Learning to Diagnose Cirrhosis with Liver Capsule Guided Ultrasound Image Classification
Abstract
:1. Introduction
2. Related Works
3. Liver Capsule Detection
3.1. Sliding Window Detector
- Train a depth-two decision tree which minimizes the weighted classification error: , where t is current number of iterations.
- Update the weight according to: , where is 1 if is correctly classified and it equals to 0 otherwise, and .
3.2. Linking by Dynamic Programming
4. Liver Capsule Guided Image Classification
4.1. Deep Classification Model with Transfer Learning
5. Experiments
5.1. Performance of the Detector
5.2. Performance of Image Classification
5.2.1. Impact of Detection Error
5.2.2. CNN vs. Hand-Crafted Features
5.2.3. Comparison with Previous Work
5.2.4. Impact of Patch Size
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Goyal, N.; Jain, N.; Rachapalli, V.; Cochlin, D.L.; Robinson, M. Non-invasive evaluation of liver cirrhosis using ultrasound. Clin. Radiol. 2009, 64, 1056–1066. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.M.; Chen, Y.C.; Hsieh, K.S. Texture features for classification of ultrasonic liver images. IEEE Trans. Med. Imaging 1992, 11, 141–152. [Google Scholar] [PubMed]
- Insana, M.F.; Wagner, R.F.; Garra, B.S.; Brown, D.G.; Shawker, T.H. Analysis of ultrasound image texture via generalized Rician statistics. Opt. Eng. 1986, 25, 256743. [Google Scholar] [CrossRef]
- Ferral, H.; Male, R.; Cardiel, M.; Munoz, L.; Ferrari, F.Q. Cirrhosis: Diagnosis by liver surface analysis with high-frequency ultrasound. Gastrointest. Radiol. 1992, 17, 74–78. [Google Scholar] [CrossRef] [PubMed]
- Garra, B.S.; Insana, M.F.; Shawker, T.H.; Wagner, R.F.; Bradford, M.; Russell, M. Quantitative Ultrasonic Detection and Classification of Diffuse Liver Disease: Comparison with Human Observer Performance. Investig. Radiol. 1989, 24, 196–203. [Google Scholar] [CrossRef]
- Ogawa, K.; Fukushima, M.; Kubota, K.; Hisa, N. Computer-aided diagnostic system for diffuse liver diseases with ultrasonography by neural networks. IEEE Trans. Nucl. Sci. 1998, 45, 3069–3074. [Google Scholar] [CrossRef]
- Lee, W.L.; Hsieh, K.S. A robust algorithm for the fractal dimension of images and its applications to the classification of natural images and ultrasonic liver images. Signal Process. 2010, 90, 1894–1904. [Google Scholar] [CrossRef]
- Krishnan, K.R.; Sudhakar, R. Automatic classification of liver diseases from ultrasound images using GLRLM texture features. In Soft Computing Applications; Springer: Berlin, Germany, 2013; pp. 611–624. [Google Scholar]
- Virmani, J.; Kumar, V.; Kalra, N.; Khandelwal, N. SVM-based characterisation of liver cirrhosis by singular value decomposition of GLCM matrix. Int. J. Artif. Intell. Soft Comput. 2013, 3, 276–296. [Google Scholar] [CrossRef]
- Kalyan, K.; Jakhia, B.; Lele, R.D.; Joshi, M.; Chowdhary, A. Artificial Neural Network Application in the Diagnosis of Disease Conditions with Liver Ultrasound Images. Adv. Bioinf. 2014, 2014, 708279. [Google Scholar] [CrossRef] [PubMed]
- Mojsilović, A.; Popović, M.; Marković, S.; Krstić, M. Characterization of visually similar diffuse diseases from B-scan liver images using nonseparable wavelet transform. IEEE Trans. Med. Imaging 1998, 17, 541–549. [Google Scholar] [CrossRef] [PubMed]
- Ahmadian, A.; Mostafa, A.; Abolhassani, M.; Salimpour, Y. A texture classification method for diffused liver diseases using Gabor wavelets. In Proceedings of the 27th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, New York, NY, USA, 31 August–3 September 2006.
- Lee, W.L. An ensemble-based data fusion approach for characterizing ultrasonic liver tissue. Appl. Soft Comput. 2013, 13, 3683–3692. [Google Scholar] [CrossRef]
- Virmani, J.; Kumar, V.; Kalra, N.; Khandelwal, N. SVM-based characterization of liver ultrasound images using wavelet packet texture descriptors. J. Digit. Imaging 2013, 26, 530–543. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.L.; Chen, Y.C.; Hsieh, K.S. Ultrasonic liver tissues classification by fractal feature vector based on M-band wavelet transform. IEEE Trans. Med. Imaging 2003, 22, 382–392. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.H.S.; Chen, C.M.; Huang, Y.M.; Wu, J.S. Computer-aided diagnosis of liver cirrhosis by simultaneous comparisons of the ultrasound images of liver and spleen. J. Data Sci. 2008, 6, 429–448. [Google Scholar]
- Wu, C.C.; Lee, W.L.; Chen, Y.C.; Hsieh, K.S. Evolution-Based Hierarchical Feature Fusion for Ultrasonic Liver Tissue Characterization. IEEE J. Biomed. Health Inform. 2013, 17, 967–976. [Google Scholar]
- Alivar, A.; Daniali, H.; Helfroush, M.S. Classification of liver diseases using ultrasound images based on feature combination. In Proceedings of the 4th International eConference on Computer and Knowledge Engineering (ICCKE), Mashhad, Iran, 29–30 October 2014.
- Wu, C.C.; Lee, W.L.; Chen, Y.C.; Hsieh, K.S. A GA-Based Multiresolution Feature Selection for Ultrasonic Liver Tissue Characterization. In Proceedings of the 4th International Conference on Innovative Computing, Information and Control (ICICIC), Kaohsiung, Taiwan, 7–9 December 2009; pp. 1542–1545.
- Di Lelio, A.; Cestari, C.; Lomazzi, A.; Beretta, L. Cirrhosis: Diagnosis with sonographic study of the liver surface. Radiology 1989, 172, 389–392. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Song, J.L.; Zhao, J.W.; Chen, Y.Q.; Zhang, J.Q. Extracting and Describing Liver Capsule Contour in High-frequency Ultrasound Image for Early HBV Cirrhosis Diagnosis. In Proceedings of the 2016 IEEE International Conference on Multimedia and Expo, Seattle, WA, USA, 11–15 July 2016.
- Dollar, P.; Tu, Z.; Perona, P.; Belongie, S. Integral Channel Features. In Proceedings of the British Machine Vision Conference, London, UK, 7–10 September 2009.
- Viola, P.; Jones, M.J. Robust Real-Time Object Detection. Int. J. Comput. Vis. 2001, 57, 87. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. Adv. Neural Inf. Process. Syst. 2012, 25, 2012. [Google Scholar]
- THE MNIST DATABASE of Handwritten Digits. Available online: http://yann.lecun.com/exdb/mnist/ (accessed on 10 May 2016).
- Vedaldi, A.; Lenc, K. MatConvNet—Convolutional Neural Networks for MATLAB. In Proceedings of the ACM Internatiinal Conference on Multimedia, Shanghai, China, 23–26 June 2015.
Type | Total | Male | Female | Age |
---|---|---|---|---|
normal | 44 | 20 | 24 | 48.8 ± 16.2 |
cirrhosis A | 18 | 10 | 8 | 51.4 ± 10.5 |
cirrhosis B | 16 | 6 | 10 | 50.3 ± 11.2 |
cirrhosis C | 13 | 7 | 6 | 55.5 ± 11.3 |
cirrhosis total | 47 | 23 | 24 | 52.2 ± 10.9 |
Total | Success | Percentage | Mean Completeness | |
---|---|---|---|---|
normal | 44 | 44 | 100% | 0.99 |
diseased | 47 | 38 | 81% | 0.78 |
overall | 91 | 82 | 90% | 0.88 |
DET + HOG | DET + LBP | DET + CNN | GT + CNN | [13] | [14] | |
---|---|---|---|---|---|---|
Accuracy (1) | 0.806 | 0.871 | 0.968 | 0.968 | 0.839 | 0.871 |
Accuracy (2) | 0.839 | 0.742 | 0.742 | 0.742 | 0.677 | 0.71 |
Accuracy (3) | 0.862 | 0.828 | 0.897 | 0.966 | 0.828 | 0.828 |
mean | 0.836 | 0.814 | 0.869 | 0.892 | 0.781 | 0.803 |
AUC | 0.921 | 0.881 | 0.951 | 0.968 | 0.875 | 0.836 |
© 2017 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Song, J.L.; Wang, S.H.; Zhao, J.W.; Chen, Y.Q. Learning to Diagnose Cirrhosis with Liver Capsule Guided Ultrasound Image Classification. Sensors 2017, 17, 149. https://doi.org/10.3390/s17010149
Liu X, Song JL, Wang SH, Zhao JW, Chen YQ. Learning to Diagnose Cirrhosis with Liver Capsule Guided Ultrasound Image Classification. Sensors. 2017; 17(1):149. https://doi.org/10.3390/s17010149
Chicago/Turabian StyleLiu, Xiang, Jia Lin Song, Shuo Hong Wang, Jing Wen Zhao, and Yan Qiu Chen. 2017. "Learning to Diagnose Cirrhosis with Liver Capsule Guided Ultrasound Image Classification" Sensors 17, no. 1: 149. https://doi.org/10.3390/s17010149
APA StyleLiu, X., Song, J. L., Wang, S. H., Zhao, J. W., & Chen, Y. Q. (2017). Learning to Diagnose Cirrhosis with Liver Capsule Guided Ultrasound Image Classification. Sensors, 17(1), 149. https://doi.org/10.3390/s17010149