Realistic Simulation for Body Area and Body-To-Body Networks
Abstract
:1. Introduction
Contributions
2. Related Works, Simulators and Theirs Limits
2.1. Classical Wireless Network Simulators
2.2. BAN-Specific Frameworks
2.2.1. Channel-Oriented Frameworks
2.2.2. Network-Oriented Frameworks
2.3. Summary
3. Proposed Simulator
3.1. Semi-Deterministic (Stochastic) Radio Link and Mobility Modeling
3.1.1. Mobility Model
3.1.2. BAN Environment
- Communication type: off-body, on-body, body-to-body, off-to-off.
- Node position on the body: belt, wrist, head, off.
- Link type: belt-to-head, belt-to-wrist, belt-to-belt, etc.
- Scenario condition: same room, other room.
- Mutual orientation and body-shadowed condition for inter-BAN models.
- BANs’ information, such as BAN ID, BAN size, etc.
3.1.3. On-Body Channel Model
3.1.4. Body-to-Body Channel Model
3.2. Deterministic (Bio-Mechanical) Radio Link and Mobility Modeling
3.2.1. Intra-/Inter-BANs’ Biomechanical Mobility Modeling
3.2.2. Intra-BAN and Inter-BAN Channel Models
- If the link type is LOS, then we use Equations (8) and (9) only with the dynamic distances to compute the path loss.
- Else, if the link type is NLOS, then we use Equations (8) and (9) with the dynamic distances to compute the path loss. Further, an additional NLOS factor is used as an add-on to the model. As an example, on average, 13% extra of the factor (which was determined experimentally in [74]) should be added in the case of NLOS links. This factor has been added in every NLOS link in the enhanced models.
4. Performance Evaluation
4.1. Simulation Setup and Scenario
4.2. Results
5. Discussion and Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Facts and Statistics on Wearable Technology. 2015. Available online: http://www.statista.com/topics/1556/wearable-technology/ (accessed on 21 March 2016).
- Alam, M.M.; Hamida, E.B. Surveying Wearable Human Assistive Technology for Life and Safety Critical Applications: Standards, Challenges and Opportunities. Sensors 2014, 14, 9153–9209. [Google Scholar] [CrossRef] [PubMed]
- Cavallari, R.; Martelli, F.; Rosini, R.; Buratti, C.; Verdone, R. A Survey on Wireless Body Area Networks: Technologies and Design Challenges. IEEE Commun. Surv. Tutor. 2014, 16, 1635–1657. [Google Scholar] [CrossRef]
- Movassaghi, S.; Abolhasan, M.; Lipman, J.; Smith, D.; Jamalipour, A. Wireless Body Area Networks: A Survey. IEEE Commun. Surv. Tutor. 2014, 16, 1658–1686. [Google Scholar] [CrossRef]
- Roqueta, G.; Fort, A.; Craeye, C.; Oestges, C. Analytical Propagation Models for Body Area Networks. In Proceedings of the 2007 IET Seminar on Antennas and Propagation for Body-Centric Wireless Communications, London, UK, 24 April 2007; pp. 90–96.
- Ma, D.; Zhang, W.X. Analytic Propagation Model for Wireless Body-Area Networks. IEEE Trans. Antennas Propag. 2011, 59, 4749–4756. [Google Scholar] [CrossRef]
- Quwaider, M.; Biswas, S. Wireless Body Area Networks: A Framework of Network-Integrated Sensing and Energy-Aware Protocols for Resource-Constrained Applications in Wireless Body Area Networks; VDM Verlag: Saarbrücken, Germany, 2010. [Google Scholar]
- Smith, D.; Miniutti, D.; Lamahewa, T.; Hanlen, L. Propagation Models for Body-Area Networks: A Survey and New Outlook. IEEE Antennas Propag. Mag. 2013, 55, 97–117. [Google Scholar] [CrossRef]
- Denis, B.; Pasquero, O.P.; D’Errico, R.; Amiot, N.; Uguen, B.; Avrillon, S.; Mhedhbi, M.; Mauricio, J.G.A.; Goursaud, C.; Gorce, J.-M.; et al. CORMORAN—First Mobility Enabled Physical Simulator and Coupling with Packet Oriented Simulator; Technical Report WP2-D2.5; National Agency for Research: Paris, france, 2014. [Google Scholar]
- Chubak, J.; Pocobelli, G.; Weiss, N.F. Trade-offs between accuracy measures for electronic health-care data algorithms. J. Clin. Epidemiol. 2011, 65, 343–349. [Google Scholar] [CrossRef] [PubMed]
- Talayeh, R.; Oleg, R.; Ilya, S.; Nick, M. Fast Imbalanced Classification of Healthcare Data with Missing Values. In Proceedings of the 18th International Information Fusion (Fusion), 6 July 2015; pp. 774–781.
- Gandhi, M.; Wang, T. The Future of Personalized Healthcare: Predictive Analytics; Technical Report; Rock Health: San Francisco, CA, USA, 2014. [Google Scholar]
- CASTALIA Wireless Sensor Network Simulator. 2011. Available online: https://castalia.forge.nicta.com.au/index.php/en/documentation.html/ accessed on 21 March 2016).
- MAXIM-Simu. 2013. Available online: http://sourceforge.net/projects/mixim/files/mixim/ (accessed on 21 March 2016).
- Pediaditakis, D.; Tselishchev, Y.; Boulis, A. Performance and Scalability Evaluation of the Castalia Wireless Sensor Network Simulator. In Proceedings of the 3rd International ICST Conference on Simulation Tools and Techniques (ICST), Malaga, Spain, 16–18 March 2010.
- Alam, M.M.; Arbia, D.B.; Hamida, E.B. Joint Throughput and Channel Aware (TCA) Dynamic Scheduling Algorithm for Emerging Wearable Applications. In Proceedings of the IEEE Wireless Communications and Networking Conference (WCNC), Doha, Qatar, 3–6 April 2016.
- MoBAN—Classes Providing a Mobility Model for Wireless Body Area Networks. 2011. Available online: http://mixim.sourceforge.net/doc-2.1/MiXiM/doc/doxy/a00002.html/ (accessed on 21 March 2016).
- Ben Hamida, E.; Alam, M.; Maman, M.; Denis, B.; D’Errico, R. Wearable Body-to-Body networks for critical and rescue operations— The CROW2 project. In Proceedings of the 2014 IEEE 25th Annual International Symposium on Personal, Indoor, and Mobile Radio Communication (PIMRC), Washington, DC, USA, 2–5 September 2014; pp. 2145–2149.
- Alam, M.M.; Hamida, E.B. Interference mitigation and coexistence strategies in IEEE 802.15.6 based wearable body-to-body networks. In Proceedings of the 10th CROWNCOM Conference, Doha, Qatar, 21–23 April 2015; Springer LNICST: Berlin, Germany, 2015; Volume 156, pp. 1–12. [Google Scholar]
- Maman, M.; Denis, B.; D’Errico, R. Research trends in wireless body area networks: From On-Body to Body-to-Body cooperation. In Proceedings of the 2014 8th International Symposium on Medical Information and Communication Technology (ISMICT), Firenze, Italy, 2–4 April 2014; pp. 1–5.
- The Network Simulator-ns-2. 2000. Available online: http://www.isi.edu/nsnam/ns/ (accessed on 21 March 2016).
- The Network Simulator-ns-3. 2015. Available online: https://www.nsnam.org/ (accessed on 21 March 2016).
- OPNET-Simu. 2012. Available online: http://www.riverbed.com/products/steelcentral/opnet.html?redirect=opnet/ (accessed on 21 March 2016).
- OMNet++ Discrete Event Simulator. 2015. Available online: http://omnetpp.org/ (accessed on 21 March 2016).
- WSNet/Worldsens Simulator. 2011. Available online: http://wsnet.gforge.inria.fr/ (accessed on 21 March 2016).
- The Network Simulator-ns-3. 2015. Available online: https://www.nsnam.org/ns-3-24/ (accessed on 21 March 2016).
- Aghayi, E.; Khansari, M.; Memarzadeh-Tehran, H. A new back-off mechanism for the S-MAC protocol with applications in healthcare. In Proceedings of the 2014 7th International Symposium on Telecommunications (IST), Tehran, Iran, 9–11 September 2014; pp. 569–573.
- Mahapatro, J.; Misra, S.; Manjunatha, M.; Islam, N. Interference mitigation between WBAN equipped patients. In Proceedings of the 2012 Ninth International Conference on Wireless and Optical Communications Networks (WOCN), Indore, India, 20–22 September 2012; pp. 1–5.
- OPNET-Simu-Latest. 2015. Available online: https://support.riverbed.com/content/support/software/steelcentral- npm/modeler-index.html/ (accessed on 21 March 2016).
- Deylami, M.; Jovanov, E. A Distributed Scheme to Manage The Dynamic Coexistence of IEEE 802.15.4-Based Health-Monitoring WBANs. Biomed. Health Inf. IEEE J. 2014, 18, 327–334. [Google Scholar] [CrossRef] [PubMed]
- Deylami, M.; Jovanov, E. Performance analysis of coexisting IEEE 802.15.4-based health monitoring WBANs. In Proceedings of the 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), San Diego, CA, USA, 28 August–1 September 2012; pp. 2464–2467.
- Simulation Models. 2015. Available online: https://omnetpp.org/models/ (accessed on 21 March 2016).
- WSim/Worldsens simulator. 2011. Available online: http://wsim.gforge.inria.fr// (accessed on 21 March 2016).
- Alam, M.M.; Berder, O.; Menard, D.; Sentieys, O. TAD-MAC: Traffic-Aware Dynamic MAC Protocol for Wireless Body Area Sensor Networks. Emerg. Sel. Top. Circuits Syst. IEEE J. 2012, 2, 109–119. [Google Scholar] [CrossRef]
- Alam, M. Power-Aware Adaptive Techniques for WSN. Ph.D. Thesis, University of Rennes 1, Lannion, France, 26 February 2013. [Google Scholar]
- Zasowski, T.; Althaus, F.; Stager, M.; Wittneben, A.; Troster, G. UWB for noninvasive wireless body area networks: Channel measurements and results. In Proceedings of the 2003 IEEE Conference on Ultra Wideband Systems and Technologies, Reston, VA, USA, 16–19 November 2003; pp. 285–289.
- Yazdandoost, K.; Sayrafian-Pour, K. Channel Model for Body Area Network (BAN); IEEE: Piscataway, NJ, USA, 2010. [Google Scholar]
- D’Errico, R.; Ouvry, L. A Statistical Model for On-Body Dynamic Channels. Int. J. Wirel. Inf. Netw. 2010, 17, 92–104. [Google Scholar] [CrossRef]
- Cotton, S.; Scanlon, W. Characterization and Modeling of the Indoor Radio Channel at 868 MHz for a Mobile Bodyworn Wireless Personal Area Network. Antennas Wirel. Propag. Lett. IEEE 2007, 6, 51–55. [Google Scholar] [CrossRef]
- Smith, D.; Hanlen, L.; Zhang, J.; Miniutti, D.; Rodda, D.; Gilbert, B. Characterization of the Dynamic Narrowband On-Body to Off-Body Area Channel. In Proceedings of the IEEE International Conference on Communications, ICC ’09, Dresden, Germany, 14–18 June 2009; pp. 1–6.
- Cotton, S.; Scanlon, W.; Hall, P. A simulated study of co-channel inter-BAN interference at 2.45 GHz and 60 GHz. In Proceedings of the 2010 European Wireless Technology Conference (EuWIT), Paris, France, 27–28 September 2010; pp. 61–64.
- Rosini, R.; D’Errico, R.; Verdone, R. Body-to-Body communications: A measurement-based channel model at 2.45 GHz. In Proceedings of the 2012 IEEE 23rd International Symposium on Personal Indoor and Mobile Radio Communications (PIMRC), Sydney, Austrilia, 9–12 September 2012; pp. 1763–1768.
- Sayrafian-Pour, K.; Hagedorn, J.; Barbi, M.; Terrill, J.; Alasti, M. A simulation platform to study inter-BAN interference. In Proceedings of the 2013 IEEE 4th International Conference on Cognitive Infocommunications (CogInfoCom), Budapest, Hungary, 9–12 September 2013; pp. 345–350.
- Alasti, M.; Barbi, M.; Sayrafian, K. Uncoordinated strategies for inter-BAN interference mitigation. In Proceedings of the 2014 IEEE 25th Annual International Symposium on Personal, Indoor, and Mobile Radio Communication (PIMRC), Washington, DC, USA, 2–5 September 2014; pp. 2150–2154.
- Dong, J.; Smith, D. Cooperative body-area-communications: Enhancing coexistence without coordination between networks. In Proceedings of the 2012 IEEE 23rd International Symposium on Personal Indoor and Mobile Radio Communications (PIMRC), Sydney, Austrilia, 9–12 September 2012; pp. 2269–2274.
- Dong, J.; Smith, D. Joint relay selection and transmit power control for wireless body area networks coexistence. In Proceedings of the 2014 IEEE International Conference on Communications (ICC), Sydney, Austrilia, 10–14 June 2014; pp. 5676–5681.
- O’Donovan, T.; O’Donoghue, J.; Sreenan, C.; Sammon, D.; O’Reilly, P.; O’Connor, K. A context aware wireless body area network (BAN). In Proceedings of the 3rd International Conference on Pervasive Computing Technologies for Healthcare, Pervasive Health 2009, London, UK, 1–3 April 2009; pp. 1–8.
- Heaney, S.; Scanlon, W.; Garcia-Palacios, E.; Cotton, S. Fading characterization for Context Aware Body Area Networks (CABAN) in interactive smart environments. In Proceedings of the 2010 Loughborough Antennas and Propagation Conference (LAPC), Loughborough, UK, 8–9 November 2010; pp. 501–504.
- Cutcutache, I.; Dang, T.; Leong, B.; Liu, S.; Nguyen, K.; Phan, L.; Sim, E.; Sun, Z.; Tok, T.; Xu, L.; et al. BSN Simulator: Optimizing Application Using System Level Simulation. In Proceedings of the Sixth International Workshop on Wearable and Implantable Body Sensor Networks, BSN 2009, Berkeley, CA, USA, 2–5 June 2009; pp. 9–14.
- Nguyen, K.; Cutcutache, I.; Sinnadurai, S.; Liu, S.; Basol, C.; Sim, E.; Phan, L.; Tok, T.; Francis, L.; Tay, F.; et al. Fast and accurate simulation of biomonitoring applications on a wireless body area network. In Proceedings of the 5th International Summer School and Symposium on Medical Devices and Biosensors, ISSS-MDBS 2008, Hong Kong, China, 1–3 June 2008; pp. 145–148.
- Maman, M.; Dehmas, F.; D’Errico, R.; Ouvry, L. Evaluating a TDMA MAC for body area networks using a space-time dependent channel model. In Proceedings of the 2009 IEEE 20th International Symposium on Personal, Indoor and Mobile Radio Communications, Tokyo, Japan, 13–16 September 2009; pp. 2101–2105.
- Maman, M.; Ouvry, L. BATMAC: An adaptive TDMA MAC for body area networks performed with a space-time dependent channel model. In Proceedings of the 2011 5th International Symposium on Medical Information Communication Technology (ISMICT), Montreux, Switzerland, 27–30 March 2011; pp. 1–5.
- Maman, M.; Miras, D.; Ouvry, L. Implementation of a self-organizing, adaptive, flexible and ultra low-power MAC protocol for wireless Body Area Networks. In Proceedings of the 2013 IEEE 24th International Symposium on Personal Indoor and Mobile Radio Communications (PIMRC), London, UK, 8–11 September 2013; pp. 1737–1742.
- Boulis, A. A Simulator for Wireless Sensor Networks and Body Area Networks V.3.2; Technical Report; NICTA: Sydney, Australia, 2011. [Google Scholar]
- Khan, Z.; Sivakumar, S.; Phillips, W.; Robertson, B. QPRD: QoS-aware Peering Routing Protocol for Delay Sensitive Data in Hospital Body Area Network Communication. In Proceedings of the 2012 Seventh International Conference on Broadband, Wireless Computing, Communication and Applications (BWCCA), Victoria, BC, Canada, 12–14 November 2012; pp. 178–185.
- Zhang, Q.; Chaturvedi, M.; Jacobsen, R. Performance study of the enhancement schemes for Baseline MAC of Body Area networks. In Proceedings of the 2014 8th International Symposium on Medical Information and Communication Technology (ISMICT), Firenze, Italy, 2–4 April 2014; pp. 1–5.
- Zhou, J.; Guo, A.; Xu, J.; Celler, B.; Su, S. A reliable medium access mechanism based on priorities for wireless body sensor networks. In Proceedings of the 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Osaka, Japan, 3–7 July 2013; pp. 1855–1858.
- Hamida, E.; Chelius, G.; Gorce, J. Impact of the Physical Layer Modeling on the Accuracy and Scalability of Wireless Network Simulation. Simulation 2009, 85, 574–588. [Google Scholar] [CrossRef] [Green Version]
- Arbia, D.B.; Alam, M.M.; Attia, R.; Hamida, E.B. Data Dissemination Strategies for Emerging Wireless Body-to-Body Networks based Internet of Humans. In Proceedings of the 11th IEEE WiMob Conference Workshop on Emergency Networks for Public Protection and Disaster Relief (EN4PPDR 2015), Abu Dhabi, UAE, 19–21 October 2015.
- Arbia, D.B.; Alam, M.M.; Attia, R.; Hamida, E.B. Behavior of Wireless Body-to-Body Networks Routing Strategies for Public Protection and Disaster Relief. In Proceedings of the Workshop on 11th IEEE WiMob Conference Advances in Body-Centric Wireless Communications and Networks and Their Applications (BCWNets 2015), Abu Dhabi, UAE, 19–21 October 2015.
- Alam, M.M.; Arbia, D.B.; Hamida, E.B. Research Trends in Multi-Standard Device-to-Device Communication in Wearable Wireless Networks. In Proceedings of the 10th CROWNCOM Conference Workshop on Cognitive Radio for 5G Networks, Doha, Qatar, 21–23 April 2015; pp. 1–13.
- Alam, M.M.; Hamida, E.B. Strategies for Optimal MAC Parameters Tuning in IEEE 802.15.6 Wearable Wireless Sensor Networks. J. Med. Syst. 2015, 39, 1–16. [Google Scholar] [CrossRef] [PubMed]
- CROW2—Critical and Rescue Operations Using Wearable Wireless Sensor Networks. Available online: http://www.crow2.org/publications.html (accessed on 21 March 2016).
- Mani, F.; D’Errico, R. A Spatially Aware Channel Model for Body to Body Communications. Trans. Antenna Propag. IEEE 2015. submitted. [Google Scholar]
- Mani, F.; D’Errico, R. Short term fading spatial dependence in indoor body-to-body communications. In Proceedings of the 2015 IEEE 26rd International Symposium on Personal Indoor and Mobile Radio Communications (PIMRC), Hong Kong, China, 30 August–2 September 2015.
- Alam, M.M.; Ben Hamida, E. Towards accurate mobility and radio link modeling for IEEE 802.15.6 Wearable Body Sensor Networks. In Proceedings of the 10th WiMob Conference, Larnaca, Cyprus, 8–10 October 2014; pp. 298–305.
- Ben Hamida, E.; Chelius, G. Investigating the impact of human activity on the performance of wireless networks: An experimental approach. In Proceedings of the WoWMoM 2010 Conference, Montreal, QC, Canada, 14–17 June 2010; pp. 1–8.
- Hamida, E.; D’Errico, R.; Denis, B. Topology Dynamics and Network Architecture Performance in WBSN. In Proceedings of the 4th NTMS Conference, Paris, France, 7–10 February 2011; pp. 1–6.
- Meredith, M.; Maddock, S. Motion Capture File Formats Explained; Department of Computer Science, University of Sheffield: Sheffield, UK, 2001; pp. 1–35. [Google Scholar]
- Razzaq, A.; Wu, Z.; Zhou, M.; Ali, S.; Iqbal, K. Automatic Conversion of Human Mesh into Skeleton Animation by Using Kinect Motion. Int. J. Comput. Theory Eng. 2015, 7, 482–488. [Google Scholar] [CrossRef]
- Yazdandoost, K.Y.; Sayrafian-Pour, K. Channel Model for Body Area Network (BAN); IEEE P802.15-08-0780-09-0006, Technical Report; IEEE: Piscataway, NJ, USA, 2009. [Google Scholar]
- Martelli, F.; Buratti, C.; Verdone, R. On the performance of an IEEE 802.15.6 Wireless Body Area Network. In Proceedings of the 11th European Wireless Conference 2011—Sustainable Wireless Technologies (European Wireless), Vienna, Austria, 27–29 April 2011; pp. 1–6.
- Alam, M.M.; Hamida, E.B. Performance evaluation of IEEE 802.15.6 MAC for Wearable Body Sensor Networks using a Space-Time dependent radio link model. In Proceedings of the IEEE/ACS 11th International Conference on Computer Systems and Applications (AICCSA), Doha, Qatar, 10–13 November 2014; pp. 441–448.
- Khan, M.M.; Abbasi, Q.H.; Alomainy, A.; Hao, Y. Study of Line of Sight and None Line of Sight Ultra Wideband Off-Body Radio Propagation for Body Centric Wireless Communications in Indoor. In Proceedings of the IEEE European Conference on Antennas and Propagation, Rome, Iitaly, 11–15 April 2011; pp. 110–114.
- Khan, M.M.; Abbasi, Q.; Alomainy, A.; Hao, Y. Study of line of sight (LOS) and none line of sight (NLOS) ultra wideband off-body radio propagation for body centric wireless communications in indoor. In Proceedings of the 5th European Conference on Antennas and Propagation (EUCAP), Rome, Iitaly, 11–15 April 2011; pp. 110–114.
On-Body Link | Gain (dB) |
---|---|
Head-to-Belt | −48.2 |
Head-to-Wrist | −53.9 |
Belt-to-Wrist | −50.0 |
AR Coefficient | Belt-to-Wrist | Belt-to-Head | Head-to-Wrist |
---|---|---|---|
−1.9734512929 | −2.0672207748 | −2.0268577284 | |
0.8052924686 | 0.9814623443 | 0.9057458068 | |
0.1558380462 | 0.1007066836 | 0.1273802520 | |
0.0297438008 | 0.0105872912 | 0.0178147987 | |
0.0047875128 | 0.0004463117 | 0.0012784956 | |
−0.0004256897 | −0.0013910969 | −0.0018884276 | |
−0.0010198892 | −0.0021916391 | −0.0026983122 | |
0.0029269547 | −0.0022352955 | −0.0015016341 | |
0.0258211963 | 0.0030632551 | 0.0118456028 | |
−0.0494859747 | −0.0231942330 | −0.0310823183 | |
7.651762983 | 9.260825677 | 9.281826210 |
Short-Term Fading | μ | σ |
---|---|---|
Head-to-Belt | 0.7661 | 0.4286 |
Head-to-Wrist | 0.8407 | 0.3365 |
Belt-to-Wrist | 0.8688 | 0.2677 |
Path Loss Exponent (n) | (dB) | |
---|---|---|
Head-to-Head (SR) | 1.28 | −41.5 |
Head-to-Head (2R) | 0.94 | −46.9 |
Belt-to-Belt (SR) | ||
Belt-to-Belt (2R) | 1.7 |
Path Loss Model | Hospital Room | Anechoic Chamber |
---|---|---|
(Parameters) | ||
a | 6.6 | 29.3 |
b | 36.1 | 16.8 |
, dB | 3.8 | 6.89 |
Path Loss Model (Parameters) | Values at 900 MHz | Values at 2.45 GHz |
---|---|---|
, dB | 0.6512 | 0.0026 |
m, dB/cm | 48.7212 | 46.0931 |
, dB | ||
, dB | 3.2 | 3.6 |
Link Type | Statistics | CM3-A | E-CM3-A | CM3-B | E-CM3-B | ||||
---|---|---|---|---|---|---|---|---|---|
900 MHz | 2450 MHz | 900 MHz | 2450 MHz | 900 MHz | 2450 MHz | 900 MHz | 2450 MHz | ||
Right | Mean | 53.48 | 61.74 | 55.85 | 62.75 | 68.36 | 80.08 | 66.17 | 79.36 |
Ankle-Left | Standard Deviation | 5.50 | 3.89 | 6.12 | 4.01 | 2.75 | 3.61 | 6.32 | 4.77 |
Ankle | Correlation Coefficient | 0.06 | 0.06 | 0.25 | 0.13 | 0.05 | 0.06 | 0.78 | 0.39 |
Right | Mean | 51.67 | 60.80 | 52.48 | 61.30 | 62.62 | 79.01 | 63.50 | 78.32 |
Knee-Left | Standard Deviation | 5.40 | 3.72 | 5.76 | 3.86 | 2.80 | 3.64 | 7.54 | 5.01 |
Knee | Correlation Coefficient | 0.07 | 0.07 | 0.10 | 0.06 | 0.05 | 0.06 | 0.85 | 0.48 |
Left | Mean | 53.30 | 61.69 | 55.99 | 62.69 | 67.95 | 80.04 | 65.64 | 78.80 |
Toe-Right | Standard Deviation | 5.23 | 3.66 | 6.16 | 4.00 | 2.75 | 3.59 | 7.69 | 5.72 |
Toe | Correlation Coefficient | 0.06 | 0.06 | 0.28 | 0.12 | 0.06 | 0.07 | 0.83 | 0.56 |
Common/Shared | Configuration | Values |
(Models) | Parameters | |
Application Layer | destination ID, data transmission interval, | Coordinator, 100 ms, |
(Constant bit rate (CBR) | size, start time | 310 bytes, 0 s |
MAC (IEEE 802.15.6 | User priority, BAN size, | 2, 3 |
CSMA/CA with ACK) | sleep management, ACK type | 1, immediate |
Modulation (DQPSK) | Highest data rate | 971.4 Kbps |
Radio (IEEE 802.15.6) | Tx power, channel, sensitivity | 0 to 15 dBm, 0, −85 dBm |
Noise | AWGN | −95 dBm |
Antenna | Monopole | |
Interference | Orthogonal | |
Different | Configuration | Values |
(Models) | Parameters | |
Path loss | IEEE 802.15.6: CM3-B | 2450 MHz, Table 6 |
enhanced IEEE 802.15.6 (E-CM3-B) | 2450 MHz, | |
path loss-BAN-mixed | 2450 MHz, | |
Mobility | IEEE 802.15.6: Static | Fix distances (i.e., 0.26 m and 0.34 m) |
Enhanced IEEE 802.15.6 Dynamic: | file-time-varying: space and time | |
walking, running, standing, etc. | varying distances, LOS/NLOS factors | |
Semi-deterministic: | mobility-BAN group | |
Dynamic (walking) | ||
Additional | Configuration | Values |
(Models) | Parameters | |
Shadowing | Semi-deterministic | Shadowing-BAN mixed |
Fading | Semi-deterministic | Fading-BAN mixed |
Link | Ear-Belt | Right Wrist-Belt | ||
---|---|---|---|---|
Tx Power | CM3-B | E-CM3-B | CM3-B | E-CM3-B |
0 | −52.65 | −80.0843 | −52.02 | −79.9807 |
−5 | −57.69 | −85.7168 | −56.83 | −85.6790 |
−10 | −62.66 | −90.4281 | −62.03 | −89.3149 |
−15 | −67.65 | −94.8671 | −67.03 | −94.2420 |
Performance | Tx Power | BAN | IEEE 802.15.6 | Proposed Deter- | Proposed Semi- |
---|---|---|---|---|---|
Metrics | (dBm) | (nbr) | Channel CM3-B | ministicApproach | Deterministic Approach |
PRR (%) | 0 | 1 | 96.65 | 97.64 | 97.74 |
3 | 92.66 | 87.25 | 93.12 | ||
−5 | 1 | 97.48 | 81.89 | 96.87 | |
3 | 91.88 | 69.04 | 93.32 | ||
−10 | 1 | 98.43 | 31.56 | 88.76 | |
3 | 91.95 | 25.56 | 84.80 | ||
−15 | 1 | 98.62 | 09.11 | 56.04 | |
3 | 90.82 | 6.98 | 51.72 | ||
Latency (ms) | 0 | 1 | 2.3040 | 2.3080 | 2.9530 |
3 | 2.3320 | 2.3620 | 2.9600 | ||
−5 | 1 | 2.9660 | 2.3370 | 4.2550 | |
3 | 2.3270 | 2.3535 | 4.2160 | ||
−10 | 1 | 2.9880 | 4.2660 | 2.3370 | |
3 | 2.3380 | 4.2550 | 2.6773 | ||
−15 | 1 | 2.3060 | 4.6890 | 2.3087 | |
3 | 2.3370 | 4.6310 | 3.5988 | ||
Energy (J) | 0 | 1 | 0.2070 | 0.2415 | 0.2700 |
3 | 0.3630 | 0.4303 | 0.4101 | ||
−5 | 1 | 0.1932 | 0.2769 | 0.2574 | |
3 | 0.3461 | 0.5014 | 0.3800 | ||
−10 | 1 | 0.1813 | 0.2138 | 0.2647 | |
3 | 0.3341 | 0.3669 | 0.4841 | ||
−15 | 1 | 0.1758 | 0.1843 | 0.3175 | |
3 | 0.3258 | 0.1846 | 0.4000 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alam, M.M.; Ben Hamida, E.; Ben Arbia, D.; Maman, M.; Mani, F.; Denis, B.; D’Errico, R. Realistic Simulation for Body Area and Body-To-Body Networks. Sensors 2016, 16, 561. https://doi.org/10.3390/s16040561
Alam MM, Ben Hamida E, Ben Arbia D, Maman M, Mani F, Denis B, D’Errico R. Realistic Simulation for Body Area and Body-To-Body Networks. Sensors. 2016; 16(4):561. https://doi.org/10.3390/s16040561
Chicago/Turabian StyleAlam, Muhammad Mahtab, Elyes Ben Hamida, Dhafer Ben Arbia, Mickael Maman, Francesco Mani, Benoit Denis, and Raffaele D’Errico. 2016. "Realistic Simulation for Body Area and Body-To-Body Networks" Sensors 16, no. 4: 561. https://doi.org/10.3390/s16040561
APA StyleAlam, M. M., Ben Hamida, E., Ben Arbia, D., Maman, M., Mani, F., Denis, B., & D’Errico, R. (2016). Realistic Simulation for Body Area and Body-To-Body Networks. Sensors, 16(4), 561. https://doi.org/10.3390/s16040561