A Portable Smart-Phone Readout Device for the Detection of Mercury Contamination Based on an Aptamer-Assay Nanosensor
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Apparatus
2.2. Synthesis of Gold Nanoparticles (AuNPs)
2.3. Design of the Smartphone-Based Microwell Reader (MR S-Phone) Attachment
2.4. Colorimetric Detection of Hg2+
2.5. Procedure of Hg2+ Detection Using the Synergy H1 Hybrid Multi-Mode Microplate Reader and the MR S-Phone System
3. Results and Discussion
3.1. Overview of the Smartphone-Based Microwell Reader (MR S-Phone) Attachment
3.2. The Principle of the MR S-Phone-Based Hg2+ Colorimetric Detection System
3.3. AuNP-Based Aptamer-Assay for Detection of Hg2+
3.4. The Performance of the MR S-Phone System for Hg2+ Detection
3.5. The Selectivity of the MR S-Phone System
3.6. Analysis of Samples
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Stohs, S.J.; Bagchi, D. Oxidative mechanisms in the toxicity of metal ions. Free Radic. Biol. Med. 1995, 18, 321–336. [Google Scholar] [CrossRef]
- Harris, H.H.; Pickering, I.J.; George, G.N. The chemical form of mercury in fish. Science 2003, 301, 1203–1203. [Google Scholar] [CrossRef] [PubMed]
- Bensefa-Colas, L.; Andujar, P.; Descatha, A. Mercury poisoning. La Revue De Médecine Interne 2011, 32, 416–424. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Deng, B.; Chen, H.; Wang, X.; Zheng, J. Removal of aqueous Hg(II) by polyaniline: Sorption characteristics and mechanisms. Environ. Sci. Technol. 2009, 43, 5223–5228. [Google Scholar] [CrossRef] [PubMed]
- Qu, R.; Wang, M.; Song, R.; Sun, C.; Ying, Z.; Sun, X.; Ji, C.; Wang, C.; Ping, Y. Adsorption kinetics and isotherms of Ag(I) and Hg(II) onto silica gel with functional groups of hydroxyl- or amino-terminated polyamines. J. Chem. Eng. Data 2011, 56, 1982–1990. [Google Scholar] [CrossRef]
- Pirrone, N.; Cinnirella, S.; Feng, X.; Finkelman, R.B.; Friedli, H.R.; Leaner, J.; Mason, R.; Mukherjee, A.B.; Stracher, G.; Streets, D.G. Global mercury emissions to the atmosphere from anthropogenic and natural sources. Atmos. Chem. Phys. 2010, 10, 5951–5964. [Google Scholar] [CrossRef]
- Pacyna, E.G.; Pacyna, J.M.; Steenhuisen, F.; Wilson, S. Global anthropogenic mercury emission inventory for 2000. Atmos. Environ. 2006, 40, 4048–4063. [Google Scholar] [CrossRef]
- Nolan, E.M.; Lippard, S.J. Tools and tactics for the optical detection of mercuric ion. Chem. Rev. 2008, 108, 3443–3480. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.; Yuan, T.; Wang, W.; Jia, J.; Lin, X.; Qu, L.; Ding, Z. Mercury pollution in two typical areas in Guizhou province, China and its neurotoxic effects in the brains of rats fed with local polluted rice. Environ. Geochem. Health 2006, 28, 499–507. [Google Scholar] [CrossRef] [PubMed]
- Almeida, I.L.S.; Coelho, N.M.M. Direct determination of inorganic mercury in ethanol fuel by cold vapor atomic absorption spectrometry. Energy Fuels 2012, 26, 6003–6007. [Google Scholar] [CrossRef]
- Li, Y.; Jiang, Y.; Yan, X.P.; Ni, Z.M. Determination of trace mercury in environmental and foods samples by online coupling of flow injection displacement sorption preconcentration to electrothermal atomic absorption spectrometry. Environ. Sci. Technol. 2002, 36, 4886–4891. [Google Scholar] [CrossRef]
- Ma, R.P.M.; Gil, E.P.; Blázquez, L.C.; Capelo-Martínez, J.L. Determination of trace and major elemental profiles in street dust samples by fast miniaturized ultrasonic probe extraction and ICP-MS. Talanta 2011, 84, 840–845. [Google Scholar]
- Ta, C.; Reith, F.; Brugger, J.; Pring, A.; Lenehan, C.E. Analysis of gold(I/III)-complexes by HPLC-ICP-MS demonstrates gold(III) stability in surface waters. Environ. Sci. Technol. 2014, 48, 5737–5744. [Google Scholar] [CrossRef] [PubMed]
- Lan, M.; Zhang, J.; Chui, Y.S.; Wang, P.; Chen, X.; Lee, C.S.; Kwong, H.L.; Zhang, W. Carbon nanoparticle-based ratiometric fluorescent sensor for detecting mercury ions in aqueous media and living cells. ACS Appl. Mater. Interfaces 2014, 6, 21270–21278. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Liu, H.; Lan, C.; Fu, Q.; Huang, C.; Luo, Z.; Jiang, T.; Tang, Y. Silver nanoparticle enhanced raman scattering-based lateral flow immunoassays for ultra-sensitive detection of the heavy metal chromium. Nanotechnology 2014, 25, 495501–495509. [Google Scholar] [CrossRef] [PubMed]
- Fu, Q.Q.; Tang, Y.; Shi, C.Y.; Zhang, X.L.; Xiang, J.J.; Liu, X. A novel fluorescence-quenching immunochromatographic sensor for detection of the heavy metal chromium. Biosens. Bioelectron. 2013, 49, 399–402. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Wu, Y.; Niu, Z.; Vollmer, F. Integrating a DNA strand displacement reaction with a whispering gallery mode sensor for label-free mercury (II) ion detection. Sensors 2016, 16, 1197. [Google Scholar] [CrossRef] [PubMed]
- Dong, Z.M.; Zhao, G.C. Quartz crystal microbalance aptasensor for sensitive detection of mercury (II) based on signal amplification with gold nanoparticles. Sensors 2012, 12, 7080–7094. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Mi, S.; Wei, X.; Zhang, L.; Yun, Z. An electrochemical aptamer biosensor based on “gate-controlled” effect using β-cyclodextrin for ultra-sensitive detection of trace mercury. Biosens. Bioelectron. 2015, 74, 423–426. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Kang, M.; Fang, S.; Wang, M.; He, L.; Zhao, J.; Zhang, H.; Zhang, Z. Electrochemical biosensor based on three-dimensional reduced graphene oxide and polyaniline nanocomposite for selective detection of mercury ions. Sens. Actuators B Chem. 2015, 214, 63–69. [Google Scholar] [CrossRef]
- Du, J.; Lin, J.; Shao, Q.; Liu, X.; Marks, R.S.; Ma, J.; Chen, X. Colorimetric detection of mercury ions based on plasmonic nanoparticles. Small 2012, 9, 1467–1481. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.I.; Choo, J.B. Selective trace analysis of mercury (II) ions in aqueous media using sers-based aptamer sensor. Bull. Korean Chem. Soc. 2011, 32, 2003–2007. [Google Scholar] [CrossRef]
- Chen, C.; Wang, R.; Guo, L.; Fu, N.; Dong, H.; Yuan, Y. A squaraine-based colorimetric and “turn on” fluorescent sensor for selective detection of Hg2+ in an aqueous medium. Org. Lett. 2011, 13, 1162–1165. [Google Scholar] [CrossRef] [PubMed]
- Du, J.; Wang, Z.; Fan, J.; Peng, X. Gold nanoparticle-based colorimetric detection of mercury ion via coordination chemistry. Sens. Actuators B Chem. 2015, 212, 481–486. [Google Scholar] [CrossRef]
- Tan, H.; Liu, B.; Chen, Y. Lanthanide coordination polymer nanoparticles for sensing of mercury (II) by photoinduced electron transfer. ACS Nano 2012, 6, 10505–10511. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Li, N.; Dong, J.X.; Luo, H.Q.; Li, N.B. Fluorescence detection of mercury ions and cysteine based on magnesium and nitrogen co-doped carbon quantum dots and implication logic gate operation. Sens. Actuators B Chem. 2016, 231, 147–153. [Google Scholar] [CrossRef]
- Vashist, S.K.; Luppa, P.B.; Yeo, L.Y.; Ozcan, A.; Luong, J.H.T. Emerging technologies for next-generation point-of-care testing. Trends Biotechnol. 2015, 33, 692–705. [Google Scholar] [CrossRef] [PubMed]
- Coskun, A.F.; Wong, J.; Khodadadi, D.; Nagi, R.; Tey, A.; Ozcan, A. A personalized food allergen testing platform on a cellphone. Lab Chip 2013, 13, 636–640. [Google Scholar] [CrossRef] [PubMed]
- Coskun, A.F.; Ozcan, A. Computational imaging, sensing and diagnostics for global health applications. Curr. Opin. Biotechnol. 2014, 25C, 8–16. [Google Scholar] [CrossRef] [PubMed]
- Preechaburana, P.; Suska, A.; Filippini, D. Biosensing with cell phones. Trends Biotechnol. 2014, 32, 351–355. [Google Scholar] [CrossRef] [PubMed]
- Gopinath, S.C.B.; Tang, T.H.; Chen, Y.; Citartan, M.; Lakshmipriya, T. Bacterial detection: From microscope to smartphone. Biosens. Bioelectron. 2014, 60C, 332–342. [Google Scholar] [CrossRef] [PubMed]
- Erickson, D.; O’Dell, D.; Jiang, L.; Oncescu, V.; Gumus, A.; Lee, S.; Mancuso, M.; Mehta, S. Smartphone technology can be transformative to the deployment of lab-on-chip diagnostics. Lab Chip 2014, 14, 3159–3164. [Google Scholar] [CrossRef] [PubMed]
- Vashist, S.K.; Oordt, T.V.; Schneider, E.M.; Zengerle, R.; Stetten, F.V.; Luong, J.H.T. A smartphone-based colorimetric reader for bioanalytical applications using the screen-based bottom illumination provided by gadgets. Biosens. Bioelectron. 2014, 67, 248–255. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Jing, J.; Chen, J.; Qian, Z.; Lu, Y.; Yao, Y.; Shuang, L.; Gang, L.L.; Liu, Q. Smartphone-based portable biosensing system using impedance measurement with printed electrodes for 2,4,6-trinitrotoluene (TNT) detection. Biosens. Bioelectron. 2015, 70, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Li, B.; Xu, F.; Shi, X.; Feng, D.; Wei, D.; Li, Y.; Feng, Y.; Wang, Y.; Jia, D. High-yield synthesis of strong photoluminescent n-doped carbon nanodots derived from hydrosoluble chitosan for mercury ion sensing via smartphone app. Biosens. Bioelectron. 2015, 79, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Liao, S.C.; Peng, J.; Mauk, M.G.; Awasthi, S.; Song, J.; Friedman, H.; Bau, H.H.; Liu, C. Smart cup: A minimally-instrumented, smartphone-based point-of-care molecular diagnostic device. Sens. Actuators B Chem. 2016, 229, 232–238. [Google Scholar] [CrossRef] [PubMed]
- Wei, Q.; Nagi, R.; Sadeghi, K.; Feng, S.; Yan, E.; Ki, S.J.; Caire, R.; Tseng, D.; Ozcan, A. Detection and spatial mapping of mercury contamination in water samples using a smart-phone. ACS Nano 2014, 8, 1121–1129. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, A.I.; Gehlot, P.; Sidapra, K.; Edwards, A.D.; Reis, N.M. Portable smartphone quantitation of prostate specific antigen (PSA) in a fluoropolymer microfluidic device. Biosens. Bioelectron. 2015, 70, 5–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, Q.; Wu, Z.; Li, X.; Yao, C.; Yu, S.; Xiao, X.; Tang, Y. Novel versatile smart phone based microplate readers for on-site diagnoses. Biosens. Bioelectron. 2016, 81, 524–531. [Google Scholar] [CrossRef] [PubMed]
- Qiang, F.Q.; Wu, Z.; Xu, F.; Li, X.; Yao, C.; Yu, S.; Xu, M.; Tang, Y.; Sheng, L. A portable smart phone based plasmonic nanosensor readout platform that measures transmitted light intensities of nanosub-strates using an ambient light sensor. Lab Chip 2016, 16, 1927–1933. [Google Scholar]
- Wang, H.; Wang, Y.; Jin, J.; Yang, R. Gold nanoparticle-based colorimetric and “turn-on” fluorescent probe for mercury (II) ions in aqueous solution. Anal. Chem. 2008, 80, 9021–9028. [Google Scholar] [CrossRef] [PubMed]
- El, K.A.; Atoui, A. Ochratoxin A: General overview and actual molecular status. Toxins 2010, 2, 461–493. [Google Scholar]
- Aragay, G.; Pons, J.; Merkoçi, A. Recent trends in macro-, micro-, and nanomaterial-based tools and strategies for heavy-metal detection. Chem. Rev. 2011, 111, 3433–3458. [Google Scholar] [CrossRef] [PubMed]
- Grabar, K.C.; Freeman, R.G.; Hommer, M.B.; Natan, M.J. Preparation and characterization of Au colloid monolayers. Anal. Chem. 1995, 67, 735–743. [Google Scholar] [CrossRef]
- Li, L.; Li, B.; Qi, Y.; Jin, Y. Label-free aptamer-based colorimetric detection of mercury ions in aqueous media using unmodified gold nanoparticles as colorimetric probe. Anal. Bioanal. Chem. 2009, 393, 2051–2057. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Rothberg, L. Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles. Proc. Natl. Acad. Sci. USA 2004, 101, 14036–14039. [Google Scholar] [CrossRef] [PubMed]
Sample | Spiked Concentrations (ng/mL) | Result of ICP-MS (ng/mL) | Recovery of ICP-MS (%) | Result of the MR S-Phone (ng/mL) | Recovery of the MR S-Phone (%) | Coefficient of Variation (%) |
---|---|---|---|---|---|---|
Tap Water | 1 | 0.98 | 98 | 0.97 ± 0.01 | 97 | 1.0 |
10 | 10.1 | 101 | 11.4 ± 0.06 | 113 | 0.5 | |
20 | 21 | 105 | 18.6 ± 0.17 | 93 | 0.9 | |
30 | 29.7 | 99 | 30.8 ± 0.15 | 102 | 0.5 | |
Pearl River | 2 | 1.9 | 95 | 2.2 ± 0.1 | 110 | 4.5 |
13 | 12.4 | 95.4 | 13.8 ± 0.15 | 105 | 1.1 | |
22 | 22.3 | 101 | 22.3 ± 0.2 | 101 | 0.9 | |
31 | 30.8 | 99.4 | 31.1 ± 0.25 | 103 | 0.8 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, W.; Xiao, M.; Fu, Q.; Yu, S.; Shen, H.; Bian, H.; Tang, Y. A Portable Smart-Phone Readout Device for the Detection of Mercury Contamination Based on an Aptamer-Assay Nanosensor. Sensors 2016, 16, 1871. https://doi.org/10.3390/s16111871
Xiao W, Xiao M, Fu Q, Yu S, Shen H, Bian H, Tang Y. A Portable Smart-Phone Readout Device for the Detection of Mercury Contamination Based on an Aptamer-Assay Nanosensor. Sensors. 2016; 16(11):1871. https://doi.org/10.3390/s16111871
Chicago/Turabian StyleXiao, Wei, Meng Xiao, Qiangqiang Fu, Shiting Yu, Haicong Shen, Hongfen Bian, and Yong Tang. 2016. "A Portable Smart-Phone Readout Device for the Detection of Mercury Contamination Based on an Aptamer-Assay Nanosensor" Sensors 16, no. 11: 1871. https://doi.org/10.3390/s16111871
APA StyleXiao, W., Xiao, M., Fu, Q., Yu, S., Shen, H., Bian, H., & Tang, Y. (2016). A Portable Smart-Phone Readout Device for the Detection of Mercury Contamination Based on an Aptamer-Assay Nanosensor. Sensors, 16(11), 1871. https://doi.org/10.3390/s16111871