Photon Counting Imaging with an Electron-Bombarded Pixel Image Sensor
Abstract
:1. Introduction
2. EB-Technology
2.1. How EB-Sensors Work
2.2. EBCCD Cameras
2.3. EBCMOS Cameras
2.4. Photon Arrival Timing
3. Experimental Characterisation
3.1. Single Photon Events & Centroiding
3.2. Pulse Height Distribution
3.3. Photon Arrival Timing
4. Some Applications of EB-Sensors
5. Discussion
6. Conclusions
Conflicts of Interest
References
- Roming, P.W.; Kennedy, T.E.; Mason, K.O.M.; Nousek, J.A.; Ahr, L.; Bingham, R.E.; Broos, P.S.; Carter, M.J.; Hancock, B.K.; Huckle, H.E.; et al. The Swift Ultra-Violet/Optical Telescope. Space Sci. Rev. 2005, 120, 95–142. [Google Scholar] [CrossRef]
- Hutchings, J.B.; Postma, J.; Asquin, D.; Leahy, D. Photon event centroiding with UV photon-counting detectors. Publ. Astron. Soc. Pac. 2007, 119, 1152–1162. [Google Scholar] [CrossRef]
- Postma, J.; Hutchings, J.B.; Leahy, D. Calibration and Performance of the Photon-counting Detectors for the Ultraviolet Imaging Telescope (UVIT) of the Astrosat Observatory. Publ. Astron. Soc. Pac. 2011, 123, 833–843. [Google Scholar] [CrossRef]
- Fordham, J.L.A.; Bone, D.A.; Read, P.D.; Norton, T.J.; Charles, P.A. Astronomical performance of a micro-channel plate intensified photon counting detector. Mon. Not. R. Astron. Soc. 1989, 237, 513–521. [Google Scholar] [CrossRef]
- Buller, G.S.; Collins, R.J. Single-photon generation and detection. Meas. Sci. Technol. 2010, 21. [Google Scholar] [CrossRef]
- Hadfield, R.H. Single-photon detectors for optical quantum information applications. Nat. Photon. 2009, 3, 696–705. [Google Scholar] [CrossRef]
- Eisaman, M.D.; Fan, J.; Migdall, A.; Polyakov, S.V. Invited Review Article: Single-photon sources and detectors. Rev. Sci. Instrum. 2011, 82. [Google Scholar] [CrossRef] [PubMed]
- Seitz, P.; Theuwissen, A.J.P. Single Photon Imaging; Springer: Heidelberg, Germany, 2011. [Google Scholar]
- Hirvonen, L.M.; Festy, F.; Suhling, K. Wide-field time-correlated single-photon counting (TCSPC) lifetime microscopy with microsecond time resolution. Opt. Lett. 2014, 39, 5602–5605. [Google Scholar] [CrossRef] [PubMed]
- Long, F.; Zeng, S.; Huang, Z.L. Localization-based super-resolution microscopy with an sCMOS camera Part II: Experimental methodology for comparing sCMOS with EMCCD cameras. Opt. Express 2012, 20, 17741–17759. [Google Scholar] [CrossRef] [PubMed]
- Brugière, T.; Mayer, F.; Fereyre, P.; Guérin, C.; Dominjon, A.; Barbier, R. First measurement of the in-pixel electron multiplying with a standard imaging CMOS technology: Study of the EMCMOS concept. Nucl. Instum. Meth. A 2015, 787, 336–339. [Google Scholar] [CrossRef]
- Berland, K.; Jacobson, K.; French, T.; Rajfur, Z. Electronic Cameras for Low-Light Level Microscopy. In Methods in Cell Biology; Sluder, G., Wolf, D.E., Eds.; Elsevier: Amsterdam, the Netherlands, 2003; Volume 72, pp. 103–132. [Google Scholar]
- Levitt, J.A.; Chung, P.H.; Kuimova, M.K.; Yahioglu, G.; Wang, Y.; Qu, J.; Suhling, K. Fluorescence Anisotropy of Molecular Rotors. ChemPhysChem 2011, 12, 662–672. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.D.; Soutto, M.; Xie, Q.; Servick, S.; Subramanian, C.; von Arnim, A.G.; Johnson, C.H. Imaging protein interactions with bioluminescence resonance energy transfer (BRET) in plant and mammalian cells and tissues. Proc. Natl. Acad. Sci. USA 2007, 104, 10264–10269. [Google Scholar] [CrossRef] [PubMed]
- Mac Raighne, A.; Brownlee, C.; Gebert, U.; Maneuski, D.; Milnes, J.; O’Shea, V.; Rugheimer, T.K. Imaging visible light with Medipix2. Rev. Sci. Instrum. 2010, 81. [Google Scholar] [CrossRef] [PubMed]
- Sobottka, S.B.; Meyer, T.; Kirsch, M.; Koch, E.; Steinmeier, R.; Morgenstern, U.; Schackert, G. Evaluation of the clinical practicability of intraoperative optical imaging comparing three different camera setups. Biomed. Tech. 2013, 58, 237–248. [Google Scholar] [CrossRef] [PubMed]
- Haisch, C.; Becker-Ross, H. An electron bombardment CCD-camera as detection system for an echelle spectrometer. Spectrochim. Acta B 2003, 58, 1351–1357. [Google Scholar] [CrossRef]
- Rossi, M.; Casali, F.; Golovkin, S.V.; Covorun, V.N. Digital radiography using an EBCCD-based imaging device. Appl. Radiat. Isot. 2000, 53, 699–709. [Google Scholar] [CrossRef]
- Baruffaldi, F.; Bettuzzi, M.; Bianconi, D.; Brancaccio, R.; Cornacchia, S.; Lanconelli, N.; Mancini, L.; Morigi, M.P.; Pasini, A.; Perilli, E.; et al. An Innovative CCD-Based High-Resolution CT System for Analysis of Trabecular Bone Tissue. IEEE Trans. Nucl. Sci. 2006, 53, 2584–2590. [Google Scholar] [CrossRef]
- Hirvonen, L.M.; Jiggins, S.; Sergent, N.; Zanda, G.; Suhling, K. Photon counting imaging with an electron-bombarded CCD: Towards a parallel-processing photoelectronic time-to-amplitude converter. Rev. Sci. Instrum. 2014, 85. [Google Scholar] [CrossRef] [PubMed]
- Becker, W.; Su, B.; Holub, O.; Weisshart, K. FLIM and FCS Detection in Laser-Scanning Microscopes: Increased Efficiency by GaAsP Hybrid Detectors. Microsc. Res. Tech. 2011, 74, 804–811. [Google Scholar] [CrossRef] [PubMed]
- Michalet, X.; Cheng, A.; Antelman, J.; Suyama, M.; Arisaka, K.; Weiss, S. Hybrid photodetector for single-molecule spectroscopy and microscopy. Proc. SPIE 2008, 6862. [Google Scholar] [CrossRef]
- Suyama, M.; Fukasawa, A.; Haba, J.; Iijima, T.; Iwata, S.; Sakuda, M.; Sumiyoshi, T.; Takasaki, F.; Tanaka, M.; Tsuboyamaothers, T.; et al. Development of a multi-pixel photon sensor with single-photon sensitivity. Nucl. Instrum. Meth. A 2004, 523, 147–157. [Google Scholar] [CrossRef]
- Howard, N.E. Theoretical comparison between image intensifier tubes using EBCCD and phosphor readout. Proc. SPIE 1995, 2549, 188–198. [Google Scholar]
- Fiebiger, J.R.; Muller, R.S. Pair-production energies in silicon and germanium bombarded with low-energy electrons. J. Appl. Phys. 1972, 43, 3202–3207. [Google Scholar] [CrossRef]
- Lyons, A. Design of proximity-focused electron lenses. J. Phys. E Sci. Instrum. 1985, 18. [Google Scholar] [CrossRef]
- Williams, G.M.; Rheinheimer, A.L.; Aebi, V.W.; Costello, K.A. Electron-bombarded back-illuminated CCD sensors for low-light-level imaging applications. Proc. SPIE 1995, 2415. [Google Scholar] [CrossRef]
- Johnson, C.B. Review of electron-bombarded CCD cameras. Proc. SPIE 1998, 3434, 45–53. [Google Scholar]
- Fraser, G.W.; Abbey, A.F.; Holland, A.; McCarthy, K.; Owens, A.; Wells, A. The X-ray energy response of silicon Part A. Theory. Nucl. Instrum. Meth. A 1994, 350, 368–378. [Google Scholar] [CrossRef]
- van Roosbroeck, W. Theory of the Yield and Fano Factor of Electron-Hole Pairs Generated in Semiconductors by High-Energy Particles. Phys. Rev. 1965, 139, A1702–A1716. [Google Scholar] [CrossRef]
- Lowrance, J.L.; Carruthers, G.R. Electron bombarded charge-coupled device (CCD) detectors for the vacuum ultraviolet. Proc. SPIE 1981, 279, 123–128. [Google Scholar]
- Lemonier, M.; Piaget, C.; Petit, M. Thinned backside-bombarded RGS-CCD for electron imaging. Adv. Imaging Electron Phys. 1985, 64, 257–265. [Google Scholar]
- Carruthers, G.R.; Heckathorn, H.M.; Opal, C.B.; Jenkins, E.B.; Lowrance, J.L. Development of EBCCD cameras for the far ultraviolet. Adv. Electron. Electron Phys. 1988, 74, 181–200. [Google Scholar]
- Cuby, J.G.; Richard, J.C.; Lemonier, M. Electron bombarded CCD-1st results with a prototype tube. Proc. SPIE 1990, 1235, 294–304. [Google Scholar]
- Auriemma, G.; Errico, L.; Satriano, C.; Vittone, A.A. EBCCD applications in astronomy. Mem. Della SAIT 2002, 73, 433–438. [Google Scholar]
- Hamamatsu Photonics. Electron Bombardment CCD Cameras C7190; Hamamatsu Photonics: Hamamatsu, Japan, 2003. [Google Scholar]
- Rousset, G.; Beuzit, J.L. The COME-ON/ADONIS Systems. In Adaptive Optics in Astronomy; Roddier, F., Ed.; Cambridge University Press: Cambridge, UK, 1999; pp. 171–203. [Google Scholar]
- Benussi, L.; Fanti, V.; Frekers, D.; Frenkelc, A.; Gianninid, G.; Golovkine, S.V.; Kozarenkof, E.N.; Kresloc, I.E.; Libertic, B.; Martellottic, G.; et al. A multichannel single-photon sensitive detector for high-energy physics: The megapixel EBCCD. Nucl. Instum. Meth. A 2000, 442, 154–158. [Google Scholar] [CrossRef]
- Buontempo, S.; Chiodi, G.; Dalinenko, I.N.; Ereditato, A.; Ekimov, A.V.; Fabre, J.P.; Fedorov, V.Y.; Frenkel, A.; Galeazzi, F.; Garufi, F.; et al. The Megapixel EBCCD: A high-resolution imaging tube sensitive to single photons. Nucl. Instum. Meth. A 1998, 413, 255–262. [Google Scholar] [CrossRef]
- Suyama, M.; Sato, T.; Ema, S.; Ema, S.; Ohba, T.; Inoue, K.; Ito, K.; Ihara, T.; Mizuno, I.; Maruno, T.; Suzuki, H.; Muramatsu, M. Single-photon-sensitive EBCCD with additional multiplication. Proc. SPIE 2006, 6294. [Google Scholar] [CrossRef]
- Aebi, V.; Boyle, J. Electron Bombarded Active Pixel Sensor. US Patent 6285018, 4 September 2001. [Google Scholar]
- Aebi, V.W.; Costello, K.A.; Arcuni, P.W.; Genis, P.; Gustafson, S.J. EBAPS®: Next Generation, Low Power, Digital Night Vision. In Proceedings of the OPTRO 2005 International Symposium, Paris, France, 10 May 2005.
- Baudot, J.; Dulinski, W.; Winter, M.; Barbier, R.; Chabanat, E.; Depasse, P.; Estre, N. Photon detection with CMOS sensors for fast imaging. Nucl. Instrum. Meth. A 2009, 604, 111–114. [Google Scholar] [CrossRef] [Green Version]
- Barbier, R.; Cajgfinger, T.; Calabria, P.; Chabanata, E.; Chaizea, D.; Depassea, P.; Doana, Q.T.; Dominjona, A.; Guérina, C.; Houlesa, J.; et al. A single-photon sensitive ebCMOS camera: The LUSIPHER prototype. Nucl. Instrum. Meth. A 2011, 648, 266–274. [Google Scholar] [CrossRef]
- Barbier, R.; Baudot, J.; Chabanat, E.; Depasse, P.; Dulinski, W.; Estre, N.; Kaiser, C.T.; Laurent, N.; Winter, M. Performance study of a MegaPixel single photon position sensitive photodetector EBCMOS. Nucl. Instrum. Meth. A 2009, 610, 54–56. [Google Scholar] [CrossRef] [Green Version]
- Cajgfinger, T.; Dominjon, A.; Barbier, R. Single photon detection and localization accuracy with an ebCMOS camera. Nucl. Instrum. Meth. A 2015, 787, 176–181. [Google Scholar] [CrossRef]
- Mac Raighne, A.; Teixeira, A.; Mathot, S.; McPhate, J.; Vallerga, J.; Jarron, P.; Brownlee, C.; O’Shea, V. Development of a high-speed single-photon pixellated detector for visible wavelengths. Nucl. Instrum. Meth. A 2009, 607, 166–168. [Google Scholar] [CrossRef]
- Fisher-Levine, M.; Nomerotski, A. TimepixCam: A fast optical imager with time-stamping. J. Instrum. 2016, 11. [Google Scholar] [CrossRef]
- Suhling, K. Photon arrival time detection. UK Patent EP1590687, 27 January 2004. [Google Scholar]
- Hirvonen, L.M.; Jiggins, S.; Sergent, N.; Zanda, G.; Suhling, K. Photon counting imaging with an electron-bombarded CCD: Towards wide-field time-correlated single photon counting (TCSPC). Nucl. Instrum. Meth. A 2015, 787, 323–327. [Google Scholar] [CrossRef]
- Spring, K.R. Cameras for Digital Microscopy. In Methods in Cell Biology; Sluder, G., Wolf, D.E., Eds.; Elsevier: Amsterdam, the Netherland, 1998; Volume 72, pp. 87–102. [Google Scholar]
- Boksenberg, A.; Coleman, C.I.; Fordham, J.; Shortridge, K. Interpolative centroiding in CCD-based image photon counting detectors. Adv. Electron. Electron Phys. 1985, 64A, 33–47. [Google Scholar]
- Bulau, S.E. Simulation of various centroiding algorithms. Proc. SPIE 1986, 627, 680–687. [Google Scholar]
- Jenkins, C.R. The Image Photon Counting System: Performance in detail, and the quest for high accuracy. Mon. Not. R. Astron. Soc. 1987, 226, 341–360. [Google Scholar] [CrossRef]
- Suhling, K.; Airey, R.W.; Morgan, B.L. Optimisation of centroiding algorithms for photon event counting imaging. Nucl. Instrum. Meth. A 1999, 437, 393–418. [Google Scholar] [CrossRef]
- Suhling, K.; Airey, R.W.; Morgan, B.L. Minimization of fixed pattern noise in photon event counting imaging. Rev. Sci. Instrum. 2002, 73, 2917–2922. [Google Scholar] [CrossRef]
- Hirvonen, L.M.; Kilfeather, T.; Suhling, K. Single-molecule localization software applied to photon counting imaging. Appl. Opt. 2015, 54, 5074–5082. [Google Scholar] [CrossRef] [PubMed]
- Hirvonen, L.M.; Barber, M.; Suhling, K. Photon counting imaging and centroiding with an EBCCD using single molecule localisation software. Nucl. Instrum. Meth. A 2016, 820, 121–125. [Google Scholar] [CrossRef]
- Suhling, K.; Hirvonen, L.M.; Levitt, J.A.; Chung, P.-H.; Tregidgo, C.; Marois, L.A.; Rusakov, D.A.; Zheng, K.; Ameer-Beg, S.; et al. Fluorescence lifetime imaging (FLIM): Basic concepts and some recent developments. Med. Photon. 2015, 27, 3–40. [Google Scholar] [CrossRef]
- Cajgfinger, T.; Chabanat, E.; Dominjon, A.; Doan, Q.T.; Guerin, C.; Houles, J.; Barbier, R. Single-photon sensitive fast ebCMOS camera system for multiple-target tracking of single fluorophores: Application to nano-biophotonics. Proc. SPIE 2011, 7875. [Google Scholar] [CrossRef]
- Dominjon, A.; Ageron, M.; Barbier, R.; Billault, M.; Brunner, J.; Cajgfinger, T.; Calabria, P.; Chabanat, E.; Chaize, D.; Doan, Q.T.; et al. An ebCMOS camera system for marine bioluminescence observation: The LuSEApher prototype. Nucl. Instrum. Meth. A 2012, 695, 172–178. [Google Scholar] [CrossRef]
- Blades, J.C. (Ed.) Ultraviolet and Visible Detectors for Future Space Astrophysics Missions: A Report from the Ad-hoc, UV-Visible Detectors Working Group of NASA’s Offics of Space Science; Office of Space Science, National Aeronautics and Space Administration: Washington, DC, USA; Space Telescope Science Institute: Baltimore, MD, USA, 2002.
- Siegmund, O.H.W. High-performance microchannel plate detectors for UV/visible astronomy. Nucl. Instrum. Meth. A 2004, 525, 12–16. [Google Scholar] [CrossRef]
- Scully, A.D.; Macrobert, A.J.; Botchway, S.; O’Neill, P.; Parker, A.W.; Ostler, R.B.; Phillips, D. Development of a laser-based fluorescence microscope with subnanosecond time resolution. J. Fluoresc. 1996, 6, 119–125. [Google Scholar] [CrossRef] [PubMed]
- Dowling, K.; Hyde, S.C.W.; Dainty, J.C.; French, P.M.W.; Hares, J.D. 2-D fluorescence lifetime imaging using a time-gated image intensifier. Opt. Commun. 1997, 135, 27–31. [Google Scholar] [CrossRef]
- Blandin, P.; Lévêque-Fort, S.; Lécart, S.; Cossec, J.C.; Potier, M.C.; Lenkei, Z.; Druon, F.; Georges, P. Time-gated total internal reflection fluorescence microscopy with a supercontinuum excitation source. Appl. Opt. 2009, 48, 553–559. [Google Scholar] [CrossRef] [PubMed]
- Siegel, J.; Suhling, K.; Lévêque-Fort, S.; Webb, S.E.D.; Davis, D.M.; Phillips, D.; Sabharwal, Y.; French, P.M.W. Wide-field time-resolved fluorescence anisotropy imaging (TR-FAIM)-Imaging the rotational mobility of a fluorophore. Rev. Sci. Instrum. 2003, 74, 182–192. [Google Scholar] [CrossRef]
- Suhling, K.; Siegel, J.; Phillips, D.; French, P.M.W.; Lévêque-Fort, S.; Webb, S.E.D.; Davis, D.M. Imaging the environment of green fluorescent protein. Biophys. J. 2002, 83, 3589–3595. [Google Scholar] [CrossRef]
- Levitt, J.A.; Chung, P.H.; Suhling, K. Spectrally resolved fluorescence lifetime imaging of Nile red for measurements of intracellular polarity. J. Biomed. Opt. 2015, 20. [Google Scholar] [CrossRef] [PubMed]
- Levitt, J.A.; Morton, P.E.; Fruhwirth, G.O.; Santis, G.; Chung, P.H.; Parsons, M.; Suhling, K. Simultaneous FRAP, FLIM and FAIM for measurements of protein mobility and interaction in living cells. Biomed. Opt. Express 2015, 6, 3842–3854. [Google Scholar] [CrossRef] [PubMed]
- Garrou, P.; Bower, C.; Ramm, P. (Eds.) Handbook of 3D Integration: Volume 1—Technology and Applications of 3D Integrated Circuits; John Wiley & Sons: Weinheim, Germany, 2011.
- Pavia, J.M.; Wolf, M.; Charbon, E. Measurement and modeling of microlenses fabricated on single-photon avalanche diode arrays for fill factor recovery. Opt. Express 2014, 22. [Google Scholar] [CrossRef] [PubMed]
- Poland, S.P.; Krstajić, N.; Coelho, S.; Tyndall, D.; Walker, R.J.; Devauges, V.; Morton, P.E.; Nicholas, N.S.; Richardson, J.; Li, D.D.U.; et al. Time-resolved multifocal multiphoton microscope for high speed FRET imaging in vivo. Opt. Lett. 2014, 39, 6013–6016. [Google Scholar] [CrossRef] [PubMed]
- Poland, S.P.; Krstajić, N.; Monypenny, J.; Coelho, S.; Tyndall, D.; Walker, R.J.; Devauges, V.; Richardson, J.; Dutton, N.; Barber, P.; et al. A high speed multifocal multiphoton fluorescence lifetime imaging microscope for live-cell FRET imaging. Biomed. Opt. Express 2015, 6, 277–296. [Google Scholar] [CrossRef] [PubMed]
- Charbon, E. Single-photon imaging in complementary metal oxide semiconductor processes. Philos. Trans. A Math. Phys. Eng. Sci. 2014, 372. [Google Scholar] [CrossRef] [PubMed]
- Richardson, J.A.; Grant, L.A.; Henderson, R.K. Low Dark Count Single-Photon Avalanche Diode Structure Compatible With Standard Nanometer Scale CMOS Technology. IEEE Photon. Technol. Lett. 2009, 21, 1020–1022. [Google Scholar] [CrossRef]
- Krstajić, N.; Poland, S.; Levitt, J.; Walker, R.; Erdogan, A.; Ameer-Beg, S.; Henderson, R.K. 0.5 billion events per second time correlated single photon counting using CMOS SPAD arrays. Opt. Lett. 2015, 40, 4305–4308. [Google Scholar] [CrossRef] [PubMed]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hirvonen, L.M.; Suhling, K. Photon Counting Imaging with an Electron-Bombarded Pixel Image Sensor. Sensors 2016, 16, 617. https://doi.org/10.3390/s16050617
Hirvonen LM, Suhling K. Photon Counting Imaging with an Electron-Bombarded Pixel Image Sensor. Sensors. 2016; 16(5):617. https://doi.org/10.3390/s16050617
Chicago/Turabian StyleHirvonen, Liisa M., and Klaus Suhling. 2016. "Photon Counting Imaging with an Electron-Bombarded Pixel Image Sensor" Sensors 16, no. 5: 617. https://doi.org/10.3390/s16050617
APA StyleHirvonen, L. M., & Suhling, K. (2016). Photon Counting Imaging with an Electron-Bombarded Pixel Image Sensor. Sensors, 16(5), 617. https://doi.org/10.3390/s16050617