biological and social time. Chronobiol. Int. 2006, 23, 497–509. [Google Scholar]
- Roenneberg, T.; Allebrandt, K.V.; Merrow, M.; Vetter, C. Social jetlag and obesity. Curr. Biol. 2012, 22, 939–943. [Google Scholar]
- Chien-Ming, Y.; Arthur, J.S.; Paul, D’A.; Shiro, S.; Joao, N.; Jason, B. A single dose of melatonin prevents the phase delay associated with a delayed weekend sleep pattern. Sleep 2001, 24, 272–281. [Google Scholar]
- Chien-Ming, Y.; Arthur, J.S. The effect of a delayed weekend sleep pattern on sleep and morning functioning. Psychol. Health 2001, 16, 715–725. [Google Scholar]
- Amanda, T.; Helen, R.W.; Leon, C.L. Sleeping-in on the weekend delays circadian phase and increases sleepiness the following week. Sleep Biol. Rhythms 2008, 6, 172–179. [Google Scholar]
- Szymczak, J.T.; Jasińska, M.; Pawlak, E.; Zwierzykowska, M. Annual and weekly changes in the sleep-wake rhythm of school children. Sleep 1993, 16, 433–435. [Google Scholar] [PubMed]
- Philip, D.C.; Niall, F.; Emer, O’H.; Conor, H.; Alberto, Z.; Patricia, B.; Stephanie, S.; Caroline, O’C.; Walter, T.M. Sleep/wake measurement using a non-contact biomotion sensor. J. Sleep Res. 2011, 20, 356–366. [Google Scholar]
- Masanori, H.; Hiroshi, N.; Masakazu, T.; Toshikazu, S.; Shintaro, C.; Tomoko, Y.; Yuko, O.; Azusa, I.; Minako, K.; Kazuhiko, K. Accuracy validation of sleep measurements by a contactless biomotion sensor on subjects with suspected sleep apnea. Sleep Biol. Rhythms 2014, 12, 106–115. [Google Scholar]
- Emer, O’H.; David, F.; Thomas, P.; Carmen, G.; Daniela, F.; Conor, H. A comparison of radio-frequency biomotion sensors and actigraphy versus polysomnography for the assessment of sleep in normal subjects. Sleep Breath. 2015, 19, 91–98. [Google Scholar]
- Stephanie, J.C.; Mary, A.C. Modifications to weekend recovery sleep delay circadian phase in older adolescents. Chronobiol. Int. 2010, 27, 1469–1492. [Google Scholar]
- Brant, P.H.; Ronald, E.D.; Stephanie, M.H.; Jennifer, L.J.; Neal, D.R.; Jennifer, S.S.; Mary, L.P.; Erika, E.F. Weekend–weekday advances in sleep timing are associated with altered reward-related brain function in healthy adolescents. Biol. Psychol. 2012, 91, 334–341. [Google Scholar]
- Lee, Y.J.; Park, J.; Kim, S.; Cho, S.J.; Kim, S.J. Academic Performance among Adolescents with Behaviorally Induced Insufficient Sleep Syndrome. J. Clin. Sleep Med. 2014, 11, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Stephanie, E.R.; Jeanne, F.D. Differential impact of chronotype on weekday and weekend sleep timing and duration. Nat. Sci. Sleep 2010, 2, 213–220. [Google Scholar]
- Timothy, H.M.; Susan, R.P.; Amy, J.H.; David, J.K. Regularity of daily life in relation to personality, age, gender, sleep quality and circadian rhythms. J. Sleep Res. 1994, 3, 196–205. [Google Scholar]
- Mizue, I.; Sachiko, I.; Akiko, I.; Natsumi, Y.; Yasushi, T.; Tokie, A.; Zentaro, Y.; Osuke, I.; Toyojiro, M. Utility of subjective sleep assessment tools for healthy preschool children: A comparative study between sleep logs, questionnaires, and actigraphy. J. Epidemiol. 2010, 20, 143–149. [Google Scholar]
- Tomohide, K.; Masaya, T.; Tomoaki, S.; Takeshi, S.; Tatsuo, O.; Kenji, I. Weekend sleep intervention for workers with habitually short sleep periods. Scand. J. Work Environ. Health 2011, 37, 418–426. [Google Scholar]
- Adriane, M.S.; Kathy, S.K.; Timothy, H.M. Circadian Preference and Sleep-Wake Regularity: Associations With Self-Report Sleep Parameters in Daytime-Working Adults. Chronobiol. Int. 2011, 28, 802–809. [Google Scholar]
- Colleen, E.C.; Jack, D.E.; Björn, M.; Linda, L.; Tai, I. Daily activities and sleep quality in college students. Chronobiol. Int. 2006, 23, 623–637. [Google Scholar]
- Timothy, H.M.; Charles, F.R.; Daniel, J.B.; Jean, M.D.; David, J.K. The relationship between lifestyle regularity and subjective sleep quality. Chronobiol. Int. 2003, 20, 97–107. [Google Scholar]
- Anna, Z.; Nurit, G.-Y.; Tamar, S. Contribution of routine to sleep quality in community elderly. Sleep 2010, 33, 509–514. [Google Scholar]
- Timothy, H.M.; Daniel, J.B.; Bart, D.B.; Mary, E.F.; Kathy, S.K.; Janet, E.S.; Scott, R.B. Circadian type and bed-timing regularity in 654 retired seniors: Correlations with subjective sleep measures. Sleep 2011, 34, 235–239. [Google Scholar]
- Rachel, M.; Richard, R.B.; Christine, A.; Mary, A.C. The effects of regularizing sleep-wake schedules on daytime sleepiness. Sleep 1996, 19, 432–441. [Google Scholar]
- Helen, J.B.; Charmance, I.E. Early versus late bedtimes phase shift the human dim light melatonin rhythm despite a fixed morning lights on time. Neurosci. Lett. 2004, 356, 115–118. [Google Scholar]
- Rachel, L.; Ulf, H.; Eve, V.C. Circadian misalignment augments markers of insulin resistance and inflammation, independently of sleep loss. Diabetes 2014, 63, 1860–1869. [Google Scholar]
- Yu, J.L.; Seong-Jin, C.; In, H.C.; Seog, J.K. Insufficient Sleep and Suicidality in Adolescents. Sleep 2012, 35, 455–460. [Google Scholar]
- Seung, G.K.; Yu, J.L.; Seog, J.K.; Weonjeong, L.; Heon-Jeong, L.; Young-Min, P.; In, H.C.; Seong-Jin, C.; Jin, P.H. Weekend catch-up sleep is independently associated with suicide attempts and self-injury in Korean adolescents. Compr. Psychiatry 2014, 55, 319–325. [Google Scholar]
- Chan-Won, K.; Min-Kyu, C.; Hyoung-June, I.; Ok-Hyun, K.; Hye-Ja, L.; Jihyun, S.; Jae-Heon, K.; Kyung-Hee, P. Weekend catch-up sleep is associated with decreased risk of being overweight among fifth-grade students with short sleep duration. J. Sleep Res. 2012, 21, 546–551. [Google Scholar]
- Young, H.; Won-Joo, K.; Min, K.C.; Chang-Ho, Y.; Kwang, I.Y. Association between weekend catch-up sleep duration and hypertension in Korean adults. Sleep Med. 2013, 14, 549–554. [Google Scholar]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hashizaki, M.; Nakajima, H.; Kume, K. Monitoring of Weekly Sleep Pattern Variations at Home with a Contactless Biomotion Sensor. Sensors 2015, 15, 18950-18964. https://doi.org/10.3390/s150818950
Hashizaki M, Nakajima H, Kume K. Monitoring of Weekly Sleep Pattern Variations at Home with a Contactless Biomotion Sensor. Sensors. 2015; 15(8):18950-18964. https://doi.org/10.3390/s150818950
Chicago/Turabian StyleHashizaki, Masanori, Hiroshi Nakajima, and Kazuhiko Kume. 2015. "Monitoring of Weekly Sleep Pattern Variations at Home with a Contactless Biomotion Sensor" Sensors 15, no. 8: 18950-18964. https://doi.org/10.3390/s150818950
APA StyleHashizaki, M., Nakajima, H., & Kume, K. (2015). Monitoring of Weekly Sleep Pattern Variations at Home with a Contactless Biomotion Sensor. Sensors, 15(8), 18950-18964. https://doi.org/10.3390/s150818950