A Priority-Based Adaptive MAC Protocol for Wireless Body Area Networks
Abstract
:1. Introduction
2. Related Works
3. Priority-Based Adaptive MAC (PA-MAC)
3.1. Multiple Channel Utilization
3.2. Data Traffic Prioritization and Dynamic Timeslot Allocation
3.3. Data Transfer Procedure
Algorithm 1. Algorithm for the CAP allocation |
|
4. Analytical Approximation of the PA-MAC
4.1. Channel Status
4.2. Energy Consumption
4.3. Transmission Time
5. Performance Evaluation
5.1. Simulation Environment
5.2. Simulation Results and Discussion
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Movassaghi, S.; Abolhasan, M.; Lipman, J.; Smith, D.; Jamalipour, A. Wireless Body Area Network: A Survey. IEEE Commun. Surv. Tutor. 2014, 16, 1658–1686. [Google Scholar] [CrossRef]
- Ye, W.; Heidemann, J.; Estrin, D. An Energy-Efficient MAC Protocol for Wireless Sensor Networks. In Proceedings of the 21st Annual Joint Conference of IEEE Computer Communications Societies (INFOCOM 2002), New York, NY, USA, 23–27 June 2002; pp. 1567–1576.
- El-Hoiydi, A.; Decotignie, J.-D. WiseMAC: An Ultra-Low Power MAC Protocol for the Downlink of Infrastructure Wireless Sensor Networks. In Proceedings of the 9th IEEE Symposium on Computers and Communication (ISCC 2004), Alexandria, Egypt, 28 June–1 July 2004; pp. 244–251.
- IEEE Std.802.15.4. In Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low Data Rate Wireless Personal Area Networks (WPAN); IEEE: Piscataway, NJ, USA, 2006.
- Ullah, S.; Chen, M.; Kwak, K.S. Throughput and Delay Analysis of IEEE 802.15.6-based CSMA/CA protocol. J. Med. Syst. 2012, 36, 3875–3891. [Google Scholar] [CrossRef] [PubMed]
- Kartsakli, E.; Lalos, A.S.; Antonopoulos, A.; Tennina, S.; Renzo, M.D.; Alonso, L.; Verikoukis, C. A survey on M2M Systems for mHealth: A Wireless Communications Perspective. Sensors 2014, 14, 18009–18052. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cavallari, R.; Martelli, F.; Rosini, R.; Buratti, C.; Verdone, R. A Survey on Wireless Body Area Networks: Technologies and Design Challenges. IEEE Commun. Surv. Tutor. 2014, 16, 1635–1657. [Google Scholar] [CrossRef]
- Le, T.T.; Moh, S. Interference Mitigation Schemes for Wireless Body Area Sensor. Sensors 2015, 15, 13805–13838. [Google Scholar] [CrossRef] [PubMed]
- Bhandari, S.; Moh, S. A Survey of MAC Protocols for Cognitive Radio Body Area Networks. Sensors 2015, 15, 9189–9209. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.; Rhee, S.H.; Kim, Y.; Lee, H. An Efficient Multi-Channel Management Protocol for Wireless Body Area Networks. In Proceedings of the International Conference on Information Networking (ICOIN 2009), Chiang Mai, Thailand, 21–24 January 2009; pp. 1–5.
- Kim, B.; Cho, J. A Novel Priority-Based Channel Access Algorithm for Contention-Based MAC Protocol in WBANs. In Proceedings of the 6th International Conference on Ubiquitous Information Management and Communication (ICUIMC 2012), Kuala Lumpur, Malaysia, 20–22 February 2012; pp. 1–5.
- Alam, M.M.; Berder, O.; Menard, D.; Sentieys, O. TAD-MAC: Traffic-Aware Dynamic MAC Protocol for Wireless Body Area Sensor Networks. IEEE J. Emerg. Sel. Top. Circuits Syst. 2012, 2, 109–119. [Google Scholar] [CrossRef]
- Li, C.; Hao, B.; Zhang, K.; Liu, Y.; Li, J. A Novel Medium Access Control Protocol with Low Delay and Traffic Adaptivity for Wireless Body Area Networks. J. Med. Syst. 2011, 35, 1265–1275. [Google Scholar] [CrossRef] [PubMed]
- Shuai, J.; Zou, W.; Zhou, Z. Priority-Based Adaptive Timeslot Allocation Scheme for Wireless Body Area Network. In Proceedings of the 13th International Symposium on Communications and Information Technologies (ISCIT 2013), Surat Thani, Thailand, 4–6 September 2013; pp. 609–614.
- Rahman, M.O.; Hong, C.S.; Lee, S.; Bang, Y.-C. ATLAS: A Traffic Load Aware Sensor MAC Design for Collaborative Body Area Sensor Networks. Sensors 2011, 11, 11560–11580. [Google Scholar] [CrossRef] [PubMed]
- Anjum, I.; Alam, N.; Razzaque, M.A.; Mehedi Hassan, M.; Alamri, A. Traffic Priority and Load Adaptive MAC Protocol for QoS Provisioning in Body Sensor Networks. Int. J. Distrib. Sens. Netw. 2013, 2013, 1–9. [Google Scholar] [CrossRef]
- Kwak, K.S.; Ullah, S. A Traffic-adaptive MAC Protocol for WBAN. In Proceedings of the 2010 IEEE GLOBECOM Workshops (GC Wkshps), Miami, FL, USA, 6–10 December 2010; pp. 1286–1289.
- Li, H.; Tan, J. Heartbeat-Driven Medium-Access Control for Body Sensor Networks. IEEE Trans. Inf. Technol. Biomed. 2010, 14, 44–51. [Google Scholar] [PubMed]
- Yan, Z.; Liu, B. A Context Aware MAC Protocol for Medical Wireless Body Area Network. In Proceedings of the 7th International Wireless Communications and Mobile Computing Conference (IWCMC 2011), Istanbul, Turkey, 4–8 July 2011; pp. 2133–2138.
- Ullah, S.; Imran, M.; Alnuem, M. A Hybrid and Secure Priority-Guaranteed MAC Protocol for Wireless Body Area Network. Int. J. Distrib. Sens. Netw. 2014, 2014, 1–7. [Google Scholar] [CrossRef]
- Ibarra, E.; Antonopoulos, A.; Kartsakli, E.; Verikoukis, C. HEH-BMAC: Hybrid Polling MAC Protocol for Wireless Body Area Networks Operated by Human Energy Harvesting. Telecommun. Syst. 2015, 58, 111–124. [Google Scholar] [CrossRef] [Green Version]
- Hellbruck, H.; Esemann, T. Limitations of Frequency Hopping in 2.4 GHz ISM-Band for Medical Applications due to Interference. In Proceedings of the Consumer Communications and Networking Conference (CCNC 2011), Las Vegas, NV, USA, 9–12 January 2011; pp. 242–246.
- So, H.-S.W.; Nguyen, G.; Walrand, J. Practical Synchronization Techniques for Multi-Channel MAC. In Proceedings of the 12th Annual International Conference on Mobile Computing and Networking, Los Angeles, CA, USA, 24–29 September 2006; pp. 134–145.
- Sthapit, P.; Jae-Young, P. Mobility Support in IEEE 802.15. 4 Based Mobile Sensor Network. IEICE Trans. Commun. 2014, 97, 555–563. [Google Scholar] [CrossRef]
- Torabi, N.; Leung, V.C.M. Realization of Public M-Health Service in License-Free Spectrum. IEEE J. Biomed. Health Inform. 2013, 17, 19–29. [Google Scholar] [CrossRef] [PubMed]
- Hang, S.; Xi, Z. Design and Analysis of a Multi-channel Cognitive MAC Protocol for Dynamic Access Spectrum Networks. In Proceedings of the IEEE Military Communications Conference (MILCOM 2008), San Diego, CA, USA, 16–19 November 2008; pp. 1–7.
- Liang, X.; Balasingham, I. Performance Analysis of the IEEE 802.15.4 Based ECG Monitoring Network. In Proceedings of the IASTED Wireless and Optical Communications Conference (WOC 2007), Montreal, QC, Canada, 30 May–1 June 2007; pp. 99–104.
- The Network Simulator—NS-2. Available online: http://www.isi.edu/nsnam/ns/ (accessed on 18 March 2015).
Traffic Category | Priority | Example |
---|---|---|
Emergency traffic | P1 (highest) | Emergency alarm signal |
On-demand traffic | P2 | Continuous medical signal (e.g., EEG, EMG) |
Normal traffic | P3 | Discontinuous medical signal (e.g., temperature, blood pressure) |
Non-medical traffic | P4 (lowest) | Audio/Video/Data |
Parameter | Value |
---|---|
Channel rate | 250 kbps |
Frequency band | 2.4 GHz |
Symbol time | 16 µs |
Superframe duration | 122.88 ms |
Transition time | 192 µs |
aUnitBackoffPeriod | 20 symbols |
macMaxCSMABackoffs | 5 |
macMinBE | 3 |
macMaxBE | 5 |
Idle power | 712 µW |
Transmission power | 36.5 mW |
Reception power | 41.4 mW |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bhandari, S.; Moh, S. A Priority-Based Adaptive MAC Protocol for Wireless Body Area Networks. Sensors 2016, 16, 401. https://doi.org/10.3390/s16030401
Bhandari S, Moh S. A Priority-Based Adaptive MAC Protocol for Wireless Body Area Networks. Sensors. 2016; 16(3):401. https://doi.org/10.3390/s16030401
Chicago/Turabian StyleBhandari, Sabin, and Sangman Moh. 2016. "A Priority-Based Adaptive MAC Protocol for Wireless Body Area Networks" Sensors 16, no. 3: 401. https://doi.org/10.3390/s16030401
APA StyleBhandari, S., & Moh, S. (2016). A Priority-Based Adaptive MAC Protocol for Wireless Body Area Networks. Sensors, 16(3), 401. https://doi.org/10.3390/s16030401