A Quantum Hybrid PSO Combined with Fuzzy k-NN Approach to Feature Selection and Cell Classification in Cervical Cancer Detection
Abstract
:1. Introduction
2. Overview of Cell Classification in Smeared Cervical Images, Quantum-Behaved PSO and Fuzzy k-NN
2.1. Cell Classification in Smeared Cervical Images
2.2. Quantum-Behaved Particle Swarm Optimisation (QPSO)
2.3. Fuzzy k-Nearest Neighbours (Fuzzy k-NN)
3. Methodology for Quantum Hybrid Approach to Cervical Cancer Feature Selection and Classification
- Area of nucleus, AnAn = number of pixels in the nucleus region
- Major axis of nucleus, LnLn = the length of the major axis of an ellipse that completely encloses the nucleus region.
- Minor axis of nucleus, DnDn = the length of the minor axis of an ellipse that completely encloses the nucleus region.
- Aspect ratio of nucleus,
- Perimeter of Nucleus, PnPn = the perimeter of the nucleus region,
- Roundness of nucleus, Ncircle
- Maxima of nucleus, MaxnMaxn = number of local maximum value from eight pixels in the neighbourhood of the nucleus region.
- Minima of nucleus, MinnMinn = number of local minimum value from eight pixels in the neighbourhood of the nucleus region.
- Homogenity of nucleus,
- Brightness of nucleus, BnBn = the average pixel intensity of nucleus region.
- Maxima of cytoplasm, MaxcMaxc = number of local maximum value from eight (8) pixels in the neighbourhood of the cytoplasm region.
- Minima of cytoplasm, MincMinc = number of local minimum value from eight (8) pixels in the neighbourhood of the cytoplasm region.
- Brightness of cytoplasm, BcBc = the average pixel intensity of cytoplasm region.
- Area of entire cell, AcellAcell = number of pixels in the cell region.
- Compactness of the entire cell,
- Ratio of nucleus and cell,
- LBPcell = the local binary pattern of cell region.
4. Experiments on Smeared Cervical Images Using Q-Fuzzy Approach
4.1. Description of Dataset
4.2. Evaluation Method
4.3. Experimental Result for Cervical Smear Image Classification
5. Concluding Remarks
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Abraham, A. Hybrid artificial intelligent systems. In Innovations in Hybrid Intelligent Systems Series on Advanced Soft Computing; Springer: Berlin/Heidelberg, Germany, 2007; Volume 44, p. 16. [Google Scholar]
- Abuhasel, K.A.; Fatichah, C.; Iliyasu, A.M. A Bi-Stage Technique for segmenting Cervical Smear Images Using Possibilistic Fuzzy C-Means and Mathematical Morphology. J. Med. Imaging Health Inform. 2016, 6, 1663–1669. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Comprehensive Cervical Cancer Control: A Guide to Essential Practice; WHO Press: Geneva, Switzerland, 2006. [Google Scholar]
- Gençtava, A.; Aksoy, S.; Onder, S. Unsupervised segmentation and classification of cervical cell images. Pattern Recognit. 2012, 45, 4151–4168. [Google Scholar] [CrossRef] [Green Version]
- Parkway Cancer Centre, 2014. Available online: http://www.parkwaycancercentre.com/ (accessed on 30 October 2017).
- Wang, C.M.; Chen, H.T.; Yang-Mao, S.F.; Can, Y.K.; Lin, S.F. New Methods for Image De-noising and Edge Enhancement in Cervical Smear Images Segmentation. Int. J. Comput. Consum. Control (IJ3C) 2013, 2, 2013. [Google Scholar]
- Demay, R.M. Common problems in Papanicolaou smear interpretation. Arch. Pathol. Lab. Med. 1997, 121, 229–238. [Google Scholar] [PubMed]
- Craine, B.L.; Craine, E.R.; Engel, J.R.; Wemple, N.T. A Clinical System for Digital Imaging Colposcopy; Medical Imaging II; Newport Beach Press: Newport Beach, CA, USA, 1998; pp. 505–511. [Google Scholar]
- Mariarputham, E.J.; Stephen, A. Nominated Texture Based Cervical Cancer Classification. Comput. Math. Methods Med. 2015, 2015, 586928. [Google Scholar] [CrossRef] [PubMed]
- Tsai, M.H.; Chan, Y.K.; Lin, Z.Z.; Yang-Mao, S.F.; Huan, P.C. Nucleus and cytoplast contour detector of cervical smear image. Pattern Recognit. Lett. 2008, 29, 1441–1453. [Google Scholar] [CrossRef]
- Martin, E. Pap-Smear Classification. Master’s Thesis, Technical University of Denmark, Lyngby, Denmark, 2003. Available online: http://mde-lab.aegean.gr/index.php/downloads (accessed on 30 October 2017).
- Norup, J. Classification of Pap-Smear Data by Transductive Neuro-Fuzzy Methods. Master’s Thesis, Technical University of Denmark, Lyngby, Denmark, 2005. Available online: http://mde-lab.aegean.gr/index.php/downloads (accessed on 30 October 2017).
- Jantzen, J.; Norup, J.; Dounias, G.; Bjerregaard, B. Pap-Smear Benchmark Data for Pattern Classification; Nature inspired Smart Information Systems (NiSIS 2005): Albufeira, Portugal, 2005; Available online: http://mde-lab.aegean.gr/index.php/downloads (accessed on 30 October 2017).
- Chankong, T.; Theera-Umpan, N.; Auephanwiriyakul, S. Automatic cervical cell segmentation and classification in pap smear. Comput. Methods Program Biomed. 2014, 2, 539–556. [Google Scholar] [CrossRef] [PubMed]
- Ashok, B.; Aruna, P. Comparison of Feature selection methods for diagnosis of cervical cancer using SVM classifier. Int. J. Eng. Res. Appl. 2016, 6, 94–99. [Google Scholar]
- Mbaga, A.H.; ZhiJun, P. Pap Smear Images Classification for Early Detection of Cervical Cancer. Int. J. Comput. Appl. 2015, 118, 10–16. [Google Scholar]
- Abuhasel, K.A.; Iliyasu, A.M.; Fatichah, C. A Hybrid Particle Swarm Optimisation and Neural Network with Fuzzy Membership Function Technique for Epileptic Seizure Classification. J. Adv. Comput. Intell. Intell. Inform. 2015, 19, 447–455. [Google Scholar] [CrossRef]
- Sun, J.; Feng, B.; Xu, W.B. Particle swarm optimization with particles having quantum behavior. In Proceedings of the IEEE Congress on Evolutionary Computation (CEC 2004), Portland, OR, USA, 19–23 June 2004; pp. 325–331. [Google Scholar]
- Fu, X.; Liu, W.S.; Zhang, B.; Deng, H. Quantum behaved particle swarm optimization with neighbourhood search for numerical optimization. Math. Probl. Eng. 2013, 2013, 469723. [Google Scholar] [CrossRef]
- Jin, C.; Jin, S.W. Automatic image annotation using feature selection based on improving quantum particle swarm optimization. Signal Process. 2015, 109, 172–181. [Google Scholar] [CrossRef]
- Kennedy, J.; Eberhart, R.C.; Shi, Y. Swarm Intelligence; Morgan Kaufmann: San Francisco, CA, USA, 2001. [Google Scholar]
- Li, D.; Deogun, J.S.; Wang, K. Gene function classification using fuzzy k-nearest neighbour approach. In Proceedings of the IEEE International Conference on Granular Computing (GRC), San Jose, CA, USA, 2–4 November 2007. [Google Scholar]
- Kim, S.Y.; Sim, J.; Lee, J. Fuzzy k-Nearest Neighbour Method for Protein Secondary Structure Prediction and Its Parallel Implementation; Computational Intelligence and Bioinformatics, Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2006; Volume 4115, pp. 444–453. [Google Scholar]
- The Management and Decision Engineering Laboratory, Herlev Databases. Available online: http://mde-lab.aegean.gr/downloads (accessed on 30 October 2017).
- Iliyasu, A.M. Towards the Realisation of Secure and Efficient Image and Video Processing Applications on Quantum Computers. Entropy 2013, 15, 2874–2974. [Google Scholar] [CrossRef]
- Iliyasu, A.M.; Le, P.Q.; Dong, F.; Hirota, K. Restricted geometric transformations and their applications for quantum image watermarking and authentication. In Proceedings of the 10th Asian Conference on Quantum Information Science (AQIS 2010), Tokyo, Japan, 18–19 August 2010; pp. 212–214. [Google Scholar]
- Iliyasu, A.M.; Yan, F.; Venegas-Andraca, S.E.; Salama, A.S. Hybrid Quantum-Classical Protocol for Storage and Retrieval of Discrete-Valued Information. Entropy 2014, 16, 3537–3551. [Google Scholar] [CrossRef]
- Yan, F.; Iliyasu, A.M. A survey of quantum image representation. Quantum Inf. Process. 2016, 15, 1–35. [Google Scholar] [CrossRef]
- Schuld, M.; Sinayskiy, I.; Petruccione, F. An introduction to quantum machine learning. Contemp. Phys. 2014, 56, 172–185. [Google Scholar] [CrossRef]
- Iliyasu, A.M.; Fatichah, C.; Salama, A.S.; She, J. Quantum hybrid technique for feature selection in classification of cervical cells. In Proceedings of the 7th International Symposium on Computational Intelligence & Industrial Applications (ISCIIA 2016), Beijing, China, 3–6 November 2016; pp. 822–835. [Google Scholar]
- Sokolova, M.; Lapalme, G. A systematic analysis of performance measures for classification tasks. Inf. Process. Manag. 2009, 45, 427–437. [Google Scholar] [CrossRef]
- Cohen, J. A coefficient of agreement for nominal scales. Educ. Psychol. Meas. 1960, 20, 37–46. [Google Scholar] [CrossRef]
- Thomas, R.; Osendorfer, C.; van der Smagt, P. Sequential Feature Selection for Classification. Adv. Artif. Intell. 2011, 7102, 132–141. [Google Scholar] [CrossRef]
- Sakthi, A.; Rajaram, M. Density based Multiclass Support Vector Machine using IoT driven service oriented architecture for predicting cervical cancer. Int. J. u- e-Serv. Sci. Technol. 2016, 9, 195–216. [Google Scholar]
- Iliyasu, A.M.; Fatichah, C.; Abuhasel, K.A. Evidence Accumulation Clustering with Possibilitic Fuzzy C-Means base clustering approach to disease diagnosis. Autom. J. Control Meas. Electron. Comput. Commun. 2016, 57, 822–835. [Google Scholar] [CrossRef]
1 | Normal cells | Superficial squamous |
Intermediate squamous | ||
Columnar | ||
2 | Abnormal cells | Mild dysplasia |
Moderate dysplasia | ||
Severe dysplasia | ||
Carcinoma in situ |
Initialise the current positions and the Pi_best positions of all the particles |
Do |
Calculate mbest in Equation (2) |
Select a suitable value for α |
For particles i = 1 to S |
1. Calculate the fitness value of particle i according to classification accuracy |
2. Update Pi_best and Pglobal in Equation (7) |
3. For dimension 1 to d |
φ = rand (0,1) |
u = rand (0,1) |
If s = rand (0,1) ≥ 0.5 |
update particle positions in Equation (4) |
else |
update particle positions in Equation (3) |
Until terminal condition is satisfied. |
Normalise the data |
Find the k-nearest neighbours |
Calculate the membership value u(x, ) in Equation (9) |
Select the maximum value of c from u(x, ) |
Assign class c to the data |
Cell | Class Name | Cell Count | Sub-Total |
---|---|---|---|
Normal | Normal superficial squamous | 74 | 242 |
Normal intermediate squamous | 70 | ||
Normal columnar | 98 | ||
Abnormal | Carcinoma in situ | 150 | 675 |
Light dysplastic | 182 | ||
Moderate dysplastic | 146 | ||
Severe dysplastic | 197 | ||
Total | 917 | 917 |
k | All-Features | P-Fuzzy | Q-Fuzzy | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Precision | Recall | F1 Score | Precision | Recall | F1 Score | Precision | Recall | F1 Score | ||||
2 | 0.67 | 0.74 | 0.70 | 0.66 | 0.73 | 0.80 | 0.76 | 0.72 | 0.73 | 0.79 | 0.76 | 0.71 |
3 | 0.68 | 0.69 | 0.68 | 0.64 | 0.76 | 0.77 | 0.76 | 0.72 | 0.77 | 0.77 | 0.77 | 0.73 |
4 | 0.74 | 0.74 | 0.74 | 0.70 | 0.83 | 0.84 | 0.83 | 0.81 | 0.85 | 0.86 | 0.85 | 0.83 |
5 | 0.76 | 0.76 | 0.76 | 0.72 | 0.80 | 0.81 | 0.80 | 0.76 | 0.80 | 0.81 | 0.80 | 0.76 |
6 | 0.73 | 0.73 | 0.73 | 0.68 | 0.74 | 0.76 | 0.75 | 0.70 | 0.74 | 0.75 | 0.74 | 0.69 |
7 | 0.69 | 0.70 | 0.69 | 0.64 | 0.71 | 0.72 | 0.71 | 0.67 | 0.73 | 0.74 | 0.73 | 0.69 |
Cell Category | All Features (k = 5) | P-Fuzzy (k = 4) | Q-Fuzzy (k = 4) | ||||||
---|---|---|---|---|---|---|---|---|---|
Precision | Recall | F1 Score | Precision | Recall | F1 Score | Precision | Recall | F1 Score | |
Normal superficial | 0.83 | 0.86 | 0.84 | 0.95 | 0.91 | 0.93 | 0.95 | 0.95 | 0.95 |
Normal intermediate | 0.82 | 0.74 | 0.78 | 0.89 | 0.84 | 0.86 | 0.89 | 0.89 | 0.89 |
Normal columnar | 0.63 | 0.67 | 0.65 | 0.65 | 0.72 | 0.68 | 0.61 | 0.74 | 0.67 |
Carcinoma in situ | 0.74 | 0.83 | 0.78 | 0.81 | 0.87 | 0.84 | 0.84 | 0.90 | 0.87 |
Light dysplastic | 0.83 | 0.78 | 0.81 | 0.88 | 0.94 | 0.91 | 0.89 | 0.97 | 0.93 |
Moderate dysplastic | 0.69 | 0.85 | 0.76 | 0.83 | 0.96 | 0.89 | 0.89 | 0.96 | 0.93 |
Severe dysplastic | 0.79 | 0.62 | 0.70 | 0.86 | 0.65 | 0.74 | 0.88 | 0.61 | 0.72 |
Classifier Methods | All Features | Feature Selection Methods | ||||
---|---|---|---|---|---|---|
Non-Quantum HIS | QHT | |||||
Relief | SFS | PSO | QPSO | |||
Naïve Bayes (NB) | Precision | 0.72 | 0.75 | 0.76 | 0.73 | 0.76 |
Recall | 0.72 | 0.76 | 0.77 | 0.74 | 0.77 | |
F1 score | 0.72 | 0.75 | 0.76 | 0.73 | 0.76 | |
0.67 | 0.71 | 0.72 | 0.68 | 0.72 | ||
SVM | Precision | 0.79 | 0.83 | 0.85 | 0.84 | 0.84 |
Recall | 0.79 | 0.83 | 0.86 | 0.84 | 0.85 | |
F1 score | 0.79 | 0.82 | 0.84 | 0.84 | 0.84 | |
0.74 | 0.80 | 0.82 | 0.81 | 0.81 | ||
Random Forest (RF) | Precision | 0.79 | 0.83 | 0.85 | 0.84 | 0.85 |
Recall | 0.80 | 0.83 | 0.86 | 0.84 | 0.86 | |
F1 score | 0.79 | 0.82 | 0.85 | 0.84 | 0.85 | |
0.74 | 0.80 | 0.83 | 0.81 | 0.82 | ||
Fuzzy k-NN (k = 4 and k = 5) | Precision | 0.76 | 0.74 | 0.80 | 0.83 | 0.85 |
Recall | 0.76 | 0.79 | 0.85 | 0.84 | 0.86 | |
F1 score | 0.76 | 0.76 | 0.83 | 0.83 | 0.85 | |
0.72 | 0.72 | 0.80 | 0.81 | 0.83 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iliyasu, A.M.; Fatichah, C. A Quantum Hybrid PSO Combined with Fuzzy k-NN Approach to Feature Selection and Cell Classification in Cervical Cancer Detection. Sensors 2017, 17, 2935. https://doi.org/10.3390/s17122935
Iliyasu AM, Fatichah C. A Quantum Hybrid PSO Combined with Fuzzy k-NN Approach to Feature Selection and Cell Classification in Cervical Cancer Detection. Sensors. 2017; 17(12):2935. https://doi.org/10.3390/s17122935
Chicago/Turabian StyleIliyasu, Abdullah M., and Chastine Fatichah. 2017. "A Quantum Hybrid PSO Combined with Fuzzy k-NN Approach to Feature Selection and Cell Classification in Cervical Cancer Detection" Sensors 17, no. 12: 2935. https://doi.org/10.3390/s17122935
APA StyleIliyasu, A. M., & Fatichah, C. (2017). A Quantum Hybrid PSO Combined with Fuzzy k-NN Approach to Feature Selection and Cell Classification in Cervical Cancer Detection. Sensors, 17(12), 2935. https://doi.org/10.3390/s17122935