Wireless Fractal Ultra-Dense Cellular Networks
Abstract
:1. Introduction
2. Wireless Fractal Ultra-Dense Small Cell Networks
2.1. Evolution of Wireless Cellular Coverage Boundary
2.2. Main Features of Fractal Ultra-Dense Small Cell Networks
3. Performance of the Fractal Small Cell Networks
4. Application Scenarios and Challenges
4.1. Application Scenarios
4.2. Challenges
- Controllability of small cell BSs: With the development of software-defined network (SDN) technology, we can adopt SDN to separate the functions of a small cell BS and to make it only with forwarding function. When the traffic of a cellular network increases sharply (e.g., at large gatherings), the fractal coverage of a community may be realized through adjusting the transmit power of the small cell BS, thus alleviating the burden of traffic.
- Cooperative communication of small cell BSs: Through the discussion above, it can be concluded that the coverage boundary of wireless fractal ultra-dense cellular networks takes on fractal feature. Thus, cooperative communication between small cell BSs is not determined through traditional mutual distance between cells, but through the fractal feature of the border between neighboring cells; therefore, the relationship between user and cooperative cell is still a challenging problem.
- Caching scheme deployment for small cell BSs: In addition to communication, content caching may also be conducted by small cell BSs to decrease the traffic of a cellular network in rush hours. The existing caching schemes are all based on the fact that the coverage boundary of a cellular network is an irregular polygon. When the coverage boundary of a cellular network is fractal, how to conduct deployment for caching content and to increase cache hit ratio of files as per coverage of small cell BS is a challenging problem.
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Hwang, K.; Chen, M. Big Data Analytics for Cloud, IoT and Cognitive Computing; John Wiley & Sons: West Sussex, UK, 2017; pp. 1–395. [Google Scholar]
- Lin, K.; Wang, W.; Wang, X.; Ji, W.; Wan, J. QoE-driven spectrum assignment for 5G wireless networks using SDR. IEEE Wirel. Commun. 2015, 22, 48–55. [Google Scholar] [CrossRef]
- Tian, D.; Zhou, J.; Wang, Y.; Lu, Y.; Xia, H.; Yi, Z. A dynamic and self-adaptive network selection method for multimode communications in heterogeneous vehicular telematics. IEEE Trans. Intell. Trans. Syst. 2015, 16, 3033–3049. [Google Scholar] [CrossRef]
- Tian, D.; Zhou, J.; Sheng, Z.; Ni, Q. Learning to be energy-efficient in cooperative networks. IEEE Commun. Lett. 2016, 20, 2518–2521. [Google Scholar] [CrossRef]
- Tian, D.; Zhou, J.; Sheng, Z.; Leung, V.C. Robust energy-efficient MIMO transmission for cognitive vehicular networks. IEEE Trans. Veh. Technol. 2016, 65, 3845–3859. [Google Scholar] [CrossRef]
- Chen, M.; Hao, Y.; Qiu, M.; Song, J.; Wu, D.; Humar, I. Mobility-aware caching and computation offloading in 5G ultra-dense cellular networks. Sensors 2016, 16, 974. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Yang, J.; Hao, Y.; Mao, S.; Hwang, K. A 5G Cognitive System for Healthcare. Big Data Cognit. Comput. 2017, 1. [Google Scholar] [CrossRef]
- Liu, F.; Zheng, K.; Xiang, W.; Zhao, H. Design and performance analysis of an energy-efficient uplink carrier aggregation scheme. IEEE J. Sel. Areas Commun. 2014, 32, 197–207. [Google Scholar]
- Vondra, M.; Becvar, Z. Distance-based neighborhood scanning for handover purposes in network with small cells. IEEE Trans. Veh. Technol. 2016, 65, 883–895. [Google Scholar] [CrossRef]
- Zheng, K.; Wang, Y.; Lin, C.; Shen, X.; Wang, J. Graph-based interference coordination scheme in orthogonal frequency-division multiplexing access femtocell networks. IET Commun. 2011, 5, 2533–2541. [Google Scholar] [CrossRef]
- Lin, K.; Chen, M.; Deng, J.; Hassan, M.M.; Fortino, G. Enhanced fingerprinting and trajectory prediction for IoT localization in smart buildings. IEEE Trans. Autom. Sci. Eng. 2016, 13, 1294–1307. [Google Scholar] [CrossRef]
- Lin, K.; Song, J.; Luo, J.; Ji, W.; Hossain, M.S.; Ghoneim, A. GVT: Green video transmission in the mobile cloud networks. IEEE Trans Circuits Syst. Video Technol. 2017, 27, 159–169. [Google Scholar] [CrossRef]
- Ge, X.; Qiu, Y.; Chen, J.; Huang, M.; Xu, H.; Xu, J.; Zhang, W.; Yang, Y.; Wang, C.X.; Thompson, J. Wireless fractal cellular networks. IEEE Wirel. Commun. 2016, 23, 110–119. [Google Scholar] [CrossRef]
- Lin, K.; Luo, J.; Hu, L.; Hossain, M.S.; Ghoneim, A. Localization based on Social Big Data Analysis in the Vehicular Networks. IEEE Trans. Ind. Inform. 2016, 99, 1. [Google Scholar] [CrossRef]
- Andrews, J.G.; Baccelli, F.; Ganti, R.K. A tractable approach to coverage and rate in cellular networks. IEEE Trans. Commun. 2011, 59, 3122–3134. [Google Scholar] [CrossRef]
- Ding, M.; Wang, P.; López-Pérez, D.; Mao, G.; Lin, Z. Performance impact of LoS and NLoS transmissions in dense cellular networks. IEEE Trans. Wirel. Commun. 2016, 15, 2365–2380. [Google Scholar] [CrossRef]
- Zhang, X.; Andrews, J.G. Downlink cellular network analysis with multi-slope path loss models. IEEE Trans. Commun. 2015, 63, 1881–1894. [Google Scholar] [CrossRef]
- Zheng, K.; Liu, F.; Lei, L.; Lin, C.; Jiang, Y. Stochastic performance analysis of a wireless finite-state Markov channel. IEEE Trans. Wirel. Commun. 2013, 12, 782–793. [Google Scholar] [CrossRef]
- Chen, M.; Ma, Y.; Song, J.; Lai, C.F.; Hu, B. Smart clothing: Connecting human with clouds and big data for sustainable health monitoring. Mob. Netw. Appl. 2016, 21, 825–845. [Google Scholar] [CrossRef]
- Chen, M.; Ma, Y.; Li, Y.; Wu, D.; Zhang, Y.; Youn, C.H. Wearable 2.0: Enabling Human-Cloud Integration in Next Generation Healthcare Systems. IEEE Commun. Mag. 2017, 55, 54–61. [Google Scholar] [CrossRef]
- Iyengar, S.; Bonda, F.T.; Gravina, R.; Guerrieri, A.; Fortino, G.; Sangiovanni-Vincentelli, A. A framework for creating healthcare monitoring applications using wireless body sensor networks. In Proceedings of the ICST 3rd international conference on Body area networks, Brussels, Belgium, 13–17 March 2008; p. 8. [Google Scholar]
- Fortino, G.; Giannantonio, R.; Gravina, R.; Kuryloski, P.; Jafari, R. Enabling effective programming and flexible management of efficient body sensor network applications. IEEE Trans. Hum. Mach. Syst. 2013, 43, 115–133. [Google Scholar] [CrossRef]
- Chen, M.; Zhou, P.; Fortino, G. Emotion Communication System. IEEE Access 2017, 5, 326–337. [Google Scholar] [CrossRef]
- Ibaida, A.; Al-Shammary, D.; Khalil, I. Cloud enabled fractal based ECG compression in wireless body sensor networks. Future Gener. Comput. Syst. 2014, 35, 91–101. [Google Scholar] [CrossRef]
Cellular Network | Third Generation | Fourth Generation | Fifth Generation |
---|---|---|---|
Coverage Feature Deployment | Regular hexagon Macrocells BS | Irregular polygon Macrocells and microcell | Statistical fractal shape Macrocells and Ultra-dense small cells |
BS density | Low (4–5 BSs/km) | Middle (8–10 BSs/km) | High (40–50 BSs/km) |
Transmit Power of Macrocell | High | High | High |
Transmit Power of Small cell | N/A | N/A | Low |
Interference | Low | Middle | High |
Coverage Redundancy | low | Middle | High |
Wireless Fractal Phenomenon | No | No | Yes |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hao, Y.; Chen, M.; Hu, L.; Song, J.; Volk, M.; Humar, I. Wireless Fractal Ultra-Dense Cellular Networks. Sensors 2017, 17, 841. https://doi.org/10.3390/s17040841
Hao Y, Chen M, Hu L, Song J, Volk M, Humar I. Wireless Fractal Ultra-Dense Cellular Networks. Sensors. 2017; 17(4):841. https://doi.org/10.3390/s17040841
Chicago/Turabian StyleHao, Yixue, Min Chen, Long Hu, Jeungeun Song, Mojca Volk, and Iztok Humar. 2017. "Wireless Fractal Ultra-Dense Cellular Networks" Sensors 17, no. 4: 841. https://doi.org/10.3390/s17040841
APA StyleHao, Y., Chen, M., Hu, L., Song, J., Volk, M., & Humar, I. (2017). Wireless Fractal Ultra-Dense Cellular Networks. Sensors, 17(4), 841. https://doi.org/10.3390/s17040841