A Simple Interfacial Platform for Homogeneous Electrochemical Immunoassays Using a Poly(Vinylimidazole)-Modified Electrode
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Apparatus and Electrodes
2.3. Immobilization of PVI and Nickel(II) Ions on ITO Electrode
2.4. Optimization of Electrode Modification Procedures
2.5. Electrochemical Measurements
3. Results and Discussion
3.1. Morphology of PVI-Electro-Polymerized ITO Electrode
3.2. Optimization of Ni-Modified PVI-ITO Electrode Fabrication
3.3. Electrochemical Characterization of Nickel(II) Ions Modified PVI-ITO Electrode
3.4. Immune Reaction between Anti-HA and Fe-HA
3.5. Competition with HA and Fe-HA
3.6. Electrochemical Detection of HA-Spiked Urine Samples
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix A
Concentration of HA (mg/mL) | This Sensor Method (mg/mL) | HPLC (ppm) | RSD (%) |
---|---|---|---|
0.5 | 0.49 ± 0.024 | 499.74 | 1.75 |
1.0 | 0.98 ± 0.049 | 999.25 | 1.93 |
References
- Lin, Y.; Cui, X. Electrosynthesis, characterization, and application of novel hybrid materials based on carbon nanotube-polyaniline-nickel hexacyanoferrate nanocomposites. J. Mater. Chem. 2006, 16, 585–592. [Google Scholar] [CrossRef]
- Chang, C.Y.; Chau, L.K.; Hu, W.P.; Wang, C.Y.; Liao, J.H. Nickel hexacyanoferrate multilayers on functionalized mesoporous silica supports for selective sorption and sensing of cesium. Micropor. Mesopor. Mater. 2008, 109, 505–512. [Google Scholar] [CrossRef]
- Hao, X.; Yan, T.; Wang, Z.; Liu, S.; Liang, Z.; Shen, Y.; Pritzker, M. Unipolar pulse electrodeposition of nickel hexacyanoferrate thin films with controllable structure on platinum substrates. Thin Solid Films 2012, 520, 2438–2448. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Y.; Banks, C.E.; Chen, Q.; Ji, X. Non-enzymatic amperometric glucose biosensor based on nickel hexacyanoferrate nanoparticle film modified electrodes. Colloid Surf. B Biointerfaces 2010, 78, 363–366. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Tang, J.; Cheng, H.J.; Xia, X.H. A simple method for fabrication of sole composition nickel hexacyanoferrate modified electrode and its application. Talanta 2009, 80, 539–543. [Google Scholar] [CrossRef] [PubMed]
- Fang, B.; Feng, Y.; Wang, G.; Zhang, C.; Gu, A.; Liu, M. A uric acid sensor based on electrodeposition of nickel hexacyanoferrate nanoparticles on an electrode modified with multi-walled carbon nanotubes. Microchim. Acta 2011, 173, 27–32. [Google Scholar] [CrossRef]
- Shankaran, D.R.; Narayanan, S.S. Evaluation of a mechanically immobilized nickel hexacyanoferrate electrode as an amperometric sensor for thiosulfate determination. Fresen. J. Anal. Chem. 1999, 365, 663–665. [Google Scholar] [CrossRef]
- Bagkar, N.; Betty, C.A.; Hassan, P.A.; Kahali, K.; Bellare, J.R.; Yakhmi, J.V. Self-assembled films of nickel hexacyanoferrate: Electrochemical properties and application in potassium ion sensing. Thin Solid Films 2006, 497, 259–266. [Google Scholar] [CrossRef]
- Cai, C.X.; Ju, H.X.; Chen, H.Y. Catalytic oxidation of reduced nicotinamide adenine dinucleotide at a microband gold electrode modified with nickel hexacyanoferrate. Anal. Chim. Acta 1995, 310, 145–151. [Google Scholar] [CrossRef]
- Salimi, A.; Abdi, K. Enhancement of the analytical properties and catalytic activity of a nickel hexacyanoferrate modified carbon ceramic electrode prepared by two-step sol-gel technique: Application to amperometric detection of hydrazine and hydroxyl amine. Talanta 2004, 63, 475–483. [Google Scholar] [CrossRef] [PubMed]
- Li, N.C.; Chu, T.L.; Fujii, C.T.; White, J.M. Association of Imidazole with Nickel(II) and Alkaline Earth Ions. J. Am. Chem. Soc. 1955, 77, 859–861. [Google Scholar] [CrossRef]
- Török, I.; Surdy, P.; Rockenbauer, A.; Korecz, L., Jr.; Koolhaas, G.J.A.A.; Gajda, T. Nickel(II)-, copper(II)- and zinc(II)-complexes of some substituted imidazole ligands. J. Inorg. Biochem. 1998, 71, 7–14. [Google Scholar] [CrossRef]
- Marzotto, A.; Clemente, D.A.; Ciccarese, A.; Valle, G. New selective nickel(II)-N3 nitrogen bond in adenine: Synthesis and structure of [(tren)(adenine)(monochloro)nickel(II)] chloride and [(tren)(imidazole)(monoaqua)nickel(II)] dichloride. J. Crystallogr. Spectro. Res. 1993, 23, 119–131. [Google Scholar] [CrossRef]
- Pharr, C.M.; Griffiths, P.R. Infrared Spectroelectrochemical Analysis of Adsorbed Hexacyanoferrate Species Formed during Potential Cycling in the Ferrocyanide/ Ferricyanide Redox Couple. Anal. Chem. 1997, 69, 4673–4679. [Google Scholar] [CrossRef]
- Li, F.; Tang, C.; Liu, S.; Ma, G. Development of an electrochemical ascorbic acid sensor based on the incorporation of a ferricyanide mediator with a polyelectrolyte–calcium carbonate microsphere. Electrochim. Acta 2010, 55, 838–843. [Google Scholar] [CrossRef]
- Wang, X.; Chen, Y.; Gibney, K.A.; Erramilli, S.; Mohanty, P. Silicon-based nanochannel glucose sensor. Appl. Phys. Lett. 2008, 92, 013903. [Google Scholar] [CrossRef]
- Choi, Y.B.; Jeon, W.Y.; Kim, H.H. The Coordination of Pyridyl-N to Pentacyanoferrate for the Electrochemical Detecting Small Organic Molecules. Bull. Korean Chem. Soc. 2013, 34, 595–599. [Google Scholar] [CrossRef]
- Choi, Y.B.; Kim, N.H.; Kim, S.H.; Tae, G.S.; Kim, H.H. Heterogeneous Electrochemical Immunoassay of Hippuric Acid on the Electrodeposited Organic Films. Sensors 2014, 14, 18886–18897. [Google Scholar] [CrossRef] [PubMed]
- Park, H.M.; Lee, S.H.; Chung, H.S.; Kwon, O.H.; Yoo, K.Y.; Kim, H.H.; Heo, S.C.; Park, J.S.; Tae, G.S. Immunochromatographic Analysis of Hippuric Acid in Urine. J. Anal. Toxic. 2007, 31, 347–353. [Google Scholar] [CrossRef]
- Tas, U.; Ogeturk, M.; Meydan, S.; Kus, I.; Kuloglu, T.; Ilhan, N.; Kose, E.; Sarsilmaz, M. Hepatotoxic activity of toluene inhalation and protective role of melatonin. Toxic. Indus. Health 2011, 27, 465–473. [Google Scholar] [CrossRef] [PubMed]
- Ukai, H.; Kawai, T.; Inoue, O.; Maejima, Y.; Fukui, Y.; Ohashi, F.; Okamoto, S.; Takada, S.; Sakurai, H.; Ikeda, M. Comparative evaluation of biomarkers of occupational exposure to toluene. Int. Arch. Occup. Environ. Health 2007, 81, 81–93. [Google Scholar] [CrossRef] [PubMed]
- Tomokuni, K.; Ogata, M. DirectColorimetricDeterminationof HippuricAcidin Urine. Clin. Chem. 1972, 4, 349–351. [Google Scholar]
- Kongtip, P.; Vararussami, J.; Pruktharathikul, V. Modified method for determination of hippuric acid and methylhippuric acid in urine by gas chromatography. J. Chromatogr. B. 2001, 751, 199–203. [Google Scholar] [CrossRef]
- Inoue, O.; Seiji, K.; Suzuki, T.; Watanabe, T.; Nakatsuka, H.; Satoh, H.; Ikeda, M. Simultaneous Determination of Hippuric Acid, o-, m-, and p-Methylhippuric Acid, Phenylglyoxylic Acid, and Mandelic Acid by HPLC. Bull. Environ. Contam. Toxicol. 1991, 47, 204–210. [Google Scholar] [CrossRef] [PubMed]
- Heineman, W.R.; Halsall, H.B. Strategiesf orE lectrochemical Immunoassay. Anal. Chem. 1985, 57, 1321A–1331A. [Google Scholar] [CrossRef] [PubMed]
- Warsinke, A.; Benkert, A.; Scheller, F.W. Electrochemical immunoassays. Fresen. J. Anal. Chem. 2000, 366, 622–634. [Google Scholar] [CrossRef]
- Ronkainen-Matsuno, N.J.; Thomas, J.H.; Halsall, H.B.; Heineman, W.R. Electrochemical immunoassay moving into the fast lane. Trends Anal. Chem. 2002, 21, 213–225. [Google Scholar] [CrossRef]
- Choi, Y.B.; Jeon, W.Y.; Kim, H.H. Electrochemical Immunoassay for Detecting Hippuric Acid Based on the Interaction of Osmium-Antigen Conjugate Films with Antibody on Screen Printed Carbon Electrodes. Bull. Korean Chem. Soc. 2012, 33, 1485–1490. [Google Scholar] [CrossRef]
- Choi, Y.B.; Tae, G.S. Simple Electrochemical Immunosensor for the Detection of Hippuric Acid on the Screen-printed Carbon Electrode Modified Gold Nanoparticles. J. Korean Electro. Soc. 2011, 14, 44–49. [Google Scholar] [CrossRef]
- Choi, Y.B.; Kim, H.H. Electrochemical Method for Detecting Hippuric Acid Using Osmium-antigen Conjugate on the Gold Nanoparticles Modified Screen-printed Carbon Electrodes. J. Electro. Sci. Technol. 2011, 2, 1–5. [Google Scholar] [CrossRef]
- Jeon, W.Y.; Choi, Y.B.; Kim, H.H. Homogeneous Electrochemical Detection of Hippuric Acid in Urine Based on the Osmium–Antigen Conjugate. ChemPhysChem 2013, 14, 2331–2337. [Google Scholar] [CrossRef] [PubMed]
- Funabashi, H.; Tanaka, Y.; Imamura, Y.; Mie, M.; Manabe, T.; Tanaka, H.; Takahashi, T.; Handa, H.; Aizawa, M.; Kobatake, E. Glucose oxidase assisted homogeneous electrochemical receptor binding assay for drug screening. Biosens. Bioelectron. 2006, 21, 1675–1683. [Google Scholar] [CrossRef] [PubMed]
- Ohara, T.J.; Rajagopalan, R.; Heller, A. Glucose Electrodes Based on Cross-Linked [Os(bpy)2CI] Complexed Poly(1-vinylimidazole) Films. Anal. Chem. 1993, 65, 3512–3517. [Google Scholar] [CrossRef] [PubMed]
- Biesinger, M.C.; Lau, L.W.M.; Gerson, A.R.; Smart, R.S.C. The role of the Auger parameter in XPS studies of nickel metal, halides and oxides. Phys. Chem. Chem. Phys. 2012, 14, 2434–2442. [Google Scholar] [CrossRef] [PubMed]
- Rossier, J.S.; Girault, H.H. Enzyme linked immunosorbent assay on a microchip with electrochemical detection. Lab Chip 2001, 1, 153–157. [Google Scholar] [CrossRef] [PubMed]
- Yoo, S.J.; Choi, Y.B.; Ju, J.I.; Tae, G.S.; Kim, H.H.; Lee, S.H. Microfluidic chip-based electrochemical immunoassay for hippuric acid. Analyst 2009, 134, 2462–2467. [Google Scholar] [CrossRef] [PubMed]
Reference | Concentration of Antigen (HA) (mg/mL) | Mediator | Amount of Mediator (mg/mL) | Urine Test (mg/mL) |
---|---|---|---|---|
Our study | 0.0001 mg/mL | Fe(CN)5(amp-HA) | 0.02276 | 0.001 |
[18] | 0.01 mg/mL | Fe(CN)5(amp-HA) | 2.276 | N/A* |
[31] | 0.01 mg/mL | Os(dmo-bpy)2(amp-HA)Cl | 0.015 | 0.01 |
[17] | 0.001 mg/mL | Fe(CN)5(amp-HA) | 0.15 | 0.001 |
[28] | 0.1 mg/mL | Os(phen)2(amp-HA)Cl | 1.0 | 0.1 |
[30] | 0.1 mg/mL | Os(dme-bpy)2(amp-HA)Cl | 2.0 | N/A* |
[36] | 10 mg/mL | Ferrocence-HA-Lysine | 1.0 | 10 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, Y.-B.; Jeon, W.-Y.; Kim, H.-H. A Simple Interfacial Platform for Homogeneous Electrochemical Immunoassays Using a Poly(Vinylimidazole)-Modified Electrode. Sensors 2017, 17, 54. https://doi.org/10.3390/s17010054
Choi Y-B, Jeon W-Y, Kim H-H. A Simple Interfacial Platform for Homogeneous Electrochemical Immunoassays Using a Poly(Vinylimidazole)-Modified Electrode. Sensors. 2017; 17(1):54. https://doi.org/10.3390/s17010054
Chicago/Turabian StyleChoi, Young-Bong, Won-Yong Jeon, and Hyug-Han Kim. 2017. "A Simple Interfacial Platform for Homogeneous Electrochemical Immunoassays Using a Poly(Vinylimidazole)-Modified Electrode" Sensors 17, no. 1: 54. https://doi.org/10.3390/s17010054
APA StyleChoi, Y. -B., Jeon, W. -Y., & Kim, H. -H. (2017). A Simple Interfacial Platform for Homogeneous Electrochemical Immunoassays Using a Poly(Vinylimidazole)-Modified Electrode. Sensors, 17(1), 54. https://doi.org/10.3390/s17010054