Dynamic Human Body Modeling Using a Single RGB Camera
Abstract
:1. Introduction
1.1. Human Body Modeling Using Depth Sensors
1.2. Multi-View Human Body Modeling
1.3. Single-View Human Body Modeling
2. Building 3D Models
2.1. Initial Pose Detection
2.2. Pose Refinement via Kinematic Classification
2.3. Dense Reconstruction
Algorithm 1 Dense Reconstruction of Body Parts | |
1: | i: the frame number of the input image |
2: | : the 2D barycenter of in the frame |
3: | : the number of start frame of part , denoted as ref for simplification |
4: | for to 16 do |
5: | if 30 then |
6: | |
7: | for to i do |
8: | |
9: | derive dense optical flow from to |
10: | end for |
11: | |
12: | |
13: | end if |
14: | end for |
2.4. Decomposing the Deformation
2.4.1. Building Vertex-Wise Correspondence
2.4.2. Deriving Non-Rigid and Rigid Components
3. Results and Discussion
3.1. Parameters
3.2. Qualitative Analysis
3.3. Quantitative Analysis
3.4. Computation
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Dou, M.; Taylor, J.; Fuchs, H.; Fitzgibbon, A.; Izadi, S. 3D Scanning Deformable Objects with a Single RGBD Sensor. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 493–501.
- Newcombe, R.A.; Fox, D.; Seitz, S.M. DynamicFusion: Reconstruction and Tracking of non-Rigid Scenes in Real-Time. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 343–352.
- Newcombe, R.A.; Izadi, S.; Hilliges, O.; Molyneaux, D.; Kim, D.; Davison, A.J.; Kohi, P.; Shotton, J.; Hodges, S.; Fitzgibbon, A. KinectFusion: Real-time dense surface mapping and tracking. In Proceedings of the 2011 10th IEEE International Symposium on Mixed and Augmented Reality (ISMAR), Basel, Switzerland, 26–29 October 2011; pp. 127–136.
- Zeng, M.; Zheng, J.; Cheng, X.; Liu, X. Templateless quasi-rigid shape modeling with implicit loop-closure. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Portland, OR, USA, 25–27 June 2013; pp. 145–152.
- Zhang, Q.; Fu, B.; Ye, M.; Yang, R. Quality Dynamic Human Body Modeling Using a Single Low-Cost Depth Camera. In Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Columbus, OH, USA, 23–28 June 2014; pp. 676–683.
- Anguelov, D.; Srinivasan, P.; Koller, D.; Thrun, S.; Rodgers, J.; Davis, J. SCAPE: Shape completion and animation of people. In Proceedings of the ACM Transactions on Graphics (TOG), New York, NY, USA, 31 July 2005; pp. 408–416.
- Werghi, N. Segmentation and modeling of full human body shape from 3-D scan data: A survey. IEEE Trans. Syst. Man Cybern. Part C: Appl. Rev. 2007, 37, 1122–1136. [Google Scholar] [CrossRef]
- Gall, J.; Stoll, C.; de Aguiar, E.; Theobalt, C.; Rosenhahn, B.; Seidel, H.P. Motion capture using joint skeleton tracking and surface estimation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 1746–1753.
- Huang, C.H.; Boyer, E.; Navab, N.; Ilic, S. Human shape and pose tracking using keyframes. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Columbus, OH, USA, 24–27 June 2014; pp. 3446–3453.
- Liu, Y.; Gall, J.; Stoll, C.; Dai, Q.; Seidel, H.P.; Theobalt, C. Markerless motion capture of multiple characters using multiview image segmentation. PAMI 2013, 35, 2720–2735. [Google Scholar]
- Robertini, N.; de Aguiar, E.; Helten, T.; Theobalt, C. Efficient Multi-View Performance Capture of Fine-Scale Surface Detail. In Proceedings of the 2014 2nd International Conference on 3D Vision (3DV), Tokyo, Japan, 8–11 December 2014; Volume 1, pp. 5–12.
- Zollhöfer, M.; Nießner, M.; Izadi, S.; Rehmann, C.; Zach, C.; Fisher, M.; Wu, C.; Fitzgibbon, A.; Loop, C.; Theobalt, C.; et al. Real-time non-Rigid Reconstruction using an RGB-D Camera. ACM Trans. Graph. 2014, 33, 156:1–156:12. [Google Scholar] [CrossRef]
- Li, H.; Vouga, E.; Gudym, A.; Luo, L.; Barron, J.T.; Gusev, G. 3D self-portraits. ACM Trans. Graph. 2013, 32, 187:1–187:9. [Google Scholar] [CrossRef]
- Tong, J.; Zhou, J.; Liu, L.; Pan, Z.; Yan, H. Scanning 3d full human bodies using kinects. IEEE Trans. Vis. Comput. Graph. 2012, 18, 643–650. [Google Scholar] [CrossRef] [PubMed]
- Weiss, A.; Hirshberg, D.; Black, M.J. Home 3D body scans from noisy image and range data. In Proceedings of the 2011 IEEE International Conference on Computer Vision (ICCV), Barcelona, Spain, 6–13 November 2011; pp. 1951–1958.
- Bogo, F.; Black, M.J.; Loper, M.; Romero, J. Detailed Full-Body Reconstructions of Moving People from Monocular RGB-D Sequences. In Proceedings of the the IEEE International Conference on Computer Vision (ICCV), Barcelona, Spain, 6–13 November 2011.
- Guan, P.; Weiss, A.; Bălan, A.O.; Black, M.J. Estimating human shape and pose from a single image. In Proceedings of the 2009 IEEE 12th International Conference on Computer Vision, Kyoto, Japan, 29 September–2 October 2009; pp. 1381–1388.
- Hasler, N.; Ackermann, H.; Rosenhahn, B.; Thormahlen, T.; Seidel, H.P. Multilinear pose and body shape estimation of dressed subjects from image sets. In Proceedings of the 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), San Francisco, CA, USA, 13–18 June 2010; pp. 1823–1830.
- Jain, A.; Thormählen, T.; Seidel, H.P.; Theobalt, C. Moviereshape: Tracking and reshaping of humans in videos. In Proceedings of the ACM Transactions on Graphics (TOG), New York, NY, USA, 12 December 2010.
- Zhou, S.; Fu, H.; Liu, L.; Cohen-Or, D.; Han, X. Parametric reshaping of human bodies in images. In Proceedings of the ACM Transactions on Graphics (TOG), New York, NY, USA, 26 July 2010.
- Yu, R.; Russell, C.; Campbell, N.; Agapito, L. Direct, Dense, and Deformable: Template-Based non-Rigid 3D Reconstruction from RGB Video. In Proceedings of the IEEE International Conference on Computer Vision (ICCV 2016), Bath, UK, 13 December 2015.
- Hasler, N.; Stoll, C.; Sunkel, M.; Rosenhahn, B.; Seidel, H.P. A statistical model of human pose and body shape. In Computer Graphics Forum; Wiley Online Library: Munich, Germany, 2009; Volume 28, pp. 337–346. [Google Scholar]
- Yang, Y.; Ramanan, D. Articulated pose estimation with flexible mixtures-of-parts. In Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Providence, RI, USA, 20–25 June 2011.
- Wang, C.; Wang, Y.; Lin, Z.; Yuille, A.L.; Gao, W. Robust estimation of 3d human poses from a single image. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Columbus, OH, USA, 24–27 June p2014; pp. 2369–2376.
- Kalman, R.E. A new approach to linear filtering and prediction problems. J. Fluids Eng. 1960, 82, 35–45. [Google Scholar] [CrossRef]
- Myronenko, A.; Song, X. Point set registration: Coherent point drift. PAMI 2010, 32, 2262–2275. [Google Scholar] [CrossRef] [PubMed]
- Brox, T.; Malik, J. Large displacement optical flow: Descriptor matching in variational motion estimation. PAMI 2011, 33, 500–513. [Google Scholar] [CrossRef] [PubMed]
- Krähenbühl, P.; Koltun, V. Efficient inference in fully connected crfs with gaussian edge potentials. Adv. Neural Inf. Process. Syst. 2011, 24, 109–117. [Google Scholar]
- Lourakis, M.I.; Argyros, A.A. SBA: A software package for generic sparse bundle adjustment. TOMS 2009, 36, 2:1–2:30. [Google Scholar] [CrossRef]
- Xu, H.; Yu, Y.; Zhou, Y.; Li, Y.; Du, S. Measuring Accurate Body Parameters of Dressed Humans with Large-Scale Motion Using a Kinect Sensor. Sensors 2013, 13, 11362–11384. [Google Scholar] [CrossRef] [PubMed]
Equations | Values of Parameters | ||
---|---|---|---|
Equation (4) | |||
Equations (5–7) | |||
Equation (8) |
Errors | Arm Length | Chest Girth | Neck to Hip Distance | Hip Girth | Thigh Girth |
---|---|---|---|---|---|
Error of Xu’s (cm) | 1.2 | 3.2 | 4.5 | 3.1 | 2.1 |
Error of Ours (cm) | 1.4 | 2.3 | 3.7 | 3.3 | 1.9 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, H.; Yu, Y.; Zhou, Y.; Du, S. Dynamic Human Body Modeling Using a Single RGB Camera. Sensors 2016, 16, 402. https://doi.org/10.3390/s16030402
Zhu H, Yu Y, Zhou Y, Du S. Dynamic Human Body Modeling Using a Single RGB Camera. Sensors. 2016; 16(3):402. https://doi.org/10.3390/s16030402
Chicago/Turabian StyleZhu, Haiyu, Yao Yu, Yu Zhou, and Sidan Du. 2016. "Dynamic Human Body Modeling Using a Single RGB Camera" Sensors 16, no. 3: 402. https://doi.org/10.3390/s16030402
APA StyleZhu, H., Yu, Y., Zhou, Y., & Du, S. (2016). Dynamic Human Body Modeling Using a Single RGB Camera. Sensors, 16(3), 402. https://doi.org/10.3390/s16030402