Assessment of the Indoor Odour Impact in a Naturally Ventilated Room
Abstract
:1. Introduction
- The food industry, involving several uses, such as process monitoring, freshness evaluation, shelf-life investigation, and authenticity assessment [4,5,6,7,8,9,10]. In Italy, the development of electronic noses for the food industry is very active and focused on freshness evaluation, microbial evaluation and authenticity assessment [11,12,13,14,15,16,17,18,19];
- The healthcare sector that comprehends cosmetics, pharmaceuticals [20,21] and diagnostic [22,23,24,25,26]. In Italy, the research of the electronic nose for the healthcare field is particularly developed in the diagnostic area. Several studies have dealt with issues relating the development of electronic noses as tools for the diagnosis of different cancer types (such as those involving lungs, bladders, and prostates) and the identification of different bacterial infections [27,28,29,30,31,32];
- The environmental sector [33,34,35,36,37,38,39,40]; a recent review [36] on the application of electronic noses in environmental monitoring considered four main research activities: the analysis of parameters related to air quality; the analysis of parameters related to water quality; the process control; and the verification of efficiency of odour control systems. In Italy, the research related to the development and application of the e-nose in the environmental field is very active [41,42,43,44,45,46,47,48,49,50,51,52]. Issues mainly dealt with:
- The identification of a method to evaluate the performances of the electronic nose. This topic is particularly interesting internationally because of the recent formation of a technical committee dedicated to the definition of specific regulations of the electronic noses for their standardization;
- The analysis of parameters related to air quality;
- The analysis of parameters related to water quality;
- The process control, as well as the verification of the efficiency of odour control systems.
2. Materials and Methods
2.1. Analytical Equipment
2.2. Case Study
3. Results and Discussion
4. Conclusions
Author Contributions
Conflicts of Interest
References
- Loutfi, A.; Coradeschi, S. Odor Recognition for Intelligent Systems. IEEE Intell. Syst. 2008, 23, 41–48. [Google Scholar] [CrossRef]
- Pearce, T.C.; Schiffman, S.S.; Nagle, H.T.; Gardner, J.W. Handbook of Machine Olfaction: Electronic Nose Technology; Wiley-VCH Verlag GmbH & Co.: Weinheim, Germany, 2003. [Google Scholar]
- Röck, F.; Barsan, N.; Weimar, U. Electronic Nose: Current Status and Future Trends. Chem. Rev. 2008, 108, 705–725. [Google Scholar] [CrossRef] [PubMed]
- Ampuero, S.; Bosset, J.O. The electronic nose applied to dairy products: A review. Sens. Actuators B Chem. 2003, 94, 1–12. [Google Scholar] [CrossRef]
- Loutfi, A.; Coradeschi, S.; Mani, G.K.; Shankar, P.; Rayappan, J.B.B. Electronic noses for food quality: A review. J. Food Eng. 2015, 144, 103–111. [Google Scholar] [CrossRef]
- Schaller, E.; Bosset, J.O.; Escher, F. “Electronic noses” and their application to food. Food Sci. Technol. 1998, 31, 305–316. [Google Scholar] [CrossRef]
- Baietto, M.; Wilson, A.D. Electronic-Nose Applications for Fruit Identification, Ripeness and Quality Grading. Sensors 2015, 15, 899–931. [Google Scholar] [CrossRef] [PubMed]
- Peris, M.; Escuder-Gilabert, L. A 21st century technique for food control: Electronic noses. Anal. Chim. Acta 2009, 638, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Dymerski, T.; Gębicki, J.; Wardencki, W.; Namieśnik, J. Quality evaluation of agricultural distillates using an electronic nose. Sensors 2013, 13, 15954–15967. [Google Scholar] [CrossRef] [PubMed]
- Dymerski, T.; Gębicki, J.; Wardencki, W.; Namieśnik, J. Application of an electronic nose instrument to fast classification of polish honey types. Sensors 2014, 14, 10709–10724. [Google Scholar] [CrossRef] [PubMed]
- Roda, B.; Mirasoli, M.; Zattoni, A.; Casale, M.; Oliveri, P.; Bigi, A.; Reschiglian, P.; Simoni, P.; Roda, A. A new analytical platform based on field-flow fractionation and olfactory sensor to improve the detection of viable and non-viable bacteria in food. Anal. Bioanal. Chem. 2016, 408, 7367–7377. [Google Scholar] [CrossRef] [PubMed]
- Buratti, S.; Benedetti, S.; Giovanelli, G. Application of electronic senses to characterize espresso coffees brewed with different thermal profiles. Eur. Food. Res. Technol. 2016. [Google Scholar] [CrossRef]
- Melucci, D.; Bendini, A.; Tesini, F.; Barbieri, S.; Zappi, A.; Vichi, S.; Conte, L.; Gallina Toschi, T. Rapid direct analysis to discriminate geographic origin of extra virgin olive oils by flash gas chromatography electronic nose and chemometrics. Food Chem. 2016, 204, 263–273. [Google Scholar] [CrossRef] [PubMed]
- Cagnasso, S.; Falasconi, M.; Previdi, M.P.; Franceschini, B.; Cavalieri, C.; Sberveglieri, V.; Rovere, P. Rapid Screening of Alicyclobacillus acidoterrestris Spoilage of Fruit Juices by Electronic Nose: A Confirmation Study. J. Sens. 2010, 2010, 143173. [Google Scholar] [CrossRef]
- Falasconi, M.; Concina, I.; Gobbi, E.; Sberveglieri, V.; Pulvirenti, A.; Sberveglieri, G. Electronic nose for microbiological quality control of food products. Int. J. Electrochem. 2012, 2012, 715763. [Google Scholar] [CrossRef]
- Ponzoni, A.; Comini, E.; Concina, I.; Ferroni, M.; Falasconi, M.; Gobbi, E.; Sberveglieri, V.; Sberveglieri, G. Nanostructured metal oxide gas sensors, application in security and food quality fields. Sensors 2012, 12, 17023–17045. [Google Scholar] [CrossRef] [PubMed]
- Longobardi, F.; Casiello, G.; Ventrella, A.; Mazzilli, V.; Nardelli, A.; Sacco, D.; Catucci, L.; Agostiano, A. Electronic nose and isotope ratio mass spectrometry in combination with chemometrics for the characterization of the geographical origin of Italian sweet cherries. Food Chem. 2015, 170, 90–96. [Google Scholar] [CrossRef] [PubMed]
- Sberveglieri, V.; Carmona, E.N.; Comini, E.; Ponzoni, A.; Zappa, D.; Pirrotta, O.; Pulvirenti, A. A Novel Electronic Nose as Adaptable Device to Judge Microbiological Quality and Safety in Foodstuff. Biomed. Res. Int. 2014, 2014, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Cellini, A.; Biondi, E.; Blasioli, S.; Rocchi, L.; Farneti, B.; Braschi, I.; Savioli, S.; Rodriguez-Estrada, M.T.; Biasioli, F.; Spinelli, F. Early detection of bacterial diseases in apple plants by analysis of volatile organic compounds profiles and use of electronic nose. Ann. Appl. Biol. 2016, 168, 409–420. [Google Scholar] [CrossRef]
- Dubreuil, B.; Bonnefille, M.; Neitz, S.; Talou, T. Prospective Experiments of e-Nose for Cosmetics Applications: Recognition of Sweat Odors. In Artificial Chemical Sensing: Olfaction and the Electronic Nose (ISOEN 2001), Proceedings of the Eighth International Symposium, Washington, DC, 20–24 March 2001; The Electrochemical Society: Pennington, NJ, USA, 2001. [Google Scholar]
- Baldwin, E.A.; Bai, J.; Plotto, A.; Dea, S. Electronic noses and tongues applications for the food and pharmaceutical industries. Sensors 2011, 11, 4744–4766. [Google Scholar] [CrossRef] [PubMed]
- Capelli, L.; Taverna, G.; Bellini, A.; Eusebio, L.; Buffi, N.; Lazzeri, M.; Guazzoni, G.; Bozzini, G.; Seveso, M.; Mandressi, A.; et al. Application and Uses of Electronic Noses for Clinical Diagnosis on Urine Samples: A Review. Sensors 2016, 16, 1708. [Google Scholar] [CrossRef] [PubMed]
- Persaud, K.C. Medical applications of odor-sensing devices. Int. J. Low. Extrem. Wounds 2005, 4, 50–56. [Google Scholar] [CrossRef] [PubMed]
- Wilson, A.D.; Baietto, M. Advances in Electronic-Nose Technologies Developed for Biomedical Applications. Sensors 2011, 11, 1105–1176. [Google Scholar] [CrossRef] [PubMed]
- Oh, E.H.; Song, H.S.; Park, T.H. Recent advances in electronic and bioelectronics noses and their biomedical applications. Enzyme Microb. Technol. 2011, 48, 427–437. [Google Scholar] [CrossRef] [PubMed]
- Wilson, A.D. Advances in Electronic-Nose Technologies for the Detection of Volatile Biomarker Metabolites in the Human Breath. Metabolites 2015, 5, 140–163. [Google Scholar] [CrossRef] [PubMed]
- Mantini, A.; Di Natale, C.; Macagnano, A.; Paolesse, R.; Finazzi-Agrò, A.; D’Amico, A. Biomedical application of an electronic nose. Crit. Rev. Biomed. Eng. 2000, 28, 481–485. [Google Scholar] [CrossRef] [PubMed]
- D’Amico, A.; Di Natale, C.; Paolesse, R.; Macagnano, A.; Martinelli, E.; Pennazza, G.; Santonico, M.; Bernabei, M.; Roscioni, C.; Galluccio, G.; et al. Olfactory systems for medical applications. Sens. Actuators B Chem. 2008, 130, 458–465. [Google Scholar] [CrossRef]
- Casalinuovo, I.A.; Di Pierro, D.; Coletta, M.; Di Francesco, P. Application of electronic noses for disease diagnosis and food spoilage detection. Sensors 2006, 6, 1428–1439. [Google Scholar] [CrossRef]
- Di Natale, C.; Mantini, A.; Maccagnano, A.; Antuzzi, D.; Paolesse, R.; D’Amico, A. Electronic nose analysis of urine samples containing blood. Physiol. Meas. 1999, 20, 377–384. [Google Scholar] [CrossRef] [PubMed]
- Di Natale, C.; Maccagnano, A.; Martinelli, E.; Paolesse, R.; D’Arcangelo, G.; Roscioni, C.; Finazzi-Agrò, A.; D’Amico, A. Lung cancer identification by the analysis of breath by means of an array of non-selective gas sensors. Biosens. Bioelectron. 2003, 18, 1209–1218. [Google Scholar] [CrossRef]
- Bruno, E.; Alessandrini, M.; Ottaviani, F.; Delfini, A.; Di Pierro, D.; Camillo, A.; De Lorenzo, A. Can the electronic nose diagnose chronic rhinosinusitis? A new experimental study. Eur. Arch. Otorhinolaryngol. 2008, 265, 425–428. [Google Scholar] [CrossRef] [PubMed]
- Romain, A.C.; Nicolas, J. Long term stability of metal oxide-based gas sensors for e-nose environmental applications: An overview. Sens. Actuators B Chem. 2010, 146, 502–506. [Google Scholar] [CrossRef]
- Bourgeois, W.; Romain, A.C.; Nicolas, J.; Stuetz, R.M. The use of sensor arrays for environmental monitoring: Interests and limitations. J. Environ. Monitor. 2003, 5, 852–860. [Google Scholar] [CrossRef]
- Deshmukh, S.; Bandyopadhyay, R.; Bhattacharyya, N.; Pandey, R.A.; Jana, A. Application of electronic nose for industrial odors and gaseous emissions measurement and monitoring—An overview. Talanta 2015, 144, 329–340. [Google Scholar] [CrossRef] [PubMed]
- Capelli, L.; Sironi, S.; Del Rosso, R. Electronic Noses for Environmental Monitoring Applications. Sensors 2014, 14, 19979–20007. [Google Scholar] [CrossRef] [PubMed]
- Wilson, A.D. Diverse Applications of Electronic-Nose Technologies in Agriculture and Forestry. Sensors 2013, 13, 2295–2348. [Google Scholar] [CrossRef] [PubMed]
- Wilson, A.D. Review of Electronic-nose Technologies and Algorithms to Detect Hazardous Chemicals in the Environment. Procedia Technol. 2012, 1, 453–463. [Google Scholar] [CrossRef]
- Gebicki, J.; Byliński, H.; Namieśnik, J. Measurement techniques for assessing the olfactory impact of municipal sewage treatment plants. Environ. Monit. Assess. 2016, 188, 32. [Google Scholar] [CrossRef] [PubMed]
- Gębicki, J.; Dymerski, T.; Namieśnik, J. Investigation of air quality beside a municipal landfill: The fate of malodour compounds as a model VOC. Environments 2017, 4, 7. [Google Scholar] [CrossRef]
- Eusebio, L.; Capelli, L.; Sironi, S. Electronic Nose Testing Procedure for the Definition of Minimum Performance Requirements for Environmental Odor Monitoring. Sensors 2016, 16, 1548. [Google Scholar] [CrossRef] [PubMed]
- Eusebio, L.; Sironi, S.; Capelli, L.; Il Grande, M.; Della Torre, M. Continuous Evaluation of Odour Concentration at a Plant. Chem. Eng. Trans. 2014, 40, 133–138. [Google Scholar]
- Micone, P.G.; Guy, C. Odour quantification by a sensor array: An application to landfill gas odours from two different municipal waste treatment works. Sens. Actuators B Chem. 2007, 120, 628–637. [Google Scholar] [CrossRef]
- Capelli, L.; Sironi, S.; Centola, P.; del Rosso, R.; Il Grande, M. Electronic noses for the continuous monitoring of odours from a wastewater treatment plant at specific receptors: Focus on training methods. Sens. Actuators B Chem. 2008, 131, 53–62. [Google Scholar] [CrossRef]
- Sironi, S.; Capelli, L.; Centola, P.; del Rosso, R.; Il Grande, M. Continuous monitoring of odours from a composting plant using electronic noses. Waste Manag. 2007, 27, 389–397. [Google Scholar] [CrossRef] [PubMed]
- Dentoni, L.; Capelli, L.; Sironi, S.; Del Rosso, R.; Centola, P.; Della Torre, M.; Demattè, F. Development of an Electronic Nose for Environmental Monitoring: Detection of Specific Environmentally Important Gases at Their Odor Detection Threshold Concentration. In Proceedings of the AIP Conference Proceedings 14th International Symposium on Olfaction and Electronic Nose (ISOEN 2011), New York, NY, USA, 2–5 May 2011; pp. 207–208. [Google Scholar]
- Dentoni, L.; Capelli, L.; Sironi, S.; del Rosso, R.; Zanetti, S.; Della Torre, M. Development of an Electronic Nose for Environmental Odour Monitoring. Sensors 2012, 12, 14363–14381. [Google Scholar] [CrossRef] [PubMed]
- Brattoli, M.; de Gennaro, G.; de Pinto, V.; Loiotile, A.D.; Lovascio, S.; Penza, M. Odour Detection Methods: Olfactometry and Chemical Sensors. Sensors 2011, 11, 5290–5322. [Google Scholar] [CrossRef] [PubMed]
- Amodio, M.; Brattoli, M.; Dambruoso, P.; De Gennaro, L.; De Gennaro, G.; Loiotile, A.D.; Trizio, L. Odour impact assessment by a multiparametric system (electronic Noses/ch4-nmhc Analyser). Chem. Eng. Trans. 2012, 30, 199–204. [Google Scholar]
- Penza, M.; Suriano, D.; Cassano, G.; Rossi, R.; Alvisi, M.; Pfister, V.; Trizio, L.; Brattoli, M.; De Gennaro, G. A gas sensor array for environmental air monitoring: A study case of application of artificial neural networks. AIP Conf. Proc. 2011, 1362, 205–206. [Google Scholar]
- Mantovani, A.; Artoni, R.; Barausse, A.; Palmeri, L.; Pittarello, A.; Benzo, M. Modeling odour dispersion from composting plants: Comparison with Electronic Nose measurements. Chem. Eng. Trans. 2010, 23, 297–302. [Google Scholar]
- Giungato, P.; de Gennaro, G.; Barbieri, P.; Briguglio, S.; Amodio, M.; de Gennaro, L.; Lasigna, F. Improving recognition of odors in a waste management plant by using electronic noses with different technologies, gas chromatography–mass spectrometry/olfactometry and dynamic olfactometry. J. Clean. Prod. 2016, 133, 1395–1402. [Google Scholar] [CrossRef]
- Arnold, C.; Harms, M.; Goschnick, J. Air quality monitoring and fire detection with the Karlsruhe Electronic Micronose KAMINA. IEEE Sens. J. 2002, 2, 179–188. [Google Scholar] [CrossRef]
- Herberger, S.; Herold, M.; Ulmer, H.; Burdack-Freitag, A.; Mayer, F. Detection of human effluents by a MOS gas sensor in correlation to VOC quantification by GC/MS. Build. Environ. 2010, 45, 2430–2439. [Google Scholar] [CrossRef]
- Batog, P.; Badura, M. Dynamic of Changes in Carbon Dioxide Concentration in Bedrooms. Procedia Eng. 2013, 57, 175–182. [Google Scholar] [CrossRef]
- Bitter, F.; Muller, B.; Muller, D. Estimation of odour intensity of indoor air pollutants from building materials with a multi-gas sensor system. Build. Environ. 2010, 45, 197–204. [Google Scholar] [CrossRef]
- Wolfrum, E.J.; Meglen, R.M.; Peterson, D.; Sluiter, J. Metal oxide sensor array for detection, differentiation and quantification of volatile organic compounds at sub-parts-per-million concentration levels. Sens. Actuators B Chem. 2006, 115, 322–329. [Google Scholar] [CrossRef]
- Kuske, M.; Romain, A.-C.; Nicolas, J. Microbial volatile organic compound as indicators of fungi. Can an electronic nose detect fungi in indoor environments? Build. Environ. 2005, 40, 824–831. [Google Scholar] [CrossRef]
- Tian, F.C.; Kadri, C.; Zhang, L.; Feng, J.W.; Juan, L.H.; Na, P.L. A novel cost-effective portable electronic nose for indoor/in-car air quality monitoring. Proceedings of International Conference on Computer Distributed Control and Intelligent Environmental Monitoring, Zhangjiajie, China, 5–6 March 2012; pp. 4–8. [Google Scholar]
- Herberger, S.; Ulmer, H. Indoor Air Quality Monitoring Improving Air Quality Perception. Clean 2012, 40, 578–585. [Google Scholar] [CrossRef]
- Kim, J.-H.; Chun, J.S.; Kim, J.W.; Choi, W.J.; Baik, J.M. Self-Powered, Room-Temperature Electronic Nose Based on Triboelectrifi cation and Heterogeneous Catalytic Reaction. Adv. Funct. Mater. 2015, 25, 7049–7055. [Google Scholar] [CrossRef]
- Burresi, A.; Fort, A.; Rocchi, S.; Serrano, B.; Ulivieri, N.; Vignoli, V. Dynamic CO recognition in presence of interfering gases by using one MOX sensor and a selected temperature profile. Sens. Actuators B 2005, 106, 40–43. [Google Scholar] [CrossRef]
- Zampolli, S.; Elmi, I.; Ahmed, F.; Passini, M.; Cardinali, G.C.; Nicoletti, S.; Dori, L. An electronic nose based on solid state sensor arrays for low-cost indoor air quality monitoring applications. Sens. Actuators B 2004, 101, 39–46. [Google Scholar] [CrossRef]
- Sironi, S.; Eusebio, L.; Capelli, L.; Remondini, M.; Del Rosso, R. Use of an electronic nose for indoor air quality monitoring. Chem. Eng. Trans. 2014, 40, 73–78. [Google Scholar]
- Nozza, E.; Capelli, L.; Eusebio, L.; Derudi, M.; Nano, G.; Del Rosso, R.; Sironi, S. The role of bioethanol flueless fireplaces on indoor air quality: Focus on odour emissions. Build. Environ. 2016, 98, 98–106. [Google Scholar] [CrossRef]
- ASHRAE 62.1-2004. In Ventilation for Acceptable Indoor Air Quality; American Society of Heating, Refrigeration and Air-Conditioning Engineers: Atlanta, GA, USA, 2004.
- CEN, EN 13779: 2007. In Ventilation for Non-Residential Buildings—Performance Requirements for Ventilation and Room-Conditioning Systems; Comitée Européen de Normalisation: Brussels, Belgium, 2007.
- CEN, EN 15251: 2008. In Indoor Environmental Input Parameters for Design and Assessment of Energy Performance of Buildings-Addressing Indoor Air Quality, Thermal Environment, Lighting and Acoustics; Comitée Européen de Normalisation: Brussels, Belgium, 2008.
- DIN 1946-2: 1994-01. In Ventilation and Air Conditioning; Technical Health Requirements; Beuth Verlag GmbH: Berlin, Germany, 1994.
- Lucernoni, F.; Tapparo, F.; Capelli, L.; Sironi, S. Evaluation of an Odour Emission Factor (OEF) to estimate odour emissions from landfill surfaces. Atmos. Environ. 2016, 144, 87–99. [Google Scholar] [CrossRef]
- Lucernoni, F.; Capelli, L.; Sironi, S. Comparison of different approaches for the estimation of odour emissions from landfill surfaces. Waste Manag. 2016. [Google Scholar] [CrossRef] [PubMed]
- Capelli, L.; Sironi, S.; Del Rosso, R.; Céntola, P. Predicting odour emissions from wastewater treatment plants by means of odour emission factors. Water Res. 2009, 43, 1977–1985. [Google Scholar] [CrossRef] [PubMed]
- Capelli, L.; Sironi, S.; Del Rosso, R. Odour emission factors: Fundamental tools for air quality management. Chem. Eng. Trans. 2014, 40, 193–198. [Google Scholar]
- Sironi, S.; Capelli, L.; Céntola, P.; Del Rosso, R.; Il Grande, M. Odour emission factors for assessment and prediction of Italian MSW landfills odour impact. Atmos. Environ. 2005, 39, 5387–5394. [Google Scholar] [CrossRef]
- Capelli, L.; Sironi, S.; Del Rosso, R.; Magnano, E. Evaluation of landfill surface emissions. Chem. Eng. Trans. 2014, 40, 187–192. [Google Scholar]
- Mielcarek, P.; Rzeźnik, W. Odor emission factors from livestock production. Pol. J. Environ. Stud. 2015, 24, 27–35. [Google Scholar] [CrossRef]
- Sironi, S.; Capelli, L.; Céntola, P.; Del Rosso, R.; Il Grande, M. Odour emission factors for assessment and prediction of Italian rendering plants odour impact. Chem. Eng. Trans. 2007, 131, 225–231. [Google Scholar] [CrossRef]
- Penman, J.M. An experimental determination of ventilation rate in occupied rooms using atmospheric carbon dioxide concentration. Build. Environ. 1980, 15, 45–47. [Google Scholar] [CrossRef]
- Lu, T.; Knuutila, A.; Viljanen, M.; Lu, X. A novel methodology for estimating space air change rates and occupant CO2 generation rates from measurements in mechanically-ventilated buildings. Build. Environ. 2010, 45, 1161–1172. [Google Scholar] [CrossRef]
- Mahyuddin, N.; Awbi, H. The spatial distribution of carbon dioxide in an environmental test chamber. Build. Environ. 2010, 45, 1993–2001. [Google Scholar] [CrossRef]
- Woodcock, R.C. CO2 measurements for IAQ analysis. Occup. Health Saf. 2000, 69, 56–58. [Google Scholar] [PubMed]
- Derudi, M.; Gelosa, S.; Sliepcevich, A.; Cattaneo, A.; Rota, R.; Cavallo, D.; Nano, G. Emissions of air pollutants from scented candles burning in a test chamber. Atmos. Environ. 2012, 55, 257–262. [Google Scholar] [CrossRef]
- Derudi, M.; Gelosa, S.; Sliepcevich, A.; Cattaneo, A.; Cavallo, D.; Rota, R.; Nano, G. Emission of air pollutants from burning candles with different composition in indoor environments. Environ. Sci. Pollut. Res. 2014, 21, 4320–4330. [Google Scholar] [CrossRef] [PubMed]
Authors (Year) | Application Area | Sensor Type a | Reference Number |
---|---|---|---|
Arnold et al. (2002) | Use the electronic nose in the indoor environment to detect the early fires | MOS | 53 |
Herberger et al. (2010) | Indoor air quality monitoring using electronic noses to individuate the VOCs produced by human activities and metabolic processes, thus individuating the principal class of compounds that is responsible for odours detected | MOS | 54 |
Herberger and Ulmer (2012) | MOS | 60 | |
Kim et al. (2015) | MOS | 61 | |
Bitter et al. (2010) | Estimation of odour intensity of indoor air pollutants from building materials | MOS | 56 |
Wolfrum et al. (2006) | Developing of a cheap device for detection, differentiation and quantification of volatile organic compounds at sub-parts-per-million concentration levels | MOS | 57 |
Kuske et al. (2005) | Review about the detection of fungal contamination in indoor environments with electronic nose | CP MOS | 58 |
Tian et al. (2012) | Application of the electronic nose in the monitoring of in-car air quality | MOS | 59 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eusebio, L.; Derudi, M.; Capelli, L.; Nano, G.; Sironi, S. Assessment of the Indoor Odour Impact in a Naturally Ventilated Room. Sensors 2017, 17, 778. https://doi.org/10.3390/s17040778
Eusebio L, Derudi M, Capelli L, Nano G, Sironi S. Assessment of the Indoor Odour Impact in a Naturally Ventilated Room. Sensors. 2017; 17(4):778. https://doi.org/10.3390/s17040778
Chicago/Turabian StyleEusebio, Lidia, Marco Derudi, Laura Capelli, Giuseppe Nano, and Selena Sironi. 2017. "Assessment of the Indoor Odour Impact in a Naturally Ventilated Room" Sensors 17, no. 4: 778. https://doi.org/10.3390/s17040778
APA StyleEusebio, L., Derudi, M., Capelli, L., Nano, G., & Sironi, S. (2017). Assessment of the Indoor Odour Impact in a Naturally Ventilated Room. Sensors, 17(4), 778. https://doi.org/10.3390/s17040778