Electrocardiogram Signal Denoising Using Extreme-Point Symmetric Mode Decomposition and Nonlocal Means
Abstract
:1. Introduction
2. Method
2.1. ESMD-Based ECG Signal Decomposition
2.2. QRS Detection
2.3. NLM Denoising of IMFs
3. Implementation of Our Method
4. Experimental Results
4.1. Parameter Setting
4.2. Comparison of Restoration Performance
4.2.1. Comparison Based on the Simulated ECG Signals
4.2.2. Comparison Based on the Real ECG Signals
4.3. Comparison of Computational Efficiency
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
ECG | electrocardiogram |
NLM | nonlocal means |
EMD | empirical mode decomposition |
EEMD | ensemble empirical mode decomposition |
ESMD | extreme-point symmetric mode decomposition |
VMD | variational mode decomposition |
IMFs | intrinsic mode functions |
AGM | adaptive global mean |
MA | muscle artifact |
EM | electrode movements |
WAV | wavelet transform |
MED | median filter |
PRD | percent root mean square difference |
SNR | signal-to-noise ratio |
PSNR | peak signal-to-noise ratio |
RMSE | root mean square error |
MOS | mean opinion score |
References
- Tseng, K.; He, X.; Kung, W.; Chen, S.; Liao, M.; Huang, H. Wavelet-based watermarking and compression for ECG signals with verification evaluation. Sensors 2014, 14, 3721–3736. [Google Scholar] [CrossRef] [PubMed]
- Liang, W.; Zhang, Y.; Tan, J.; Li, Y. A novel approach to ECG classification based upon two-layered HMMs in body sensor networks. Sensors 2014, 14, 5994–6011. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.; Wei, H.; Chen, Y.; Tan, J. A real-time cardiac arrhythmia classification system with wearable sensor networks. Sensors 2012, 12, 12844–12869. [Google Scholar] [CrossRef] [PubMed]
- Sørensen, J.S.; Johannesen, L.; Grove, U.S.L.; Lundhus, K.; Couderc, J.P.; Graff, C. A comparison of IIR and WT filtering for noise reduction of the ECG. Comput. Cardiol. 2010, 37, 489–492. [Google Scholar]
- Nikolaev, N.; Gotchev, A.; Egiazarian, K.; Nikolov, Z. Suppression of electromyogram interference on the electrocardiogram by transform domain denoising. Med. Biol. Eng. Comput. 2001, 39, 649–655. [Google Scholar] [CrossRef] [PubMed]
- Tukey, J.W. Nonlinear (nonsuperposable) methods for smoothing data. In Proceedings of the Congress Record EASCON, Washington, DC, USA, 7–9 October 1974; pp. 673–681.
- Sameni, R.; Shamsollahi, M.B.; Jutten, C.; Clifford, G.D. A nonlinear Bayesian filtering framework for ECG denoising. IEEE Trans. Biomed. Eng. 2007, 54, 2172–2185. [Google Scholar] [CrossRef] [PubMed]
- Sayadi, O.; Shamsollahi, M.B. ECG denoising and compression using a modified extended Kalman filter structure. IEEE Trans. Biomed. Eng. 2008, 55, 2240–2248. [Google Scholar] [CrossRef] [PubMed]
- Javed, S.; Ahmad, N.A. Noise cancelation from ECG signals using householder-RLS adaptive filter. In Proceedings of the 8th International Conference on Robotic, Vision, Signal Processing & Power Applications, Penang, Malaysia, 10–12 November 2013; pp. 73–79.
- Awal, M.A.; Mostafa, S.S.; Ahmad, M.; Rashid, M.A. An adaptive level dependent wavelet thresholding for ECG denoising. Biocybern. Biomed. Eng. 2014, 34, 238–249. [Google Scholar] [CrossRef]
- Smital, L.; Vítek, M.; Kozumplík, J. Adaptive wavelet wiener filtering of ECG signals. IEEE Trans. Biomed. Eng. 2013, 60, 437–445. [Google Scholar] [CrossRef] [PubMed]
- Kabir, M.A.; Shahnaz, C. Denoising of ECG signals based on noise reduction algorithms in EMD and wavelet domains. Biomed. Signal Process. Control 2012, 7, 481–489. [Google Scholar] [CrossRef]
- El-Dahshan, E.S.A. Genetic algorithm and WT hybrid scheme for ECG signal denoising. Telecommun. Syst. 2011, 46, 209–215. [Google Scholar] [CrossRef]
- Poornachandra, S. Wavelet-based denoising using subband dependent threshold for ECG signals. Digit. Signal Process. 2008, 18, 49–55. [Google Scholar] [CrossRef]
- Das, M.K.; Ari, S. Analysis of ECG signal denoising method based on S-transform. IRBM 2013, 34, 362–370. [Google Scholar] [CrossRef]
- Weng, B.; Blanco-Velasco, M.; Barner, K.E. ECG denoising based on the empirical mode decomposition. In Proceedings of the 28th IEEE EMBS Annual International Conference, New York, NY, USA, 30 August–3 September 2006; pp. 1–4.
- Chang, K. Arrhythmia ECG noise reduction by ensemble empirical mode decomposition. Sensors 2010, 10, 6063–6080. [Google Scholar] [CrossRef] [PubMed]
- Chang, K.; Liu, S. Gaussian noise filtering from ECG by Wiener filter and ensemble empirical mode decomposition. J. Signal Process. Syst. 2011, 64, 249–264. [Google Scholar] [CrossRef]
- Dragomiretskiy, K.; Zosso, D. Variational mode decomposition. IEEE Trans. Signal Process. 2014, 62, 531–544. [Google Scholar] [CrossRef]
- Barros, A.K.; Mansour, A.; Ohnishi, N. Removing artifacts from electrocardiographic signals using independent component analysis. Neurocomputing 1998, 22, 173–186. [Google Scholar] [CrossRef]
- Moody, G.B.; Mark, R.G. QRS morphology representation and noise estimation using the Karhunen-Lève transform. In Proceedings of the Computer in Cardiology, Jerusalem, Israel, 19–22 September 1989; pp. 269–272.
- Clifford, G.; Tarassenko, L.; Townsend, N. One-pass training of optimal architecture auto-associative neural network for detecting ectopic beats. Electron. Lett. 2001, 37, 1–2. [Google Scholar] [CrossRef]
- Buades, A.; Coll, B.; Morel, J.M. A review of image denoising algorithms, with a new one. Multiscale Model. Simul. 2005, 4, 490–530. [Google Scholar] [CrossRef]
- Tracey, B.H.; Miller, E.L. Nonlocal means denoising of ECG signals. IEEE Trans Biomed Eng. 2012, 59, 2383–2386. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Li, Z. Extreme-point symmetric mode decomposition method for data analysis. Adv. Adapt. Data Anal. 2013, 5, 1350015. [Google Scholar] [CrossRef]
- Duval, V.; Aujol, J.F.; Gousseau, Y. A bias-variance approach for the nonlocal means. SIAM J. Imaging Sci. 2011, 4, 760–788. [Google Scholar] [CrossRef]
- Tasdizen, T. Principal neighborhood dictionaries for nonlocal means image denoising. IEEE Trans. Image Process. 2009, 18, 2649–2660. [Google Scholar] [CrossRef] [PubMed]
- Kervrann, C.; Boulanger, J. Local adaptivity to variable smoothness for exemplar-based image regularization and representation. Int. J. Comput. Vision 2008, 79, 45–69. [Google Scholar] [CrossRef]
- PhysioBank Databases. Available online: http://physionet.org/physiobank/database/#ecg (accessed on 15 August 2015).
- Alesanco, Á.; García, J. Automatic real-time ECG coding methodology guaranteeing signal interpretation quality. IEEE Trans. Biomed. Eng. 2008, 55, 2519–2527. [Google Scholar] [CrossRef] [PubMed]
The First Group | The Second Group | ||||||||
---|---|---|---|---|---|---|---|---|---|
ESMD-NLM | NLM | VMD | EEMD | MED | ESMD-NLM | NLM | VMD | EEMD | MED |
10 | 15 | 20 | 25 | 30 | 10 | 20 | 25 | 25 | 30 |
Metrics | ESMD-NLM | NLM | VMD | EEMD |
---|---|---|---|---|
PRD | 13.405 | 14.734 | 17.689 | 18.317 |
SNR | 17.455 | 16.634 | 15.046 | 14.743 |
RMSE | 5.491 | 6.036 | 7.247 | 7.504 |
MOSerror | 20 | 30 | 55 | 60 |
Data | Methods | ||||
---|---|---|---|---|---|
ESMD-NLM | NLM | EEMD | VMD | MED | |
100m | 4.33 | 3.33 | 2.33 | 2.67 | 2.33 |
Sel100m | 5 | 4 | 2.67 | 3 | 2.33 |
13420_12m | 4.67 | 3.33 | 2 | 2.67 | 2 |
Methods | Data | |||||
---|---|---|---|---|---|---|
111m | 221m | Sel117m | Sel114m | 13649_04m | 12713_04m | |
ESMD-NLM | 5 | 4.67 | 5 | 5 | 4.33 | 5 |
NLM | 3.33 | 3.33 | 3.67 | 4.67 | 3.33 | 3 |
The Clinical ECG Signals | ESMD-NLM | NLM | VMD | EEMD |
---|---|---|---|---|
The first group (100m.dat) | 65.586 | 11.17 | 21.405 | 407.167 |
The second group (sel100m.dat) | 56.31 | 10.334 | 15.361 | 1107.875 |
The third group (13420_12m.dat) | 54.346 | 11.591 | 17.36 | 764.325 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, X.; Li, Y.; Zhou, H.; Li, X.; Chen, L.; Zhang, X. Electrocardiogram Signal Denoising Using Extreme-Point Symmetric Mode Decomposition and Nonlocal Means. Sensors 2016, 16, 1584. https://doi.org/10.3390/s16101584
Tian X, Li Y, Zhou H, Li X, Chen L, Zhang X. Electrocardiogram Signal Denoising Using Extreme-Point Symmetric Mode Decomposition and Nonlocal Means. Sensors. 2016; 16(10):1584. https://doi.org/10.3390/s16101584
Chicago/Turabian StyleTian, Xiaoying, Yongshuai Li, Huan Zhou, Xiang Li, Lisha Chen, and Xuming Zhang. 2016. "Electrocardiogram Signal Denoising Using Extreme-Point Symmetric Mode Decomposition and Nonlocal Means" Sensors 16, no. 10: 1584. https://doi.org/10.3390/s16101584
APA StyleTian, X., Li, Y., Zhou, H., Li, X., Chen, L., & Zhang, X. (2016). Electrocardiogram Signal Denoising Using Extreme-Point Symmetric Mode Decomposition and Nonlocal Means. Sensors, 16(10), 1584. https://doi.org/10.3390/s16101584