An Alternative Approach for Registration of
High-Resolution Satellite Optical Imagery and ICESat Laser Altimetry Data
Abstract
:1. Introduction
2. Point-to-Line Registration of Satellite Optical Images and ICESat Altimetry Data
2.1. Extraction of Matching Primitives
2.2. Discrepancy Correction and Data Registration
- (a)
- , translation model with two parameters.
- (b)
- , translation and scale model with four parameters.
- (c)
- , similarity transformation model with four parameters.
- (d)
- , affine model with six parameters.
2.3. Imaging Model Regeneration for Optical Images
- (1)
- Establishment of a three-dimensional (3D) lattice in ground space. The lattice contains m × n × k (m and n represent the number of rows and columns in horizontal plane and k is the number of elevation layers) virtual object points. The dimension of the lattice should cover the range of the 3D terrain surface within the full extent of the image. To achieve a robust and accurate solution, the number of elevation layers should be greater than three, and the total number of object points should be adequate enough (e.g., 100) considering 78 to-be-solved RPC parameters.
- (2)
- Determination of the corresponding image points with the bias being corrected. The virtual object points are projected into image space by using the original imaging model and are corrected by use of the image offset model parameters obtained in Section 2.2 to get the corrected image points.
- (3)
- RFM fitting. The new bias-free RPC parameters are then solved using the corresponding image and object grid points by least-square adjustment, during which the original RPCs (if available) serve as initial values.
3. Experiments and Analysis
3.1. Data Used
3.2. Matching Primitives Extraction
3.3. Registration Results
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Shepherd, A.; Ivins, E.R.; Geruo, A.; Barletta, V.R.; Bentley, M.J.; Bettadpur, S.; Briggs, K.H.; Bromwich, D.H.; Forsberg, R.; Galin, N.; et al. A Reconciled Estimate of Ice-Sheet Mass Balance. Science 2012, 338, 1183–1189. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Zhou, C.; Deng, F.; Dongchen, E.; Liu, H.; Wen, Y. Improving InSAR elevation models in Antarctica using laser altimetry, accounting for ice motion, orbital errors and atmospheric delays. Remote Sens. Environ. 2015, 162, 112–118. [Google Scholar] [CrossRef]
- Zwally, H.J.; Bindschadler, R.A.; Brenner, A.C.; Major, J.A.; Marsh, J.G. Growth of Greenland ice sheet: Measurement. Science 1989, 246, 1587–1589. [Google Scholar] [CrossRef] [PubMed]
- Zwally, H.J.; Schutz, B.; Abdalati, W.; Abshire, J.; Bentley, C.; Brenner, A.; Bufton, J.; Dezio, J.; Hancock, D.; Harding, D.; et al. ICESat’s laser measurements of polar ice, atmosphere, ocean, and land. J. Geodyn. 2002, 34, 405–445. [Google Scholar] [CrossRef]
- Kääb, A. Glacier volume changes using ASTER satellite stereo and ICESat GLAS laser altimetry. A test study on Edgeøya, Eastern Svalbard. IEEE Trans. Geosci. Remote Sens. 2008, 46, 2823–2830. [Google Scholar] [CrossRef]
- Bamber, J.L.; Gomez-Dans, J.L.; Griggs, J.A. A new 1 km digital elevation model of the Antarctic derived from combined satellite radar and laser data—Part 1: Data and methods. Cryosphere 2009, 3, 101–111. [Google Scholar] [CrossRef] [Green Version]
- Brunt, K.M.; Fricker, H.A.; Padman, L.; Scambos, T.A.; O’NEEl, S. Mapping the grounding zone of the Ross Ice Shelf, Antarctica, using ICESat laser altimetry. Ann. Glaciol. 2010, 51, 71–79. [Google Scholar] [CrossRef]
- Young, D.A.; Kempf, S.D.; Blankenship, D.D.; Holt, J.W.; Morse, D.L. New airborne laser altimetry over the Thwaites Glacier catchment, West Antarctica. Geochem. Geophy. Geosy. 2008, 9. [Google Scholar] [CrossRef]
- Abrams, M. The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER): Data products for the high spatial resolution imager on NASA’s Terra platform. Int. J. Remote Sens. 2000, 21, 847–859. [Google Scholar] [CrossRef]
- Rivera, A.; Casassa, G.; Bamber, J.; Kääb, A. Ice-Elevation changes of Glaciar Chico, southern Patagonia, using ASTER DEMs, aerial photographs and GPS data. J. Glaciol. 2005, 51, 105–112. [Google Scholar] [CrossRef]
- Berthier, E.; Arnaud, Y.; Kumar, R.; Ahmad, S.; Wagnon, P.; Chevallier, P. Remote sensing estimates of glacier mass balances in the Himachal Pradesh (Western Himalaya, India). Remote Sens. Environ. 2007, 108, 327–338. [Google Scholar] [CrossRef] [Green Version]
- Berthier, E.; Toutin, T. SPOT5-HRS digital elevation models and the monitoring of glacier elevation changes in North-West Canada and South-East Alaska. Remote Sens. Environ. 2008, 112, 2443–2454. [Google Scholar] [CrossRef]
- Vignon, F.; Arnaud, Y.; Kaser, G. Quantification of glacier volume change using topographic and ASTER DEMs. In Proceeding of the IEEE International Geoscience and Remote Sensing Symposium, Toulouse, France, 21–25 July 2003; pp. 2605–2607.
- Wu, B.; Guo, J.; Hu, H.; Li, Z.; Chen, Y. Co-Registration of lunar topographic models derived from Chang’E-1, SELENE, and LRO laser altimeter data based on a novel surface matching method. Earth Planet. Sci. Lett. 2013, 364, 68–84. [Google Scholar] [CrossRef]
- Wu, B.; Hu, H.; Guo, J. Integration of Chang’E-2 imagery and LRO laser altimeter data with a combined block adjustment for precision lunar topographic modeling. Earth Planet. Sci. Lett. 2014, 391, 1–15. [Google Scholar] [CrossRef]
- Di, K.; Hu, W.; Liu, Y.; Peng, M. Co-Registration of Chang’E-1 stereo images and laser altimeter data with crossover adjustment and image sensor model refinement. Adv. Space Res. 2012, 50, 1615–1628. [Google Scholar] [CrossRef]
- Dias, P.; Sequeira, V.; Vaz, F.; Goncalves, J.G.M. Registration and fusion of intensity and range data for 3D modeling of real world scenes. In Proceedings of the Fourth International Conference on 3-D Digital Imaging and Modeling, Banff, AB, Canada, 6–10 October 2003; pp. 418–425.
- Elstrom, M.D.; Smith, P.W. Stereo-Based registration of multi-sensor imagery for enhanced visualization of remote environments. In Proceeding of the IEEE International Conference on Robotics and Automation, Detroit, MI, USA, 10–15 May 1999; pp. 1948–1953.
- Habib, A.; Ghanma, M.; Morgan, M.; Al-Ruzouq, R. Photogrammetric and LiDAR data registration using linear features. Photogramm. Eng. Remote Sens. 2005, 71, 699–707. [Google Scholar] [CrossRef]
- Habib, A.; Shin, S.; Kim, C.; Al-Durgham, M. Integration of photogrammetric and LiDAR data in a multi-primitive triangulation environment. In Innovations in 3D Geo Information Systems; Springer: Berlin, Germany, 2006; pp. 29–45. [Google Scholar]
- Jarihani, A.; Callow, J.; McVicar, T.; Van Niel, T.; Larsen, J. Satellite-Derived Digital Elevation Model (DEM) selection, preparation and correction for hydrodynamic modelling in large, low-gradient and data-sparse catchments. J. Hydrol. 2015, 524, 489–506. [Google Scholar] [CrossRef]
- Liu, S.; Tong, X.; Chen, J.; Liu, X.; Sun, W.; Xie, H.; Chen, P.; Jin, Y.; Ye, Z. A Linear Feature-Based Approach for the Registration of Unmanned Aerial Vehicle Remotely-Sensed Images and Airborne LiDAR Data. Remote Sens. 2016, 8, 82. [Google Scholar] [CrossRef]
- Mastin, A.; Kepner, J.; Fisher, J. Automatic registration of LIDAR and optical images of urban scenes. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–26 June 2009; pp. 2639–2646.
- Mishra, R.K.; Zhang, Y. A Review of Optical Imagery and Airborne LiDAR Data Registration Methods. Open Remote Sens. J. 2012, 5, 54–63. [Google Scholar] [CrossRef]
- Neugebauer, P.J.; Klein, K. Texturing 3D models of real world objects from multiple unregistered photographic views. Comput. Graph. Forum. 1999, 18, 245–256. [Google Scholar] [CrossRef]
- Palenichka, R.M.; Zaremba, M.B. Automatic extraction of control points for the registration of optical satellite and LiDAR images. IEEE Trans. Geosci. Remote Sens. 2010, 48, 2864–2879. [Google Scholar] [CrossRef]
- Rönnholm, P.; Haggrén, H. Registration of Laser Scanning Point Clouds and Aerial Images Using either Artificial or Natural Tie Features. Available online: http://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/I-3/63/2012/isprsannals-I-3-63-2012.pdf (accessed on 15 September 2016).
- Singh, K.K.; Vogler, J.B.; Shoemaker, D.A.; Meentemeyer, R.K. LiDAR-Landsat data fusion for large-area assessment of urban land cover: Balancing spatial resolution, data volume and mapping accuracy. ISPRS J. Photogramm. Remote Sens. 2012, 74, 110–121. [Google Scholar] [CrossRef]
- Jung, J.; Sohn, G.; Bang, K.; Wichmann, A.; Armenakis, C.; Kada, M. Matching Aerial Images to 3D Building Models Using Context-Based Geometric Hashing. Sensors 2016, 16, 932. [Google Scholar] [CrossRef] [PubMed]
- Yan, W.; Shaker, A.; El-Ashmawy, N. Urban land cover classification using airborne LiDAR data: A review. Remote Sens. Environ. 2015, 158, 295–310. [Google Scholar] [CrossRef]
- Yang, B.; Chen, C. Automatic registration of UAV-borne sequent images and LiDAR data. ISPRS J. Photogramm. Remote Sens. 2015, 101, 262–274. [Google Scholar] [CrossRef]
- Zhang, Y.; Xiong, X.; Zheng, M.; Huang, X. LiDAR Strip Adjustment Using Multifeatures Matched with Aerial Images. IEEE Trans. Geosci. Remote Sens. 2015, 53, 976–987. [Google Scholar] [CrossRef]
- Kwak, T.S.; Kim, Y.; Yu, K.; Lee, B.K. Registration of aerial imagery and aerial LiDAR data using centroids of plane roof surfaces as control information. KSCE J. Civ. Eng. 2006, 10, 365–370. [Google Scholar] [CrossRef]
- Wu, H.; Li, Y.; Li, J.; Gong, J. A Two-step displacement correction algorithm for registration of lidar point clouds and aerial images without orientation parameters. Photogramm. Eng. Remote Sens. 2010, 76, 1135–1145. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, Y.; Zhang, J.; Zhang, H. Photogrammetric modeling of linear features with generalized point photogrammetry. Photogramm. Eng. Remote Sens. 2008, 74, 1119–1127. [Google Scholar] [CrossRef]
- Viola, P.; Wells, W. Alignments by maximization of mutual information. Int. J. Comput. Vis. 1997, 24, 137–154. [Google Scholar] [CrossRef]
- Reddey, B.S.; Chatterji, B.N. An FFT-Based technique for translation, rotation, and scale-invariant image registration. IEEE Trans. Image Process. 1996, 5, 1266–1271. [Google Scholar] [CrossRef] [PubMed]
- Wong, A.; Orchard, J. Efficient FFT-Accelerated Approach to Invariant Optical–LIDAR Registration. IEEE Trans. Geosci. Remote. Sens. 2008, 46, 3917–3925. [Google Scholar] [CrossRef]
- Zavorin, I.; Moigne, J.L. Use of multiresolution wavelet feature pyramids for automatic registration of multisensor imagery. IEEE Trans. Image Process. 2005, 14, 770–782. [Google Scholar] [CrossRef] [PubMed]
- Sebe, N.; Lew, M.S. Comparing salient point detectors. Pattern Recog. Lett. 2003, 24, 89–96. [Google Scholar] [CrossRef]
- Habib, A.; Morgan, M.; Lee, Y.R. Bundle Adjustment with Self-calibration Using Straight Lines. Photogramm. Record. 2002, 17, 635–650. [Google Scholar] [CrossRef]
- DongChen, E.; Shen, Q.; Xu, Y.; Chen, G. High-Accuracy topographical information extraction based on fusion of ASTER stereo-data and ICESat/GLAS data in Antarctica. Sci. China Ser. D 2009, 52, 714–722. [Google Scholar] [CrossRef]
- Schenk, T.; Csatho, B.; van der Veen, C.J.; Brecher, H.; Ahn, Y.; Yoon, T. Registering imagery to ICESat data for measuring elevation changes on Byrd Glacier, Antarctica. Geophys. Res. Lett. 2005, 32, L23S05. [Google Scholar] [CrossRef]
- Canny, J. A Computational Approach to Edge Detection. IEEE Trans. Pattern Anal. Mach. Intell. 1986, 8, 679–698. [Google Scholar] [CrossRef] [PubMed]
- Tong, X.; Liu, S.; Weng, Q. Bias-Corrected rational polynomial coefficients for high accuracy geo-positioning of QuickBird stereo imagery. ISPRS J. Photogramm. Remote Sens. 2010, 65, 218–226. [Google Scholar] [CrossRef]
- Fraser, C.S.; Hanley, H.B. Bias compensation in rational functions for IKONOS satellite imagery. Photogramm. Eng. Remote. Sens. 2003, 69, 53–57. [Google Scholar] [CrossRef]
- Fraser, C.S.; Hanley, H.B. Bias-Compensated RPCs for sensor orientation of high-resolution satellite imagery. Photogramm. Eng. Remote. Sens. 2005, 71, 909–915. [Google Scholar] [CrossRef]
- Wolf, P.R.; Ghilani, C.D. Adjustment Computations: Statistics and Least Squares in Surveying and GIS, 3rd ed.; John Wiley: New York, NY, USA, 1997. [Google Scholar]
- Liu, S.; Tong, X. Rational function model based geo-positioning accuracy evaluation and improvement of QuickBird Imagery of Shanghai, China. In Proceedings of the Geoinformatics 2008 and Joint Conference on GIS and Built Environment: Monitoring and Assessment of Natural Resources and Environments, Guangzhou, China, 3 November 2008; pp. 71452T-1–71452T-10.
- Liu, S.; Tong, X. Transformation between rational function model and rigorous sensor model for high resolution satellite imagery. In Proceedings of the Koelen M T. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Beijing, China, 3–11 July 2008; pp. 873–877.
- Liu, S.; Fraser, C.; Zhang, C.; Ravanbakhsh, M.; Tong, X. Georeferencing performance of THEOS satellite imagery. Photogramm. Record. 2011, 26, 250–262. [Google Scholar] [CrossRef]
- Tong, X.; Liu, S.; Xie, H.; Wang, W.; Chen, P.; Bao, F. Geometric integration of aerial and QuickBird imagery for high accuracy geopositioning and mapping application: A case study in Shanghai. Mar. Geod. 2010, 33, 437–449. [Google Scholar] [CrossRef]
- Grodecki, J.; Dial, G. Block adjustment of high-resolution satellite images described by rational polynomials. Photogramm. Eng. Remote. Sens. 2003, 69, 59–68. [Google Scholar] [CrossRef]
- Tao, C.V.; Hu, Y. A comprehensive study of the rational function model for photogrammetric processing. Photogramm. Eng. Remote. Sens. 2001, 67, 1347–1358. [Google Scholar]
- Earth Remote Sensing Data Analysis Center (ERSDAC). ASTER User’s Guide—Part II Level 1 Data Products (Ver. 5.1), 2007, 68 pages. Available online: https://unit.aist.go.jp/igg/rs-rg/ASTERSciWeb_AIST/en/documnts/users_guide/part1/pdf/Part2_5.1E.pdf (accessed on 15 September 2016).
- Schutz, B.; Zwally, H.; Shuman, C.; Hancock, D.; DiMarzio, J. Overview of the ICESat mission. Geophys. Res. Lett. 2005, 32, L21S01. [Google Scholar] [CrossRef]
- Shuman, C.A.; Zwally, H.J.; Schutz, B.E.; Brenner, A.C.; DiMarzio, J.P.; Suchdeo, V.P.; Fricker, H.A. ICESat Antarctic elevation data: Preliminary precision and accuracy assessment. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef]
Transformation Model | ASTER NAD | ASTER BWD | ZY-3 NAD | ZY-3 FWD | ||||
---|---|---|---|---|---|---|---|---|
Ctrl (9) | Chk (8) | Ctrl | Chk (8) | Ctrl (10) | Chk (8) | Ctrl (10) | Chk (8) | |
Before registration | 4.2 | 5.6 | 4.2 | 5.2 | 1.5 | 1.9 | 0.7 | 1.0 |
Translation | 2.3 | 3.8 | 1.9 | 2.3 | 1.1 | 1.6 | 0.6 | 0.9 |
Translation and scales | 1.7 | 3.0 | 1.3 | 1.5 | 0.7 | 1.2 | 0.5 | 0.7 |
Similarity transformation | 2.1 | 3.8 | 1.8 | 2.4 | 0.7 | 0.7 | 0.5 | 0.6 |
Affine transformation | 0.5 | 0.8 | 0.6 | 0.8 | 0.7 | 0.6 | 0.3 | 0.5 |
Before Registration | After Registration | ||
---|---|---|---|
ASTER vs. ICESat | Mean | −61.4 | 5.9 |
Standard deviation | 10.0 | 5.1 | |
ZY-3 vs. ICESat | Mean | −28.3 | −1.4 |
Standard deviation | 4.9 | 3.3 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, S.; Lv, Y.; Tong, X.; Xie, H.; Liu, J.; Chen, L.
An Alternative Approach for Registration of
High-Resolution Satellite Optical Imagery and ICESat Laser Altimetry Data. Sensors 2016, 16, 2008.
https://doi.org/10.3390/s16122008
Liu S, Lv Y, Tong X, Xie H, Liu J, Chen L.
An Alternative Approach for Registration of
High-Resolution Satellite Optical Imagery and ICESat Laser Altimetry Data. Sensors. 2016; 16(12):2008.
https://doi.org/10.3390/s16122008
Liu, Shijie, Yi Lv, Xiaohua Tong, Huan Xie, Jun Liu, and Lei Chen.
2016. "An Alternative Approach for Registration of
High-Resolution Satellite Optical Imagery and ICESat Laser Altimetry Data" Sensors 16, no. 12: 2008.
https://doi.org/10.3390/s16122008
Liu, S., Lv, Y., Tong, X., Xie, H., Liu, J., & Chen, L.
(2016). An Alternative Approach for Registration of
High-Resolution Satellite Optical Imagery and ICESat Laser Altimetry Data. Sensors, 16(12), 2008.
https://doi.org/10.3390/s16122008