Construction and Potential Applications of Biosensors for Proteins in Clinical Laboratory Diagnosis
Abstract
:1. Introduction
2. Biosensors for Protein Immunoassays
2.1. Fabrication of Immunosensors
2.2. Electrochemical (EC) Immunosensors
2.3. Photoluminescent (PL) Immunosensors
2.4. Photoelectrochemical (PEC) Immunosensors
2.5. Electrochemiluminescent (ECL) Immunosensors
2.6. CL Immunosensors
2.7. Immunosensors Based on Other Techniques
3. Potential Applications of Antibody Biosensing for Clinical Laboratory Diagnoses
3.1. Biosensors for Markers of Infectious Disease
3.2. Biosensors for AIDs Markers
3.3. Evaluation of Vaccine Immunity Based on Biosensor
4. Conclusions
Acknowledgments
Conflicts of Interest
Abbreviations
Ig | immunoglobulin |
WHO | World Health Organization |
IUIS | International Federation of Immunological Societies |
AIDs | autoimmune diseases |
APS | antiphospholipid syndrome |
RA | rheumatoid arthritis |
SLE | systemic lupus erythematosus |
MS | multiple sclerosis |
CD | celiac disease |
ELISA | enzyme-linked immunosorbent assay |
POC | point-of-care |
MRE | molecular recognition element |
EC | electrochemical |
NPs | nanoparticles |
CNTs | carbon nanotubes |
CV | cyclic voltammograms |
NRs | nanorods |
LOD | limit of detection |
SWCNTs | sing-walled carbon nanotubes |
MWCNTs | multi-walled carbon nanotube |
ITO | indium tin oxide |
DPV | pulse voltammetry |
SWV | square wave voltammetry |
AFP | alpha fetoprotein |
HRP | horseradish-peroxidase |
PL | photoluminescent |
HCV | hepatitis C virus |
QDs | quantum dots |
FRET | förster resonance energy transfer |
cTnI | cardiac Troponin I |
cTnT | cardiac troponin T |
AFB1 | aflatoxin B1 |
GVA-antigens | grapevine virus A-type proteins |
ALD | atomic layer deposition |
PEC | photoelectrochemical |
g-C3N4 | graphitic carbon nitride |
CL | chemiluminescence |
CEA | carcinoembryonic antigen |
CA19-9 | cancer antigen 19-9 |
ECL | electrochemiluminescent |
PAMAM | polyamidoamine dendrimer |
IFN-γ | interferon-gamma |
TNF-α | tumor necrosis factor-alpha |
IL-2 | interleukin |
FIA | fluidic immunoassay |
CCHF | crimean-congo hemorrhagic fever |
SPR | surface plasmon resonance |
MCL | microcantilever |
EIS | electrochemical impedance spectroscopy |
ACPAs | anti-citrullinated peptide antibodies |
GMR | giant magnetoresistive |
CSF | human cerebrospinal fluid |
GA | gliadin |
tTG | tissue transglutaminase |
References
- Carrel, A.; Ebeling, A.H. Leucocytic secretions. J. Exp. Med. 1922, 36, 645–659. [Google Scholar] [CrossRef] [PubMed]
- Jayanthi, V.S.P.K.S.A.; Das, A.B.; Saxena, U. Recent advances in biosensor development for the detection of cancer biomarkers. Biosens. Bioelectron. 2016, 91, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Algaar, F.; Eltzov, E.; Vdovenko, M.M.; Sakharov, L.F.; Weidmann, M.; Mirazimi, A.; Marks, R.S. Fiber-optic immunosensor for detection of crimean-congo hemorrhagic fever IgG antibodies in patients. Anal. Chem. 2015, 87, 8394–8398. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.Z.; Zambrano, A.; Lin, Z.T.; Xing, Y.K.; Rippy, J.; Wu, T.F. Immunosensors for biomarker detection in autoimmune diseases. Arch. Immunol. Ther. Exp. 2017, 65, 111–121. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.J.; Namkoong, K.; Cho, E.C.; Ko, C.; Park, J.C.; Lee, S.S. Surface acoustic wave immunosensor for real-time detection of hepatitis B surface antibodies in whole blood samples. Biosens. Bioelectron. 2009, 24, 3120–3125. [Google Scholar] [CrossRef] [PubMed]
- Ferrer-Miralles, N.; Feliu, J.X.; Vandevuer, S.; Müller, A.; Cabrera-Crespo, J.; Ortmans, I.; Hoffmann, F.; Cazorla, D.; Rinas, U.; Prévost, M.; et al. Engineering regulable Escherichia coli β-galactosidases as biosensors for anti-HIV antibody detection in human sera. J. Biol. Chem. 2001, 276, 40087–40095. [Google Scholar] [CrossRef] [PubMed]
- Viswanathan, S.; Botross, N.; Rusli, B.N.; Riad, A. Acute disseminated encephalomyelitis complicating dengue infection with neuroimaging mimicking multiple sclerosis: A report of two cases. Mult. Scler. Relat. Disord. 2016, 10, 112–115. [Google Scholar] [CrossRef] [PubMed]
- Messenger, L.A.; Gilman, R.H.; Verastegui, M.; Galdos-Cardenas, G.; Sanchez, G.; Valencia, E.; Sanchez, L.; Malaga, E.; Rendell, V.R.; Jois, M.; et al. Toward improving early diagnosis of congenital chagas disease in an endemic setting. Clin. Infect. Dis. 2017, 65, 268–275. [Google Scholar] [CrossRef] [PubMed]
- De Chambrun, M.P.; Gousseff, M.; Mauhin, W.; Lega, J.C.; Lambert, M.; Riviere, S.; Dossier, A.; Ruivard, M.; Lhote, F.; Blaison, G.; et al. Intravenous immunoglobulins improve survival in monoclonal gammopathy-associated systemic capillary-leak syndrome. Am. J. Med. 2017, 130, 1219.e19–1219.e27. [Google Scholar] [CrossRef] [PubMed]
- Pogorzelska, J.; Lapinska, M.; Kalinowska, A.; Lapinski, T.W.; Flisiak, R. Helicobacter pylori infection among patients with liver cirrhosis. Eur. J. Gastroenterol. Hepatol. 2017, 29, 1161–1165. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.J.; Park, H.R.; Shin, T.Y.; Kim, S.H. Diospyros kaki calyx inhibits immediate-type hypersensitivity via the reduction of mast cell activation. Pharm. Boil. 2017, 55, 1946–1953. [Google Scholar] [CrossRef] [PubMed]
- Zdziarski, P.; Gamian, A.; Majda, J.; Korzeniowska-Kowal, A. Passive blood anaphylaxis: Subcutaneous immunoglobulins are a cause of ongoing passive anaphylactic reaction. Allergy Asthma Clin. Immunol. 2017, 13, 41. [Google Scholar] [CrossRef] [PubMed]
- Maecker, H.T.; Lindstrom, T.M.; Robinson, W.H. New tools for classification and monitoring of autoimmune diseases. Nat. Rev. Rheumatol. 2012, 8, 317–328. [Google Scholar] [CrossRef] [PubMed]
- Maragos, C. M. Production of anti-idiotype antibodies for deoxynivalenol and their evaluation with three immunoassay platforms. Mycotoxin Res. 2014, 30, 103–111. [Google Scholar] [CrossRef] [PubMed]
- Ito, F.; Ito, T.; Suzuki, C.; Yahata, T.; Ikeda, K.; Hamaoka, K. The application of a modified d-ROMs test for measurement of oxidative stress and oxidized high-density lipoprotein. Int. J. Mol. Sci. 2017, 18, e454. [Google Scholar] [CrossRef] [PubMed]
- Balaro, M.F.A.; Santos, A.S.; Moura, L.F.G.M.; Fonseca, J.F.; Brandao, F.Z. Luteal dynamic and functionality assessment in dairy goats by luteal blood flow, luteal biometry, and hormonal assay. Theriogenology 2017, 95, 118–126. [Google Scholar] [CrossRef] [PubMed]
- Zonf, C.; Zhang, D.D.; Yang, H.; Wang, S.M.; Chu, M.; Li, P. Chemiluminescence immunoassay for cardiac troponin T by using silver nanoparticles functionalized with hemin/G-quadruplex DNAzyme on a glass chip array. Microchim. Acta 2017, 184, 3197–3204. [Google Scholar]
- Nath, N.; Flemming, R.; Godat, B.; Urh, M. Development of NanoLuc bridging immunoassay for detection of anti-drug antibodies. J. Immunol. Methods 2017, 450, 17–26. [Google Scholar] [CrossRef] [PubMed]
- Malhotra, R.; Patel, V.; Vaque, J.P.; Gutkind, J.S.; Rusling, J.F. Ultrasensitive electrochemical immunosensor for oral cancer biomarker IL-6 using carbon nanotube forest electrodes and multilabel amplification. Anal. Chem. 2010, 82, 3118–3123. [Google Scholar] [CrossRef] [PubMed]
- Reddy, K.K.; Satyanarayana, M.; Goud, K.Y.; Gobi, K.V.; Kim, H. Carbon nanotube ensembled hybrid nanocomposite electrode for direct electrochemical detection of epinephrine in pharmaceutical tablets and urine. Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 79, 93–99. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Tirado, E.; Arellano, L.M.; González-Cortés, A.; Yáñez-Sedeño, P.; Langa, F.; Pingarrón, J.M. Viologen-functionalized single-walled carbon nanotubes as carrier nanotags for electrochemical immunosensing. Application to TGF-β1 cytokine. Biosens. Bioelectron. 2017, 98, 240–247. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.H.; Wang, J.J.; Jiang, Y.Z.; Lv, C.; Xia, L.; Hong, S.L.; Lin, M.; Lin, Y.; Zhang, Z.L.; Pang, D.W. A colorimetric and electrochemical immunosensor for point-of-care detection of enterovirus 71. Biosens. Bioelectron. 2018, 99, 186–192. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, R.A.G.; Materón, E.M.; Melendez, M.E.; Carvalho, A.L.; Faria, R.C. Disposable microfluidic immunoarray device for sensitive breast cancer biomarker detection. ACS Appl. Mater. Interfaces 2017, 9, 27433–27440. [Google Scholar] [CrossRef] [PubMed]
- Loan, P.T.K.; Wu, D.Q.; Ye, C.; Li, X.Q.; Tra, V.T.; Wei, Q.Q.; Fu, L.; Yu, A.; Li, L.J.; Lin, C.T. Hall effect biosensors with ultraclean graphene film for improved sensitivity of label-free DNA detection. Biosens. Bioelectron. 2018, 99, 85–91. [Google Scholar] [CrossRef] [PubMed]
- Gao, F.L.; Fan, T.T.; Ou, S.S.; Wu, J.; Zhang, X.; Luo, J.J.; Li, N.; Yao, Y.; Mou, Y.F.; Liao, X.J.; et al. Highly efficient electrochemical sensing platform for sensitive detection DNA methylation, and methyltransferase activity based on Ag NPs decorated carbon nanocubes. Biosens. Bioelectron. 2018, 99, 201–208. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Liang, W.; Wen, Y.L.; Wang, L.L.; Yang, X.; Ren, S.Z.; Jia, N.Q.; Zuo, X.L.; Liu, G. An ultrasensitive electrochemical biosensor for the detection of mecA gene in methicillin-resistant Staphylococcus aureus. Biosens. Bioelectron. 2018, 99, 424–430. [Google Scholar] [CrossRef] [PubMed]
- Tian, L.; Qian, K.; Qi, J.X.; Liu, Q.Y.; Yao, C.; Song, W.; Wang, Y.H. Gold nanoparticles superlattices assembly for electrochemical biosensor detection of microRNA-21. Biosens. Bioelectron. 2018, 99, 564–570. [Google Scholar] [CrossRef] [PubMed]
- Damiati, S.; Kupcu, S.; Peacock, M.; Eilenberger, C.; Zamzami, M.; Qadri, I.; Choudhry, H.; Sleytr, U.B.; Schuster, B. Acoustic and hybrid 3D-printed electrochemical biosensors for the real-time immunodetection of liver cancer cells (HepG2). Biosens. Bioelectron. 2017, 94, 500–506. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; He, M.Q.; Zhai, F.H.; He, R.H.; Yu, Y.L. A novel electrochemical biosensor based on polyadenine modified aptamer for label-free and ultrasensitive detection of human breast cancer cells. Talanta 2017, 166, 87–92. [Google Scholar] [CrossRef] [PubMed]
- Dervisevic, M.; Senel, M.; Sagir, T.; Isik, S. Highly sensitive detection of cancer cells with an electrochemical cytosensor based on boronic acid functional polythiophene. Biosens. Bioelectron. 2017, 90, 6–12. [Google Scholar] [CrossRef] [PubMed]
- Xu, T.T.; Chi, B.; Gao, J.; Chu, M.L.; Fan, W.L.; Yi, M.H.; Xu, H.; Mao, C. Novel electrochemical immune sensor based on Hep-PGA-PPy nanoparticles for detection of α-Fetoprotein in whole blood. Anal. Chim. Acta 2017, 977, 36–43. [Google Scholar] [CrossRef] [PubMed]
- Fang, X.; Liu, J.F.; Wang, J.; Zhao, H.; Ren, H.X.; Li, Z.X. Dual signal amplification strategy of Au nanopaticles/ZnO nanorods hybridized reduced graphene nanosheet and multienzyme functionalized Au@ZnO composites for ultrasensitive electrochemical detection of tumor biomarker. Biosens. Bioelectron. 2017, 97, 218–225. [Google Scholar] [CrossRef] [PubMed]
- Lima, L.R.; Moraes, M.L.; Nigoghossian, K.; Peres, M.F.S.; Ribeiro, S.J.L. Silk fibroin-antigenic peptides-YVO4:Eu3+ nanostructured thin films as sensors for hepatitis C. J. Lumin. 2016, 170, 375–379. [Google Scholar] [CrossRef]
- Wang, J. Electrochemical biosensors: Towards point-of-care cancer diagnostics. Biosens. Bioelectron. 2006, 21, 1887–1892. [Google Scholar] [CrossRef] [PubMed]
- Bhatnagar, D.; Kumar, V.; Kumar, A.; Kaur, I. Graphene quantum dots FRET based sensor for early detection of heart attack in human. Biosens. Bioelectron. 2016, 79, 495–499. [Google Scholar] [CrossRef] [PubMed]
- Kaur, H.; Shorie, M.; Sharma, M.; Ganguli, A.K.; Sabherwal, P. Bridged Rebar Graphene functionalized aptasensor for pathogenic E. coli O78:K80:H11 detection. Biosens. Bioelectron. 2017, 98, 486–493. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.L.; Wang, Y.H.; Li, J.B.; Ding, C.F.; Lin, Y.N.; Sun, W.Y.; Luo, C.N. An ultrasensitive chemiluminescence aptasensor for thrombin detection based on iron porphyrin catalyzing luminescence desorbed from chitosan modified magnetic oxide graphene composite. Talanta 2017, 174, 809–818. [Google Scholar] [CrossRef] [PubMed]
- Tabrizi, M.A.; Shamsipur, M.; Saber, R.; Sarkar, S.; Ebrahimi, V. A high sensitive visible light-driven photoelectrochemical aptasensor for shrimp allergen tropomyosin detection using graphitic carbon nitride-TiO2 nanocomposite. Biosens. Bioelectron. 2017, 98, 113–118. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.T.; Yang, J.J.; Zhao, L.T.; Wang, Y.L.; Wang, H.; Liu, Y.M.; Ma, S.H. Graphene oxide@gold nanorods-based multiple-assisted electrochemiluminescence signal amplification strategy for sensitive detection of prostate specific antigen. Biosens. Bioelectron. 2018, 99, 92–98. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Yan, Y.T.; Yan, F.; Ju, H.X. Electric field-driven strategy for multiplexed detection of protein biomarkers using a disposable reagentless electrochemical immunosensor array. Anal. Chem. 2008, 80, 6072–6077. [Google Scholar] [CrossRef] [PubMed]
- Thevenot, D.R.; Toth, K.; Durst, R.A.; Wilson, G.S. Electrochemical biosensors: Recommended definitions and classification. Biosens. Bioelectron. 2001, 16, 121–131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.X.; Zhao, G.C. A novel signal-on photoelectrochemical immunosensor for detection of alpha-fetoprotein by in situ releasing electron donor. Biosens. Bioelectron. 2017, 98, 155–160. [Google Scholar] [CrossRef] [PubMed]
- Johari-Ahar, M.; Rashidi, M.R.; Barar, J.; Aghaie, M.; Mohammadnejad, D.; Ramazani, A.; Karami, P.; Coukos, G.; Omidi, Y. An ultra-sensitive impedimetric immunosensor for detection of the serum oncomarker CA-125 in ovarian cancer patients. Nanoscale 2015, 7, 3768–3779. [Google Scholar] [CrossRef] [PubMed]
- Dodevska, T.; Horozova, E.; Dimcheva, N. Electrochemical behavior of ascorbate oxidase immobilized on graphite electrode modified with Au-nanoparticles. Mater. Sci. Eng. B 2013, 178, 1497–1502. [Google Scholar] [CrossRef]
- Xu, T.T.; Chi, B.; Wu, F.; Ma, S.S.; Zhan, S.Y.; Yi, M.H.; Xu, H.; Mao, C. A sensitive label-free immunosensor for detection α-Fetoprotein in whole blood based on anticoagulating magnetic nanoparticles. Biosens. Bioelectron. 2017, 95, 87–93. [Google Scholar] [CrossRef] [PubMed]
- Gasparotto, G.; Costa, J.P.C.; Costa, P.I.; Zaghete, M.A.; Mazon, T. Electrochemical immunosensor based on ZnO nanorods-Au nanoparticles nanohybrids for ovarian cancer antigen CA125 detection. Mater. Sci. Eng. C 2017, 76, 1240–1247. [Google Scholar] [CrossRef] [PubMed]
- Dong, S.Y.; Tong, M.M.; Zhang, D.D.; Huang, T.L. The strategy of nitrite and immunoassay human IgG biosensors based on ZnO@ZIF-8 and ionic liquid composite film. Sens. Actuators B 2017, 251, 650–657. [Google Scholar] [CrossRef]
- Tarditto, L.V.; Zon, M.A.; Ovando, H.G.; Vettorazzi, N.R.; Arévalo, F.J.; Fernández, H. Electrochemical magneto immunosensor based on endogenous β-galactosidase enzyme to determine enterotoxicogenic Escherichia coli F4 (K88) in swine feces using square wave voltammetry. Talanta 2017, 174, 507–513. [Google Scholar] [CrossRef] [PubMed]
- Myndrul, V.; Viter, R.; Savchuk, M.; Koval, M.; Starodub, M.N.; Silamiķelis, V.; Smyntyna, V.; Ramanavicius, A.; Iatsunskyi, I. Gold coated porous silicon nanocomposite as a substrate for photoluminescence-based immunosensor suitable for the determination of Aflatoxin B1. Talanta 2017, 175, 297–304. [Google Scholar] [CrossRef] [PubMed]
- Tereshchenko, A.; Fedorenko, A.; Smyntyna, V.; Konup, I.; Konup, A.; Eriksson, M.; Yakimova, R.; Ramanavicius, A.; Balme, S.; Bechelany, S.M. ZnO films formed by atomic layer deposition as an optical biosensor platform for the detection of Grapevine virus A-type proteins. Biosens. Bioelectron. 2017, 92, 763–769. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.Y.; Lv, S.Z.; Lin, Z.Z.; Tang, D.P. CdS:Mn quantum dot-functionalized g-C3N4 nanohybrids as signal-generation tags for photoelectrochemical immunoassay of prostate specific antigen coupling DNAzyme concatamer with enzymatic biocatalytic precipitation. Biosens. Bioelectron. 2017, 95, 34–40. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.W.; Xu, J.J.; Chen, H.Y. Photoelectrochemical DNA biosensors. Chem. Rev. 2014, 114, 7421–7441. [Google Scholar] [CrossRef] [PubMed]
- Zang, Y.; Lei, J.P.; Ju, H.X. Principles and applications of photoelectrochemical sensing strategies based on biofunctionalized nanostructures. Biosens. Bioelectron. 2017, 96, 8–16. [Google Scholar] [CrossRef] [PubMed]
- Lv, S.Z.; Zhang, K.Y.; Lin, Z.Z.; Tang, D.P. Novel photoelectrochemical immunosensor for disease-related protein assisted by hemin/G-quadruplex-based DNAzyme on gold nanoparticles to enhance cathodic photocurrent on p-CuBi2O4 semiconductor. Biosens. Bioelectron. 2017, 96, 317–323. [Google Scholar] [CrossRef] [PubMed]
- Neto, S.Y.; Silva, F.G.S.; Souto, D.E.P.; Faria, A.R.; Andrade, H.M.; Luz, R.C.S.; Kubota, L.T.; Damos, F.S. Photoelectrochemical immunodiagnosis of canine leishmaniasis using cadmium-sulfide-sensitized zinc oxide modified with synthetic peptides. Electrochem. Commun. 2017, 82, 75–79. [Google Scholar] [CrossRef]
- Tan, Y.; Wang, Y.Y.; Li, M.S.; Ye, X.X.; Wu, T.H.; Li, C.Y. Enhanced photoelectrochemical immunosensing of cardiac troponin I based on energy transfer between N-acetyl-l-cysteine capped CdAgTe quantum dots and dodecahedral Au nanoparticles. Biosens. Bioelectron. 2017, 91, 741–746. [Google Scholar] [CrossRef] [PubMed]
- Hao, N.; Zhang, X.; Zhou, Z.; Qian, J.; Liu, Q.; Chen, SB.; Zhang, Y.; Wang, K. Three-dimensional nitrogen-doped graphene porous hydrogel fabricated biosensing platform with enhanced photoelectrochemical performance. Sens. Actuators B 2017, 250, 476–483. [Google Scholar] [CrossRef]
- Ge, S.G.; Liang, L.L.; Lan, F.F.; Zhang, Y.; Wang, Y.H.; Yan, M.; Yu, J.H. Photoelectrochemical immunoassay based on chemiluminescence asinternal excited light source. Sens. Actuators B 2016, 234, 324–331. [Google Scholar] [CrossRef]
- Wang, J.; Long, J.; Liu, Z.H.; Wu, W.; Hua, C.G. Label-free and high-throughput biosensing of multiple tumor markers on a single light-addressable photoelectrochemical sensor. Biosens. Bioelectron. 2017, 91, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Richter, M.M. Electrochemiluminescence (ECL). Chem. Rev. 2004, 104, 3003–3036. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Xiong, H.W.; Chen, M.M.; Zhang, X.H.; Wang, S.F. Surface-enhanced molecularly imprinted electrochemiluminescence sensor based on Ru@SiO2 for ultrasensitive detection of fumonisin B1. Biosens. Bioelectron. 2017, 96, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.Y.; Zhao, Y.H.; Zhu, Z.W.; Xing, Z.Y.; Ma, H.M.; Wei, Q. Ultrasensitive immunosensor for prostate specific antigen using biomimetic polydopamine nanospheres as an electrochemiluminescence superquencher and antibody carriers. Anal. Chim. Acta 2017, 963, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Ke, H.; Wang, Z.M.; Guo, W.W.; Zhang, A.M.; Huang, C.S.; Jia, N.Q. An ultrasensitive multi-walled carbon nanotube–platinum–luminol nanocomposite-based electrochemiluminescence immunosensor. Analyst 2017, 142, 2253–2260. [Google Scholar] [CrossRef] [PubMed]
- Benoit, L.; Choi, L.P. Electrogenerated chemiluminescence of semiconductor nanoparticles and their applications in biosensors. ChemElectroChem 2017, 4, 1573–1586. [Google Scholar] [CrossRef]
- Hu, L.Y.; Dong, T.T.; Zhao, K.; Deng, A.P.; Li, J.G. Ultrasensitive electrochemiluminescent brombuterol immunoassay by applying a multiple signal amplification strategy based on a PAMAM-gold nanoparticle conjugate as the bioprobe and Ag@Au core shell nanoparticles as a substrate. Microchim. Acta 2017, 184, 3415–3423. [Google Scholar] [CrossRef]
- Liu, X.; Jiang, H.; Fang, Y.; Zhao, W.; Wang, N.Y.; Zang, G.Z. Quantum dots based potential-resolution dual-targets electrochemiluminescent immunosensor for subtype of tumor marker and its serological evaluation. Anal. Chem. 2015, 87, 9163–9169. [Google Scholar] [CrossRef] [PubMed]
- Babamiril, B.; Hallaj, R.; Salimi, A. Potential-resolved electrochemiluminescence immunoassay for simultaneous determination of CEA and AFP tumor markers using dendritic nanoclusters and Fe3O4@SiO2 nanoparticles. Microchim. Acta 2017, 184, 3613–3623. [Google Scholar] [CrossRef]
- Babamiri, B.; Hallaj, R.; Salimi, A. Ultrasensitive electrochemiluminescence immunoassay for simultaneous determination of CA125 and CA15-3 tumor markers based on PAMAMsulfanilic acid-Ru(bpy)32+ and PAMAM-CdTe@CdS nanocomposite. Biosens. Bioelectron. 2018, 99, 353–360. [Google Scholar] [CrossRef] [PubMed]
- Zhou, B.; Zhu, M.Y.; Hao, Y.; Yang, P.H. Potential-resolved electrochemiluminescence for simultaneous determination of triple latent tuberculosis infection markers. ACS Appl. Mater. Interfaces 2017, 9, 18493–18500. [Google Scholar] [CrossRef] [PubMed]
- Li, S.T.; Shi, M.; Zhao, J.J.; Zhang, L.L.; Huang, Y.; Zhao, S.L. A highly sensitive capillary electrophoresis immunoassay strategy based ondual-labeled gold nanoparticles enhancing chemiluminescence for the detection of prostate-specific antigen. Electrophoresis 2017, 38, 1780–1787. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Chen, Q.L.; Wei, X.; Wu, J.; Wang, C.Y.; Liu, J.H.; Zhang, L.Y.; Dong, Y.Y. A competitive luminol chemiluminescence immunosensor based on a microfluidic chip for the determination of ractopamine. Electrophoresis 2017, 38, 368–371. [Google Scholar] [CrossRef] [PubMed]
- Zangheri, M.; Nardo, F.D.; Mirasoli, M.; Anfossi, L.; Nascetti, A.; Caputo, D.; Cesare, G.; Guardigli, M.; Baggiani, C.; Roda, A. Chemiluminescence lateral flow immunoassay cartridge with integrated amorphous silicon photosensors array for human serum albumin detection in urine samples. Anal. Bioanal. Chem. 2016, 408, 8869–8879. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.Y.; Hsua, H.Y.; Huang, C.C. A protein detection technique by using surface plasmon resonance (SPR) with rolling circle amplification (RCA) and nanogold-modified tags. Biosens. Bioelectron. 2007, 22, 980–985. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Sun, Y.; Zhang, D.; Li, S.; Zhang, Y.; Ma, P.Y.; Yu, Y.; Wang, X.H.; Song, D.Q. Ultrasensitive magnetic field-assisted surface plasmon resonance immunoassay for human cardiac troponin I. Biosens. Bioelectron. 2017, 96, 288–293. [Google Scholar] [CrossRef] [PubMed]
- Kabiraz, D.C.; Morita, K.; Sakamoto, K.; Kawaguchi, T. Mechanism of surface plasmon resonance sensing by indirect competitive inhibition immunoassay using Au nanoparticle labeled antibody. Talanta 2017, 172, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Zou, F.; Wang, X.X.; Qia, F.J.; Kohc, K.; Leed, J.; Zhou, H.J.; Chena, H.X. Magneto-plamonic nanoparticles enhanced surface plasmon resonance TB sensor based on recombinant gold binding antibody. Sens. Actuators B 2017, 250, 356–363. [Google Scholar] [CrossRef]
- Zhou, X.R.; Wu, S.Q.; Liu, H.; Wu, X.P.; Zhang, Q.C. Nanomechanical label-free detection of aflatoxin B1 using a microcantilever. Sens. Actuators B 2016, 226, 24–29. [Google Scholar] [CrossRef]
- Wang, J.J.; Wang, L.H.; Zhu, Y.F.; Zhang, J.Y.; Liao, J.; Wang, S.P.; Yang, J.L.; Yang, F.H. A high accuracy cantilever array sensor for early livercancer diagnosis. Biomed. Microdevices 2016, 18, 110. [Google Scholar] [CrossRef] [PubMed]
- Su, L.; Zou, L.; Fong, C.C.; Wong, W.L.; Wei, F.; Wong, K.Y.; Wu, R.S.S.; Yang, M.S. Detection of cancer biomarkers by piezoelectric biosensor using PZT ceramic resonator as the transducer. Biosens. Bioelectron. 2013, 46, 155–161. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Guo, X.L.; Wang, H.H.; Sun, Y.; Kang, Q.; Shen, D.Z. An electrode-separated piezoelectric immunosensor array with signal enhancement based on enzyme catalytic deposition of palladium nanoparticles and electroless deposition nickel-phosphorus. Sens. Actuators B 2017, 248, 551–559. [Google Scholar] [CrossRef]
- Funari, R.; Ventura, B.D.; Schiavo, L.; Esposito, R.; Altucci, C.; Velotta, R. Detection of parathion pesticide by quartz crystal microbalance functionalized with UV-activated antibodies. Anal. Chem. 2013, 85, 6392–6397. [Google Scholar] [CrossRef] [PubMed]
- Cardos, A.R.; Gabral-Miranda, G.; Reyes-Sandoval, A.; Bachmann, M.F.; Sales, M.G.F. Detecting circulating antibodies by controlled surface modification with specific target proteins: Application to malaria. Biosens. Bioelectron. 2017, 91, 833–841. [Google Scholar] [CrossRef] [PubMed]
- Palomar, Q.; Gondran, C.; Holzinger, M.; Marks, R.; Cosnier, S. Controlled carbon nanotube layers for impedimetric immunosensors: High performance label free detection and quantification of anti-cholera toxin antibody. Biosens. Bioelectron. 2017, 97, 177–183. [Google Scholar] [CrossRef] [PubMed]
- Welch, M.E.; Ritzert, N.L.; Chen, H.J.; Smith, N.L.; Tague, M.E.; Xu, Y.Y.; Baird, B.A.; Abruña, H.D.; Ober, C.K. Generalized Platform for Antibody Detection using the Antibody Catalyzed Water Oxidation Pathway. J. Am. Chem. Soc. 2014, 136, 1879–1883. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.J.; Dong, J.H.; Deo, V.K.; Park, E.Y.; Lee, J. Detection of anti-Neospora antibodies in bovine serum by using spiky Au-CdTe nanocomplexes. Sens. Actuators B 2013, 178, 192–199. [Google Scholar] [CrossRef]
- Thomas, E.; Bouma, A.; Eerden, E.; Landman, W.J.M.; Knapen, F.; Stegeman, A.; Bergwerff, A.A. Detection of egg yolk antibodies reflecting Salmonella enteritidis infections using a surface plasmon resonance biosensor. J. Immunol. Methods 2006, 315, 68–74. [Google Scholar] [CrossRef] [PubMed]
- Abadian, P.N.; Yildirim, N.; Gu, A.Z.; Goluch, E.D. SPRi-based adenovirus detection using a surrogate antibody method. Biosens. Bioelectron. 2015, 74, 808–814. [Google Scholar] [CrossRef] [PubMed]
- Atias, D.; Liebes, Y.; Chalifa-Caspi, V.; Bremand, L.; Lobel, L. Chemiluminescent optical fiber immunosensor for the detection of IgM antibody to dengue virus in humans. Sens. Actuators B 2009, 140, 206–215. [Google Scholar] [CrossRef]
- Konry, T.; Novoa, A.; Shemer-Avni, Y.; Hanuka, N.; Cosnier, S.; Lepellec, A.; Marks, R.S. Optical fiber immunosensor based on a poly(pyrrole-benzophenone) film for the detection of antibodies to viral antigen. Anal. Chem. 2005, 77, 1771–1779. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Espinel, C.; Díaz-Freitas, B.; Fernández-Suarez, J.; González-Fernández, Á.; Merkoci, A.; Escosura-Muñiz, A.; Costa, M.M. Gold nanoparticle-based electrochemical magnetoimmunosensor for rapid detection of anti-hepatitis B virus antibodies in human serum. Biosens. Bioelectron. 2010, 26, 1710–1714. [Google Scholar]
- Bleher, O.; Schindler, A.; Yin, M.X.; Holmes, A.B.; Luppa, P.B.; Gauglitz, G.; Proll, G. Development of a new parallelized, optical biosensor platform for label-free detection of autoimmunity-related antibodies. Anal. Bioanal. Chem. 2014, 406, 3305–3314. [Google Scholar] [CrossRef] [PubMed]
- Hilbig, U.; Bleher, O.; Blanc, A.L.; Gauglitz, G. A biomimetic sensor surface to detect anti-β2-glycoprotein-I antibodies as a marker for antiphospholipid syndrome. Anal. Bioanal. Chem. 2012, 403, 713–717. [Google Scholar] [CrossRef] [PubMed]
- Metzger, J.; Landenberg, P.; Kehrel, M.; Buhl, A.; Lackner, K.J.; Luppa, P.B. Biosensor Analysis of β2-glycoprotein I-Reactive autoantibodies: Evidence for isotype-specific binding and differentiation of pathogenic from infection-induced antibodies. Clin. Chem. 2007, 53, 1137–1143. [Google Scholar] [CrossRef] [PubMed]
- Schindler, A.R.; Bleher, O.; Thaler, M.A.; Kocot, C.J.; Steigerwald, U.; Proll, G.; Gauglitz, G.; Luppa, P.B. Diagnostic performance study of an antigen microarray for the detection of antiphospholipid antibodies in human serum. Clin. Chem. Lab. Med. 2015, 53, 801–808. [Google Scholar] [CrossRef] [PubMed]
- Villa, M.G.; Jiménez-Jorquera, C.; Haro, I.; Gomara, M.J.; Sanmartí, R.; Fernández-Sánchez, C.; Mendoza, E. Carbon nanotube composite peptide-based biosensors as putative diagnostic tools for rheumatoid arthritis. Biosens. Bioelectron. 2011, 27, 113–118. [Google Scholar] [CrossRef] [PubMed]
- Chon, H.; Lee, S.; Wang, R.; Bang, S.Y.; Lee, H.S.; Bae, S.C.; Lee, H.; Kim, B. SERS-based immunoassay of anti-cyclic citrullinated peptide for early diagnosis of rheumatoid arthritis. RSC Adv. 2014, 4, 32924–32927. [Google Scholar] [CrossRef]
- Ko, H.; Lee, G.Y.; Jeon, B.J.; Pyun, J.C. Fluorescence immunoassay of anti-cyclic citrulinated peptide (CCP) autoantibodies by using parylene-H film. BioChip J. 2011, 5, 242–245. [Google Scholar] [CrossRef]
- Drouvalakis, K.A.; Bangsaruntip, S.; Hueber, W.; Kozar, L.G.; Utz, P.J.; Dai, H.J. Peptide-coated nanotube-based biosensor for the detection of disease-specific autoantibodies in human serum. Biosens. Bioelectron. 2008, 23, 1413–1421. [Google Scholar] [CrossRef] [PubMed]
- Rossi, G.; Real-Fernández, F.; Panza, F.; Barbett, F.; Pratesi, F.; Rovero, P.; Migliorini, P. Biosensor analysis of anti-citrullinated protein/peptide antibody affinity. Anal. Biochem. 2014, 465, 96–101. [Google Scholar] [CrossRef] [PubMed]
- Thaler, M.; Buhl, A.; Welter, H.; Schreiegg, A.; Kehrel, M.; Alber, B.; Metzger, J.; Luppa, P.B. Biosensor analyses of serum autoantibodies: Application to antiphospholipid syndrome and systemic lupus erythematosus. Anal. Bioanal. Chem. 2009, 393, 1417–1429. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.R.; Haddon, D.J.; Wand, H.E.; Price, J.V.; Diep, V.K.; Hall, D.A.; Petri, M.; Baechler, E.C.; Balboni, I.M.; Utz, P.J. Multiplex giant magnetoresistive biosensor microarrays identify interferon-associated autoantibodies in systemic lupus erythematosus. Sci. Rep. 2016, 6, 27623–27632. [Google Scholar] [CrossRef] [PubMed]
- Nascimento, N.M.; Juste-Dolz, A.; Grau-García, E.; Román-Ivorra, J.A.; Puchades, R.; Maquieira, A.; Morais, S.; Gimenez-Romero, D. Label-free piezoelectric biosensor for prognosis and diagnosis of systemic lupus erythematosus. Biosens. Bioelectron. 2017, 90, 166–173. [Google Scholar] [CrossRef] [PubMed]
- Rubin, R.L.; Wall, D.; Konstantinov, K.N. Electrochemical biosensor for quantitation of anti-DNA autoantibodies in human serum. Biosens. Bioelectron. 2014, 51, 177–183. [Google Scholar] [CrossRef] [PubMed]
- Buhl, A.; Metzger, J.H.; Heegaard, N.H.H.; Landenberg, P.; Fleck, M.; Luppa, P.B. Novel biosensor-based analytic device for the detection of anti-double-stranded DNA antibodies. Clin. Chem. 2007, 53, 334–341. [Google Scholar] [CrossRef] [PubMed]
- Buhl, A.; Page, S.; Heegaard, N.H.H.; Landenberg, P.; Luppa, P.B. Optical biosensor-based characterization of anti-double-stranded DNA monoclonal antibodies as possible new standards for laboratory tests. Biosens. Bioelectron. 2009, 25, 198–203. [Google Scholar] [CrossRef] [PubMed]
- Fakhrullin, R.F.; Vinter, V.G.; Zamaleeva, A.I.; Matveeva, M.V.; Kourbanov, R.A.; Temesgen, B.K.; Ishmuchametova, D.G.; Abramova, Z.I.; Konovalova, O.A.; Salakhov, M.K. Quartz crystal microbalance immunosensor for the detection of antibodies to double-stranded DNA. Anal. Bioanal. Chem. 2007, 388, 367–375. [Google Scholar] [CrossRef] [PubMed]
- Konstantinov, K.N.; Sitdikov, R.A.; Lopez, G.P.; Atanassov, P.; Rubin, R.L. Rapid detection of anti-chromatin autoantibodies in human serum using a portable electrochemical biosensor. Biosens. Bioelectron. 2009, 24, 1949–1954. [Google Scholar] [CrossRef] [PubMed]
- Real-Fernández, F.; Rossi, G.; Lolli, F.; Papini, A.M.; Rovero, P. Label-free method for anti-glucopeptide antibody detection in Multiple Sclerosis. MethodsX 2015, 2, 141–144. [Google Scholar] [CrossRef] [PubMed]
- Real-Fernández, F.; Passalacqua, I.; Peroni, E.; Chelli, M.; Lolli, F.; Papini, A.M.; Rovero, P. Glycopeptide-based antibody detection in multiple sclerosis by surface plasmon resonance. Sensors 2012, 12, 5596–5607. [Google Scholar] [CrossRef] [PubMed]
- Real-Fernández, F.; Colson, A.; Bayardon, J.; Nuti, F.; Peroni, E.; Meunier-Prest, R.; Lolli, F.; Chelli, M.; Darcel, C.; Jugé, S.; et al. Ferrocenyl glycopeptides as electrochemical probes to detect autoantibodies in multiple sclerosis patients’ sera. Pept. Sci. 2008, 90, 488–495. [Google Scholar] [CrossRef] [PubMed]
- Derkus, B.; Emregul, E.; Yucesan, K.; Emregul, C. Myelin basic protein immunosensor for multiple sclerosis detection based upon label-free electrochemical impedance spectroscopy. Biosens. Bioelectron. 2013, 46, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Neves, M.M.P.S.; González-García, M.B.; Delerue-Matos, C.; Costa-García, A. Multiplexed electrochemical immunosensor for detection of celiac disease serological markers. Sens. Actuators B 2013, 187, 33–39. [Google Scholar] [CrossRef]
- Ortiz, M.; Fragoso, A.; O’Sullivan, C.K. Detection of antigliadin autoantibodies in celiac patient samples using a cyclodextrin-based supramolecular biosensor. Anal. Chem. 2011, 83, 2931–2938. [Google Scholar] [CrossRef] [PubMed]
- Rosales-Rivera, L.C.; Acero-Sánchez, J.L.; Lozano-Sánchez, P.; Katakisa, I.; O’Sullivan, C.K. Electrochemical immunosensor detection of antigliadin antibodies from real human serum. Biosens. Bioelectron. 2011, 26, 4471–4476. [Google Scholar] [CrossRef] [PubMed]
- Neves, M.M.P.S.; González-García, M.B.; Santos-Silva, A.; Costa-García, A. Voltammetric immunosensor for the diagnosis of celiac disease based on the quantification of anti-gliadin antibodies. Sens. Actuators B 2012, 163, 253–259. [Google Scholar] [CrossRef]
- Balkenhohl, T.; Lisdat, F. An impedimetric immunosensor for the detection of autoantibodies directed against gliadins. Analyst 2007, 132, 314–322. [Google Scholar] [CrossRef] [PubMed]
- Rosales-Rivera, L.C.; Dulay, S.; Lozano-Sánchez, P.; Katakis, I.; Acero-Sánchez, J.L.; O’Sullivan, C.K. Disulfide-modified antigen for detection of celiac disease-associated anti-tissue transglutaminase autoantibodies. Anal. Bioanal. Chem. 2017, 409, 3799–3806. [Google Scholar] [CrossRef] [PubMed]
- Giannetto, M.; Mattarozzi, M.; Umiltà, E.; Manfredi, A.; Quaglia, S.; Careri, M. An amperometric immunosensor for diagnosis of celiac disease based on covalent immobilization of open conformation tissue transglutaminase for determination of anti-tTG antibodies in human serum. Biosens. Bioelectron. 2014, 62, 325–330. [Google Scholar] [CrossRef] [PubMed]
- Neves, M.M.P.S.; González-García, M.B.; Nouws, H.P.A.; Costa-García, A. Celiac disease detection using a transglutaminase electrochemical immunosensor fabricated on nanohybrid screen-printed carbon electrodes. Biosens. Bioelectron. 2012, 31, 95–100. [Google Scholar] [CrossRef] [PubMed]
- Dulay, S.; Lozano-Sánchez, P.; Iwuoha, E.; Katakis, I.; O’Sullivan, C.K. Electrochemical detection of celiac disease-related anti-tissue transglutaminase antibodies using thiol based surface chemistry. Biosens. Bioelectron. 2011, 26, 3852–3856. [Google Scholar] [CrossRef] [PubMed]
- Kergaravat, S.V.; Beltramino, L.; Garnero, N.; Trotta, L.; Wagener, M.; Pividori, M.I.; Hernandez, S.R. Electrochemical magneto immunosensor for the detection of anti-TG2 antibody in celiac disease. Biosens. Bioelectron. 2013, 48, 203–209. [Google Scholar] [CrossRef] [PubMed]
- Singh, K.V.; Bhura, D.K.; Nandamuri, G.; Whited, A.M.; Evans, D.; King, J.; Solanki, R. Nanoparticle-enhanced sensitivity of a nanogap-interdigitated electrode array impedimetric biosensor. Langmuir 2011, 27, 13931–13939. [Google Scholar] [CrossRef] [PubMed]
- Balkenhohl, T.; Lisdat, F. Screen-printed electrodes as impedimetric immunosensors for the detection of anti-transglutaminase antibodies in human sera. Anal. Chim. Acta 2007, 597, 50–57. [Google Scholar] [CrossRef] [PubMed]
- Manfredi, A.; Mattarozzi, M.; Giannetto, M.; Careri, M. Piezoelectric immunosensor based on antibody recognition of immobilized open-tissue transglutaminase: An innovative perspective on diagnostic devices for celiac disease. Sens. Actuators B 2014, 201, 300–307. [Google Scholar] [CrossRef]
- Moreno-Bondi, M.C.; Taitt, C.R.; Shriver-Lake, L.C.; Ligler, F.S. Multiplexed measurement of serum antibodies using an array biosensor. Biosens. Bioelectron. 2006, 21, 1880–1886. [Google Scholar] [CrossRef] [PubMed]
Disease | Biomarker | Biosensor Type | LOD | Reference |
---|---|---|---|---|
CCHF | Specific IgG antibodies | CL | ND | [3] |
hepatitis B | hepatitis B surface antibodies | Surface acoustic wave | 10 pg μL−1 | [5] |
human IgG antibodies anti-HBsAg | Chronoampero-metric detection | 3 mIU mL−1 | [90] | |
HIV | anti-HIV antibody | ELISA | ND | [6] |
Hepatitis C | anti-HCV antibodies | EC | 0.003 pg mL−1 | [33] |
CL | ND | [89] | ||
Leishmaniasis | anti-leishmania infantum antibodies | PEC | 0.05 mM | [55] |
Malaria | anti-plasmodium vivax antibodies | EC | 6 pg L−1 | [82] |
Cholera | anti-cholera toxin antibodies | EC | 10−13 g mL−1 | [83] |
Neospora | anti-neospora antibodies | PL | ND | [85] |
Salmonella enteritidis infection | egg yolk antibodies | SPR | ND | [86] |
Adenoviruses infection | anti-adenoviruses antibodies | SPR | 10 PFU mL−1 | [87] |
Dengue | IgM antibody | CL | ND | [88] |
Disease | Biomarker | Biosensor Type | LOD | Ref. |
---|---|---|---|---|
APS | Multidetection of anti-β2-GPI antibody, anti-cardiolipin antibody, anti-phospholipid antibody, and anti-prothrombin antibody | Optical sensor | ND | [91] |
anti-β2-GPI antibody | Reflectometric interference spectroscopy | 5.62 mg L−1 | [92] | |
SPR | ND | [93] | ||
Multidetection of anti-β2-GPI antibody, prothrombin, cardiolipin, and β2-GPI/cardiolipin complex | Reflectometric interference spectroscopy | ND | [94] | |
RA | anti-cyclic citrullinated peptide (CCP) autoantibody | EC | ND | [95] |
Surface-enhanced Raman scattering (SERS) | 13 pg mL−1 | [96] | ||
PL | 0.1 ng mL−1 | [97] | ||
piezoelectric | ND | [98] | ||
SPR | ND | [99] | ||
SLE | Multidetection of anti-FLAG antibody, anti-Ro52 antibody, anti-U1-70K antibody, anti-K5Ac antibody, and anti-K20Ac antibody | Magneto resistive | ND | [101] |
anti-TRIM21 and anti-TROVE2 circulating autoantibodies | Piezoelectric | 1.51 U mL−1 and 0.32 U mL−1 | [102] | |
anti-DNA autoantibody | EC | ND | [103] | |
SPR | ND | [104] | ||
SPR | ND | [105] | ||
Piezoelectric | ND | [106] | ||
anti-chromatin autoantibody | EC | ND | [107] | |
MS | anti-glucopeptide antibody | SPR | ND | [108] |
anti-CSF114(Glc) antibodies | EC | ND | [109] | |
SPR | ND | [110] | ||
anti-myelin basic protein (anti-MBP) | EC | 0.1528 ng mL−1 | [111] | |
CD | Multidetection of anti- GA and anti-tTG autoantibodies | EC | 2.45 U mL−1 for tTG IgA and 2.95 U mL−1 for tTG IgG | [112] |
anti-GA autoantibodies | EC | 0.52 arbitrary units mL−1 | [113] | |
EC | 46 ng mL−1 | [114] | ||
EC | 9.1 U mL−1 for IgA and 9.0 U mL−1 for IgG | [115] | ||
Piezoelectric | 100 nM | [116] | ||
anti-tTG autoantibodies | EC | 260 ng mL−1 | [117] | |
EC | 1.7 AU mL−1 for IgA and 2.7 AU mL−1 for IgG | [118] | ||
EC | ND | [119] | ||
EC | 390 ng mL−1 | [120] | ||
EC | 20 A.U. | [121] | ||
EC | 30 pM | [122] | ||
EC | ND | [123] | ||
Piezoelectric | 1.3 μg mL−1 | [124] |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Jiang, H. Construction and Potential Applications of Biosensors for Proteins in Clinical Laboratory Diagnosis. Sensors 2017, 17, 2805. https://doi.org/10.3390/s17122805
Liu X, Jiang H. Construction and Potential Applications of Biosensors for Proteins in Clinical Laboratory Diagnosis. Sensors. 2017; 17(12):2805. https://doi.org/10.3390/s17122805
Chicago/Turabian StyleLiu, Xuan, and Hui Jiang. 2017. "Construction and Potential Applications of Biosensors for Proteins in Clinical Laboratory Diagnosis" Sensors 17, no. 12: 2805. https://doi.org/10.3390/s17122805
APA StyleLiu, X., & Jiang, H. (2017). Construction and Potential Applications of Biosensors for Proteins in Clinical Laboratory Diagnosis. Sensors, 17(12), 2805. https://doi.org/10.3390/s17122805