Characterization and Differentiation of Petroleum-Derived Products by E-Nose Fingerprints
Abstract
:1. Introduction
2. Experimental Section
2.1. Samples
2.2. Acquisition of E-Nose Spectra
2.3. Data Analysis and Software
3. Results and Discussion
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Esquinas, N.; Rodríguez-Valdés, E.; Márquez, G.; Gallego, J.L.R. Diagnostic ratios for the rapid evaluation of natural attenuation of heavy fuel oil pollution along shores. Chemosphere 2017, 184, 1089–1098. [Google Scholar] [CrossRef] [PubMed]
- Gaganis, V.; Pasadakis, N. Characterization of oil spills in the environment using parallel factor multiway analysis. Anal. Chim. Acta 2006, 573–574, 328–332. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Yang, C.; Yang, Z.; Sun, J.; Hollebone, B.; Brown, C.; Landriault, M. Forensic fingerprinting and source identification of the 2009 Sarnia (Ontario) oil spill. J. Environ. Monit. 2011, 13, 3004–3017. [Google Scholar] [CrossRef] [PubMed]
- Yuan, B.; Warneke, C.; Shao, M.; de Gouw, J.A. Interpretation of volatile organic compound measurements by proton-transfer-reaction mass spectrometry over the deepwater horizon oil spill. Int. J. Mass Spectrom. 2014, 358, 43–48. [Google Scholar] [CrossRef]
- Doble, P.; Sandercock, M.; Du Pasquier, E.; Petocz, P.; Roux, C.; Dawson, M. Classification of premium and regular gasoline by gas chromatography/mass spectrometry, principal component analysis and artificial neural networks. Forensic Sci. Int. 2003, 132, 26–39. [Google Scholar] [CrossRef]
- Stout, S.A.; Wang, Z. 3—Chemical fingerprinting methods and factors affecting petroleum fingerprints in the environment. In Standard Handbook Oil Spill Environmental Forensics, 2nd ed.; Academic Press: Boston, MA, USA, 2016; pp. 61–129. [Google Scholar]
- Sundaravadivelu, D.; Suidan, M.T.; Venosa, A.D.; Rosales, P.I. Characterization of solidifiers used for oil spill remediation. Chemosphere 2016, 144, 1490–1497. [Google Scholar] [CrossRef] [PubMed]
- Aqel, A.; Dhabbah, A.M.; Yusuf, K.; AL-Harbi, N.M.; Al Othman, Z.A.; Yacine Badjah-Hadj-Ahmed, A. Determination of gasoline and diesel residues on wool, silk, polyester and cotton materials by SPME–GC–MS. J. Anal. Chem. 2016, 71, 730–736. [Google Scholar] [CrossRef]
- Anyakora, C.; Ogbeche, A.; Palmer, P.; Coker, H.; Ukpo, G.; Ogah, C. GC/MS analysis of polynuclear aromatic hydrocarbons in sediment samples from the Niger Delta region. Chemosphere 2005, 60, 990–997. [Google Scholar] [CrossRef] [PubMed]
- Hupp, A.M.; Marshall, L.J.; Campbell, D.I.; Smith, R.W.; McGuffin, V.L. Chemometric analysis of diesel fuel for forensic and environmental applications. Anal. Chim. Acta 2008, 606, 159–171. [Google Scholar] [CrossRef] [PubMed]
- Sandercock, P.M.L.; Du Pasquier, E. Chemical fingerprinting of unevaporated automotive gasoline samples. Forensic Sci. Int. 2003, 134, 1–10. [Google Scholar] [CrossRef]
- Williams, M.R.; Sigman, M.E.; Lewis, J.; Pitan, K.M. Combined target factor analysis and Bayesian soft-classification of interference-contaminated samples: Forensic fire debris analysis. Forensic Sci. Int. 2012, 222, 373–386. [Google Scholar] [CrossRef] [PubMed]
- American Society for Testing and Materials (ASTM International). ASTM E1618–14 Standard Test Method for Ignitable Liquid Residues in Extracts from Fire Debris Samples by Gas Chromatography-Mass Spectrometry; ASTM International: West Conshohocken, PA, USA, 2014. [Google Scholar]
- Marshall, L.J.; McIlroy, J.W.; McGuffin, V.L.; Waddell Smith, R. Association and discrimination of diesel fuels using chemometric procedures. Anal. Bioanal. Chem. 2009, 394, 2049–2059. [Google Scholar] [CrossRef] [PubMed]
- Sigman, M.E.; Williams, M.R. Covariance mapping in the analysis of ignitable liquids by gas chromatography/mass spectrometry. Anal. Chem. 2006, 78, 1713–1718. [Google Scholar] [CrossRef] [PubMed]
- Sigman, M.E.; Williams, M.R.; Ivy, R.G. Individualization of gasoline samples by covariance mapping and gas chromatography/mass spectrometry. Anal. Chem. 2007, 79, 3462–3468. [Google Scholar] [CrossRef] [PubMed]
- Sandercock, P.M.L.; Du Pasquier, E. Chemical fingerprinting of gasoline: 2. Comparison of unevaporated and evaporated automotive gasoline samples. Forensic Sci. Int. 2004, 140, 43–59. [Google Scholar] [CrossRef] [PubMed]
- Bodle, E.S.; Hardy, J.K. Multivariate pattern recognition of petroleum-based accelerants by solid-phase microextraction gas chromatography with flame ionization detection. Anal. Chim. Acta 2007, 589, 247–254. [Google Scholar] [CrossRef] [PubMed]
- Skrobot, V.L.; Castro, E.V.R.; Pereira, R.C.C.; Pasa, V.M.D.; Fortes, I.C.P. Use of principal component analysis (PCA) and linear discriminant analysis (LDA) in gas chromatographic (GC) data in the investigation of gasoline adulteration. Energy Fuels 2007, 21, 3394–3400. [Google Scholar] [CrossRef]
- Ferreiro-Gonzalez, M.; Ayuso, J.; Alvarez, J.A.; Palma, M.; Barroso, C.G. Application of an HS-MS for the detection of ignitable liquids from fire debris. Talanta 2015, 142, 150–156. [Google Scholar] [CrossRef] [PubMed]
- Desa, W.N.S.M.; Daéid, N.N.; Ismail, D.; Savage, K. Application of unsupervised chemometric analysis and self-organizing feature map (SOFM) for the classification of lighter fuels. Anal. Chem. 2010, 82, 6395–6400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Campagnoli, A.; Cheli, F.; Polidori, C.; Zaninelli, M.; Zecca, O.; Savoini, G.; Pinotti, L.; Dell’Orto, V. Use of the Electronic Nose as a Screening Tool for the Recognition of Durum Wheat Naturally Contaminated by Deoxynivalenol: A Preliminary Approach. Sensors 2011, 11, 4899–4916. [Google Scholar] [CrossRef] [PubMed]
- Lu, W.; Rankin, J.G.; Bondra, A.; Trader, C.; Heeren, A.; de Harrington, P.B. Ignitable liquid identification using gas chromatography/mass spectrometry data by projected difference resolution mapping and fuzzy rule-building expert system classification. Forensic Sci. Int. 2012, 220, 210–218. [Google Scholar] [CrossRef] [PubMed]
- Sigman, M.E.; Williams, M.R.; Castelbuono, J.A.; Colca, J.G.; Clark, C.D. Ignitable Liquid Classification and Identification Using the Summed-Ion Mass Spectrum. Instrum. Sci. Technol. 2008, 36, 375–393. [Google Scholar] [CrossRef]
- Del Nogal Sánchez, M.; Hernández García, E.; Pérez Pavón, J.L.; Moreno Cordero, B. Fast analytical methodology based on mass spectrometry for the determination of volatile biomarkers in saliva. Anal. Chem. 2012, 84, 379–385. [Google Scholar] [CrossRef] [PubMed]
- Falla, F.S.; Larini, C.; Le Roux, G.A.C.; Quina, F.H.; Moro, L.F.L.; Nascimento, C.A.O. Characterization of crude petroleum by NIR. J. Pet. Sci. Eng. 2006, 51, 127–137. [Google Scholar] [CrossRef]
- Khanmohammadi, M.; Garmarudi, A.B.; Garmarudi, A.B.; de la Guardia, M. Characterization of petroleum-based products by infrared spectroscopy and chemometrics. TrAC Trends Anal. Chem. 2012, 35, 135–149. [Google Scholar] [CrossRef]
- Fernández-Varela, R.; Gómez-Carracedo, M.P.; Fresco-Rivera, P.; Andrade, J.M.; Muniategui, S.; Prada, D. Monitoring photooxidation of the Prestige’s oil spill by attenuated total reflectance infrared spectroscopy. Talanta 2006, 69, 409–417. [Google Scholar] [CrossRef] [PubMed]
- Craven, M.A.; Gardner, J.W.; Bartlett, P.N. Electronic noses—Development and future prospects. TrAC Trends Anal. Chem. 1996, 15, 486–493. [Google Scholar] [CrossRef]
- Monroy, J.; Gonzalez-Jimenez, J. Gas classification in motion: An experimental analysis. Sens. Actuators B Chem. 2017, 240, 1205–1215. [Google Scholar] [CrossRef]
- Gonzalez-Jimenez, J.; Monroy, J.; Blanco, J.L. The Multi-Chamber Electronic Nose—An Improved Olfaction Sensor for Mobile Robotics. Sensors 2011, 11, 6145–6164. [Google Scholar] [CrossRef] [PubMed]
- Ferreiro-González, M.; Ayuso, J.; Álvarez, J.A.; Palma, M.; Barroso, C.G. New headspace-mass spectrometry method for the discrimination of commercial gasoline samples with different research octane numbers. Energy Fuels 2014, 28, 6249–6254. [Google Scholar] [CrossRef]
- Ferreiro-Gonzalez, M.; Ayuso, J.; Alvarez, J.A.; Palma, M.; Barroso, C.G. Gasoline analysis by headspace mass spectrometry and near infrared spectroscopy. Fuel 2015, 153, 402–407. [Google Scholar] [CrossRef]
- Ferreiro-Gonzalez, M.; Barbero, G.F.; Palma, M.; Ayuso, J.; Alvarez, J.A.; Barroso, C.G. Determination of Ignitable Liquids in Fire Debris: Direct Analysis by Electronic Nose. Sensors 2016, 16, 695. [Google Scholar] [CrossRef] [PubMed]
- Feldhoff, R.; Saby, C.A.; Bernadet, P. Discrimination of diesel fuels with chemical sensors and mass spectrometry based electronic noses. Analyst 1999, 124, 1167–1173. [Google Scholar] [CrossRef]
- Bermak, A.; Belhouari, S.B.; Shi, M.; Martinez, D. Pattern recognition techniques for odor discrimination in gas sensor array. Encycl. Sens. 2006, X, 1–17. [Google Scholar]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferreiro-González, M.; Barbero, G.F.; Palma, M.; Ayuso, J.; Álvarez, J.A.; Barroso, C.G. Characterization and Differentiation of Petroleum-Derived Products by E-Nose Fingerprints. Sensors 2017, 17, 2544. https://doi.org/10.3390/s17112544
Ferreiro-González M, Barbero GF, Palma M, Ayuso J, Álvarez JA, Barroso CG. Characterization and Differentiation of Petroleum-Derived Products by E-Nose Fingerprints. Sensors. 2017; 17(11):2544. https://doi.org/10.3390/s17112544
Chicago/Turabian StyleFerreiro-González, Marta, Gerardo F. Barbero, Miguel Palma, Jesús Ayuso, José A. Álvarez, and Carmelo G. Barroso. 2017. "Characterization and Differentiation of Petroleum-Derived Products by E-Nose Fingerprints" Sensors 17, no. 11: 2544. https://doi.org/10.3390/s17112544
APA StyleFerreiro-González, M., Barbero, G. F., Palma, M., Ayuso, J., Álvarez, J. A., & Barroso, C. G. (2017). Characterization and Differentiation of Petroleum-Derived Products by E-Nose Fingerprints. Sensors, 17(11), 2544. https://doi.org/10.3390/s17112544