Parallax-Robust Surveillance Video Stitching
Abstract
:1. Introduction
2. Related Works
3. Initial Stitching Model Calculation
3.1. Background Image Generation and Feature Extraction
3.2. Layered Warping
Algorithm 1 Layer registration utilizing multiple-layer RANSAC |
Input: Initial pair set , threshold and iteration index ; |
Output: Each layer’s matching pair set and its corresponding homography ; |
repeat |
RANSAC in pair set for model , where ; |
Divide outliers and inliers according to ; |
if then |
Set matching pair set of the k-th layer as ; |
Set homography of the k-th layer as ; |
end if |
Set the pair set of next iteration as ; |
until |
3.3. Optimal Seam Cutting
4. Selective Seam Updating
4.1. Change Detection around Previous Seams
4.2. Seam Updating
4.3. Blending
5. Experiments
5.1. Experimental Settings
5.2. Stitching Still Images
5.3. Stitching Fixed Surveillance Videos
5.4. Time Analysis
Resolution | Stitching with Temporal Varying Homography | Proposed Algorithm without Seam Updating | Proposed Algorithm with Seam Updating |
---|---|---|---|
720p: 1280 × 720 | 4.764 s | 0.051 s | 0.083 s |
480P: 720 × 480 | 2.326 s | 0.035 s | 0.045 s |
CIF: 352 × 288 | 1.025 s | 0.021 s | 0.032 s |
6. Conclusions
Author Contributions
Conflicts of Interest
References
- Brown, M.; Lowe, D. Recognising Panoramas. In Proceedings of the Ninth IEEE International Conference on Computer Vision, Nice, France, 13–16 October 2003; pp. 1218–1225.
- Szeliski, R. Video mosaics for virtual environments. IEEE Comput. Graph. Appl. 1996, 16, 22–30. [Google Scholar] [CrossRef]
- Eden, A.; Uyttendaele, M.; Szeliski, R. Seamless image stitching of scenes with large motions and exposure differences. Comput. Vis. Pattern Recognit. 2006. [Google Scholar] [CrossRef]
- Levin, A.; Zomet, A.; Peleg, S.; Weiss, Y. Seamless Image Stitching in the Gradient Domain; Springer Berlin Heidelberg: Berlin, Germany, 2004; pp. 377–389. [Google Scholar]
- Mills, A.; Dudek, G. Image stitching with dynamic elements. Image Vis. Comput. 2009, 27, 1593–1602. [Google Scholar] [CrossRef]
- Gao, J.; Kim, S.J.; Brown, M.S. Constructing Image Panoramas Using Dual-Homography Warping. In Proceedings of the EEE Conference on Computer Vision and Pattern Recognition (CVPR), Providence, RI, USA, 20–25 June 2011; pp. 49–56.
- Zaragoza, J.; Chin, T.J.; Tran, Q.H.; Brown, M.S.; Suter, D. As-projective-as-possible image stitching with moving DLT. IEEE Trans. Pattern Anal. Mach. Intell. 2014, 36, 1285–1298. [Google Scholar] [PubMed]
- Zhang, F.; Liu, F. Parallax-Tolerant Image Stitching. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Columbus, OH, USA, 23–28 June 2014; pp. 3262–3269.
- Szeliski, R. Image alignment and stitching: A tutorial. Found. Trends Comput. Graph. Vis. 2006, 2, 1–104. [Google Scholar] [CrossRef]
- Agarwala, A.; Dontcheva, M.; Agrawala, M.; Drucker, S.; Colburn, A.; Curless, B.; Salesin, D.; Cohen, M. Interactive digital photomontage. ACM Trans. Graph. 2004, 23, 294–302. [Google Scholar] [CrossRef]
- Hu, J.; Zhang, D.Q.; Yu, H.; Chen, C.W. Discontinuous Seam Cutting for Enhanced Video Stitching. In Proceedings of the IEEE International Conference on Multimedia and Expo (ICME), 29 June–3 July 2015; pp. 1–6.
- Kwatra, V.; Schödl, A.; Essa, I.; Turk, G.; Bobick, A. Graphcut textures: Image and video synthesis using graph cuts. ACM Trans. Graph. 2003, 22, 277–286. [Google Scholar] [CrossRef]
- Steedly, D.; Pal, C.; Szeliski, R. Efficiently Registering Video into Panoramic Mosaics. In Proceedings of the Tenth IEEE International Conference on Computer Vision, Beijing, China, 17–21 October 2005; pp. 1300–1307.
- Hsu, C.T.; Tsan, Y.C. Mosaics of video sequences with moving objects. Signal Process. Image Comm. 2004, 19, 81–98. [Google Scholar] [CrossRef]
- El-Saban, M.; Izz, M.; Kaheel, A. Fast Stitching of Videos Captured from Freely Moving Devices by Exploiting Temporal Redundancy. In Proceedings of the 17th IEEE International Conference on Image Processing (ICIP), Hong Kong, China, 26–29 September 2010; pp. 1193–1196.
- El-Saban, M.; Izz, M.; Kaheel, A.; Refaat, M. Improved Optimal Seam Selection Blending for Fast Video Stitching of Videos Captured from Freely Moving Devices. In Proceedings of 18th IEEE International Conference on the Image Processing (ICIP), Brussels, Belgium, 11–14 September 2011; pp. 1481–1484.
- Okumura, K.I.; Raut, S.; Gu, Q.; Aoyama, T.; Takaki, T.; Ishii, I. Real-Time Feature-Based Video Mosaicing at 500 fps. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Tokyo, Japan, 3–7 November 2013; pp. 2665–2670.
- Au, A.; Liang, J. Ztitch: A Mobile Phone Application for Immersive Panorama Creation, Navigation, and Social Sharing. In Proceedings of the IEEE 14th International Workshop on Multimedia Signal (MMSP), Banff, AB, USA, 17–19 September 2012; pp. 13–18.
- Xiao, J.; Shah, M. Layer-based video registration. Mach. Vis. Appl. 2005, 16, 75–84. [Google Scholar] [CrossRef]
- Liu, H.; Tang, C.; Wu, S.; Wang, H. Real-Time Video Surveillance for Large Scenes. In Proceedings of the International Conference on Wireless Communications and Signal Processing (WCSP), Nanjing, China, 9–11 November 2011; pp. 1–4.
- Zeng, W.; Zhang, H. Depth Adaptive Video Stitching. In Proceedings of the Eighth IEEE/ACIS International Conference on Computer and Information Science, Shanghai, China, 1–3 June 2009; pp. 1100–1105.
- Brown, M.; Lowe, D.G. Automatic panoramic image stitching using invariant features. Int. J. Comput. Vis. 2007, 74, 59–73. [Google Scholar] [CrossRef]
- AutoStitch. Available online: http://cvlab.epfl.ch/ brown/autostitch/autostitch.html (accessed on 18 December 2015).
- Microsoft Image Composite Editor. Available online: http://research.microsoft.com/en-us/um/redmond/groups/ivm/ICE/ (accessed on 18 December 2015).
- Adobe Photoshop CS5. Available online: http://www.adobe.com/products/photoshop (accessed on 18 December 2015).
- Burt, P.J.; Adelson, E.H. A multiresolution spline with application to image mosaics. ACM Trans. Graph. 1983, 2, 217–236. [Google Scholar] [CrossRef]
- Pérez, P.; Gangnet, M.; Blake, A. Poisson image editing. ACM Trans. Graph. 2003, 22, 313–318. [Google Scholar] [CrossRef]
- Chang, C.H.; Sato, Y.; Chuang, Y.Y. Shape-Preserving Half-Projective Warps for Image Stitching. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Columbus, OH, USA, 23–28 June 2014; pp. 3254–3261.
- Alexa, M.; Behr, J.; Cohen-Or, D.; Fleishman, S.; Levin, D.; Silva, C.T. Computing and rendering point set surfaces. IEEE Trans. Vis. Comput. Graph. 2003, 9, 3–15. [Google Scholar] [CrossRef]
- Tennoe, M.; Helgedagsrud, E.; Næss, M.; Alstad, H.K.; Stensland, H.K.; Gaddam, V.R.; Johansen, D.; Griwodz, C.; Halvorsen, P. Efficient Implementation and Processing of a Real-Time Panorama Video Pipeline. In Proceedings of the IEEE International Symposium on Multimedia (ISM), Anaheim, CA, USA, 9–11 December 2013; pp. 76–83.
- Kumar, P.; Dick, A.; Brooks, M.J. Integrated Bayesian Multi-Cue Tracker for Objects Observed from Moving Cameras. In Proceedings of the 23rd International Conference on Image and Vision Computing New Zealand, Christchurch, New Zealand, 26–28 November 2008; pp. 1–6.
- Kumar, P.; Dick, A.; Brooks, M.J. Multiple Target Tracking with an Efficient Compact Colour Correlogram. In Proceedings of the 10th International Conference on Control, Automation, Robotics and Vision, Hanoi, Vietnam, 17–20 December 2008; pp. 699–704.
- Zivkovic, Z. Improved adaptive Gaussian mixture model for background subtraction. Proc. Int. Conf. ICPR Pattern Recognit. 2004, 2, 28–31. [Google Scholar]
- Kumar, P.; Ranganath, S.; Huang, W. Queue Based Fast Background Modelling and Fast Hysteresis Thresholding for Better Foreground Segmentation. In Proceedings of the Fourth Pacific Rim Conference on Multimedia Information, Communications and Signal, Singapore, 15–18 December 2003; pp. 743–747.
- Beis, J.S.; Lowe, D.G. Shape Indexing Using Approximate Nearest-Neighbour Search in High-Dimensional Spaces. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Juan, Territory, 17–19 June 1997; pp. 1000–1006.
- Fischler, M.A.; Bolles, R.C. Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Comm. ACM 1981, 24, 381–395. [Google Scholar] [CrossRef]
- Szeliski, R.; Zabih, R.; Scharstein, D.; Veksler, O.; Kolmogorov, V.; Agarwala, A.; Tappen, M.; Rother, C. A comparative study of energy minimization methods for markov random fields with smoothness-based priors. IEEE Trans. Pattern Anal. Mach. Intell. 2008, 30, 1068–1080. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, B.; Yu, S. Parallax-Robust Surveillance Video Stitching. Sensors 2016, 16, 7. https://doi.org/10.3390/s16010007
He B, Yu S. Parallax-Robust Surveillance Video Stitching. Sensors. 2016; 16(1):7. https://doi.org/10.3390/s16010007
Chicago/Turabian StyleHe, Botao, and Shaohua Yu. 2016. "Parallax-Robust Surveillance Video Stitching" Sensors 16, no. 1: 7. https://doi.org/10.3390/s16010007
APA StyleHe, B., & Yu, S. (2016). Parallax-Robust Surveillance Video Stitching. Sensors, 16(1), 7. https://doi.org/10.3390/s16010007