A Combined Independent Source Separation and Quality Index Optimization Method for Fetal ECG Extraction from Abdominal Maternal Leads
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.2. Tested Methods
2.3. Proposed Combined Method: ICAQIO-Based
2.3.1. Pre-Processing
2.3.2. Independent Component Analysis
2.3.3. Maternal ECG Cancelling
2.3.4. Fetal Quality Index Optimization
2.3.5. Fetal QRS Detection
2.4. Methods for Comparison
2.4.1. QIO-Based Method
2.4.2. ICA-Based Method
2.5. Evaluation of fQRS Detection
3. Results
3.1. Simulated Data: FECGSYNDB
3.2. Real Data: PhysioNet CinC 2013 Database
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
BSS | Blind source separation |
CHD | Congenital heart disease |
fECG | Fetal electrocardiogram |
FHR | Fetal heart rate |
ICA | Independent Component Analysis |
mECG | Maternal electrocardiogram |
PCA | Principal Component Analysis |
PPA | Positive predictive accuracy |
QI | Quality index |
QIO | Quality index optimization |
SE | Sensitivity |
SNR | Signal to noise ratio |
SVD | Singular Value Decomposition |
TS | Template subtraction |
References
- Arleo, E.K.; Troiano, R.N. Outcome of early first-trimester pregnancies (<6.1 weeks) with slow embryonic heart rate. Am. J. Roentgenol. 2011, 197, 252–255. [Google Scholar] [CrossRef] [PubMed]
- Rajiah, P.; Mak, C.; Dubinksy, T.J.; Dighe, M. Ultrasound of fetal cardiac anomalies. Am. J. Roentgenol. 2011, 197, W747–W760. [Google Scholar] [CrossRef] [PubMed]
- Van der Linde, D.; Konings, E.E.; Slager, M.A.; Witsenburg, M.; Helbing, W.A.; Takkenberg, J.J.; Roos-Hesselink, J.W. Birth prevalence of congenital heart disease worldwide: A systematic review and meta-analysis. J. Am. Coll. Cardiol. 2011, 58, 2241–2247. [Google Scholar] [CrossRef] [PubMed]
- Tegnander, E.; Williams, W.; Johansen, O.J.; Blaas, H.G.; Eik-Nes, S.H. Prenatal detection of heart defects in a non-selected population of 30,149 fetuses: Detection rates and outcome. Ultrasound Obstet. Gynecol. 2006, 27, 252–265. [Google Scholar] [CrossRef] [PubMed]
- Trines, J.; Fruitman, D.; Zuo, K.J.; Smallhorn, J.F.; Hornberger, L.K.; Mackie, A.S. Effectiveness of prenatal screening for congenital heart disease: Assessment in a jurisdiction with universal access to health care. Can. J. Cardiol. 2013, 29, 879–885. [Google Scholar] [CrossRef] [PubMed]
- Rogers, L.; Li, J.; Liu, L.; Balluz, R.; Rychik, J.; Ge, S. Advances in fetal echocardiography: Early imaging, three/four dimensional imaging, and role of fetal echocardiography in guiding early postnatal management of congenital heart disease. Echocardiography 2013, 30, 428–438. [Google Scholar] [CrossRef] [PubMed]
- Peters, M.; Crowe, J.; Piéri, J.F.; Quartero, H.; Hayes-Gill, B.; James, D.; Stinstra, J.; Shakespeare, S. Monitoring the fetal heart non-invasively: A review of methods. J. Perinat. Med. 2001, 29, 408–416. [Google Scholar] [CrossRef] [PubMed]
- Pardi, G.; Ferrazzi, E.; Cetin, I.; Rampello, S.; Baselli, G.; Cerutti, S.; Civardi, S. The clinical relevance of the abdominal fetal electrocardiogram. J. Perinat. Med. 1986, 14, 371–377. [Google Scholar] [PubMed]
- Oostendorp, T. Modeling the Fetal EGG. Ph.D. Thesis, K.U. Nijmegen, Nijmegen, The Netherlands, 1989. [Google Scholar]
- Oostendorp, T.; van Oosterom, A.; Jongsma, H. Electrical properties of tissues involved in the conduction of fetal ECG. Biomed. Eng. Comput. 1989, 27, 322–324. [Google Scholar]
- Behar, J.; Andreotti, F.; Zaunseder, S.; Oster, J.; Clifford, G.D. A practical guide to non-invasive foetal electrocardiogram extraction and analysis. Physiol. Meas. 2016, 37, 1–35. [Google Scholar] [CrossRef] [PubMed]
- Ungureanu, M.; Wolf, W. Basic aspects concerning the event-synchronous interference canceller. IEEE Trans. Biomed. Eng. 2006, 53, 2240–2247. [Google Scholar] [CrossRef] [PubMed]
- Widrow, B.; Glover, J.R.; McCool, J.M.; Kaunitz, J.; Williams, C.S.; Hearn, R.H.; Zeidler, J.R.; Dong, E., Jr.; Goodlin, R.C. Adaptive noise canceling: Principles and applications. Proc. IEEE 1975, 63, 1692–1716. [Google Scholar] [CrossRef]
- Behar, J.; Johnson, A.; Clifford, G.D.; Oster, J. A comparison of single channel foetal ECG extraction methods. Ann. Biomed. Eng. 2014, 42, 1340–1353. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Xiao, Y.; Wei, G.; Sun, G. A multichannel nonlinear adaptive noise canceller based on generalized FLANN for fetal ECG extraction. Meas. Sci. Technol. 2016, 27, 15703. [Google Scholar] [CrossRef]
- Rodrigues, R. Fetal beat detection in abdominal ECG recordings: Global and time adaptive approaches. Physiol. Meas. 2014, 35, 1699–1711. [Google Scholar] [CrossRef] [PubMed]
- Strobach, P.; Abraham-Fuchs, K.; Härer, W. Event-synchronous cancellation of the heart interference in biomedical signals. IEEE Trans. Biomed. Eng. 1994, 41, 343–350. [Google Scholar] [CrossRef] [PubMed]
- Cerutti, S.; Baselli, G.; Civardi, S.; Ferrazzi, E.; Marconi, A.M.; Pagani, M.; Pardi, G. Variability analysis of fetal heart rate signals as obtained from abdominal electrocardiographic recordings. J. Perinat. Med. 1986, 14, 445–452. [Google Scholar] [CrossRef] [PubMed]
- Martens, S.M.; Rabotti, C.; Mischi, M.; Sluijter, R.J. A robust fetal ECG detection method for abdominal recordings. Physiol. Meas. 2007, 28, 373–388. [Google Scholar] [CrossRef] [PubMed]
- Behar, J.; Oster, J.; Clifford, G.D. Combining and benchmarking methods of foetal ECG extraction without maternal or scalp electrode data. Physiol. Meas. 2014, 35, 1569–1589. [Google Scholar] [CrossRef] [PubMed]
- Kanjilal, P.; Palit, P.; Saha, G. Fetal ECG extraction from single-channel maternal ECG using singular value decomposition. IEEE Trans. Biomed. Eng. 1997, 44, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Lipponen, J.A.; Tarvainen, M.P. Principal component model for maternal ECG extraction in fetal QRS detection. Physiol. Meas. 2014, 35, 1637–1648. [Google Scholar] [CrossRef] [PubMed]
- Varanini, M.; Tartarisco, G.; Billeci, L.; Macerata, A.; Pioggia, G.; Balocchi, R. An efficient unsupervised fetal QRS complex detection from abdominal maternal ECG. Physiol. Meas. 2014, 35, 1607–1619. [Google Scholar] [CrossRef] [PubMed]
- Callaerts, D.; De Moor, B.; Vandewalle, J.; Sansen, W.; Vantrappen, G.; Janssens, J. Comparison of SVD methods to extract the foetal electrocardiogram from cutaneous electrode signals. Med. Biol. Eng. Comput. 1990, 28, 217–224. [Google Scholar] [CrossRef] [PubMed]
- Sameni, R.; Jutten, C.; Shamsollahi, M.B. A deflation procedure for subspace decomposition. IEEE Trans. Signal. Proc. 2010, 58, 2363–2374. [Google Scholar] [CrossRef]
- De Lathauwer, L.; De Moor, B.; Vandewalle, J. Fetal electrocardiogram extraction by blind source subspace separation. IEEE Trans. Biomed. Eng. 2000, 47, 567–572. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Luan, Y. An adaptive integrated algorithm for noninvasive fetal ECG separation and noise reduction based on ICA-EEMD-WS. Med. Biol. Eng. Comput. 2015, 53, 1113–1127. [Google Scholar] [CrossRef] [PubMed]
- Zarzoso, V.; Nandi, A.K. Noninvasive fetal electrocardiogram extraction: Blind separation versus adaptive noise cancellation. IEEE Trans. Biomed. Eng. 2001, 48, 12–18. [Google Scholar] [CrossRef] [PubMed]
- Andreotti, F.; Riedl, M.; Himmelsbach, T.; Wedekind, D.; Wessel, N.; Stepan, H.; Schmieder, C.; Jank, A.; Malberg, H.; Zaunseder, S. Robust fetal ECG extraction and heart rate detection from abdominal leads. Physiol. Meas. 2014, 35, 1551–1567. [Google Scholar] [CrossRef] [PubMed]
- Ghazdali, A.; Hakim, A.; Laghrib, A.; Mamouni, N.; Raghay, S. A new method for the extraction of fetal ECG from the dependent abdominal signals using blind source separation and adaptive noise cancellation techniques. Theor. Biol. Med. Model. 2015, 12, 25. [Google Scholar] [CrossRef] [PubMed]
- Clifford, G.D.; Silva, I.; Behar, J.; Moody, G.B. Non-invasive fetal ECG analysis. Physiol. Meas. 2014, 35, 1521–1536. [Google Scholar] [CrossRef] [PubMed]
- Varanini, M.; Tartarisco, G.; Billeci, L.; Macerata, A.; Pioggia, G.; Balocchi, R. A multi-step approach for non-invasive fetal ECG analysis. Comput. Cardiol. 2013, 2013, 281–284. [Google Scholar]
- Behar, J.; Oster, J.; Clifford, G.D. Non invasive FECG extraction from a set of abdominal channels. In Proceedings of the Computing in Cardiology, Zaragoza, Spain, 22–25 September 2013; Volume 40. [Google Scholar]
- Varanini, M.; Tartarisco, G.; Balocchi, R.; Macerata, A.; Pioggia, G.; Billeci, L. A new method for QRS complex detection in multichannel ECG: Application to self-monitoring of fetal health. Comput. Biol. Med. 2016, in press. [Google Scholar] [CrossRef] [PubMed]
- Andreotti, F.; Behar, J.; Zaunseder, S.; Oster, J.; Clifford, G.D. An open-source framework for stress-testing non-invasive foetal ECG extraction algorithms. Physiol. Meas. 2016, 37, 627–648. [Google Scholar] [CrossRef] [PubMed]
- Behar, J.; Andreotti, F.; Zaunseder, S.; Li, Q.; Oster, J.; Clifford, G.D. An ECG model for simulating maternal-foetal activity mixtures on abdominal ECG recordings. Physiol. Meas. 2014, 35, 1537–1550. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.J.; Lee, B. Sequential Total Variation Denoising for the Extraction of Fetal ECG from Single-Channel Maternal Abdominal ECG. Sensors 2016, 16, 1020. [Google Scholar] [CrossRef] [PubMed]
- Lagarias, J.C.; Reeds, J.A.; Wright, M.H.; Wright, P.E. Convergence Properties of the Nelder-Mead Simplex Method in Low Dimensions. SIAM J. Optim. 1998, 9, 112–147. [Google Scholar] [CrossRef]
- Silva, I.; Behar, J.; Sameni, R.; Zhu, T.; Oster, J.; Clifford, G.D.; Moody, G.B. Non-invasive fetal ECG: The physionet/computing in cardiology challenge. Comput. Cardiol. 2013, 40, 149–152. [Google Scholar]
- Da Poian, G.; Bernardini, R.; Rinaldo, R. Separation and Analysis of Fetal-ECG Signals From Compressed Sensed Abdominal ECG Recordings. IEEE Trans. Biomed. Eng. 2016, 63, 1269–1279. [Google Scholar] [CrossRef] [PubMed]
- Belouchrani, A.; Abed-Meraim, K.; Cardoso, J.F.; Moulines, E. A blind source separation technique using second-order statistics. IEEE Trans. Sign. Proc. 1997, 45, 434–444. [Google Scholar] [CrossRef]
- Cardoso, J.F.; Solumiac, A. Blind beamforming for non Gaussian signals. IEE Proc. F Radar Signal Process. 1993, 140, 362–370. [Google Scholar] [CrossRef]
- Hyvarinen, A. Fast and robust xed point algorithm for independent component analysis. IEEE Trans. Neural Netw. 1999, 10, 626–634. [Google Scholar] [CrossRef] [PubMed]
- Golub, G.H.; Van Loan, C.F. Matrix Computations, 3rd ed.; Johns Hopkins University Press: Baltimore, MD, USA, 1996. [Google Scholar]
- Nelder, J.A.; Mead, R. A simplex method for function minimization. Comput. J. 1965, 7, 308–313. [Google Scholar] [CrossRef]
- Taddei, A.; Marchesi, C.; Landucci, L. Performance comparison of fast QRS detection algorithms. In Ambulatory Monitoring; Marchesi, C., Ed.; Springer: Dordrecht, The Netherlands, 1984; pp. 189–207. [Google Scholar]
- AAMI. Testing and Reporting Performance Results of Cardiac Rhythm and ST-Segment Measurement Algorithms; ANSI/AAMI/ISO EC57: 1998/(R); American National Standards Institute: Arlington, VA, USA, 2008. [Google Scholar]
Case | Description |
---|---|
Baseline | Abdominal mixture of fECG and mECG without noise or events |
Case 0 | Baseline + noise (no events) |
Case 1 | Fetal movement + noise |
Case 2 | mHR/fHR acceleration or deceleration + noise |
Case 3 | Uterine contraction |
Case 4 | Maternal and fetal ectopic beats + noise |
Case 5 | Twin pregnancy + noise |
Quantities Characterizing fECG and Noise | |
adf | absolute value of the derivative computed on short intervals (0.013 s), which enhances the fQRS and smoothes the noise |
adhn | absolute value of the derivative computed on shorter intervals (0.003 s), which takes into account mostly the noise |
w04 | window of 0.4 s specific for the fQRS |
w013 | window of 0.13 s for high frequency noise |
w01 | window of 0.1 s for very high frequency noise |
w40 | window of 4.0 s for isolated impulsive artefacts |
Features based on the above quantities | |
Df | trimmed mean of the maxima of adf computed on successive w04 |
Dn | trimmed mean of the maxima of adf computed on successive w013 |
Dhn | trimmed mean of the maxima of adhn computed on successive w01 |
Dfa | trimmed mean of the maxima of adf computed on successive w40 |
Method | Baseline | Case 0 | Case 1 | Case 2 | Case 3 | Case 4 |
---|---|---|---|---|---|---|
ICA-based | 100.00 (100.00, 100.00) | 100.00 (100.00, 100.00) | 99.98 (98.70, 100) | 99.17 (20.50, 100.00) | 98.27 (69.60, 100.00) | 86.62 (17.00, 100.00) |
QIO-based | 100.00 (100.00, 100.00) | 100.00 (99.80, 100.00) | 99.97 (97.70, 100.00) | 99.88 (95.00, 100.00) | 92.75 (21.50, 100.00) | 92.59 (77.50, 100.00) |
ICAQIO-based | 100.00 (99.90, 100.00) | 100.00 (100.00, 100.00) | 99.97 (98.30, 100.00) | 99.97 (98.50, 100.00) | 99.26 (82.70, 100.00) | 93.68 (74.80, 100.00) |
Method | SE | PPA | F1 |
---|---|---|---|
ICA-based | 99.36 (87.97, 100.00) | 99.38 (89.06, 100.00) | 99.37 (88.81, 100.00) |
QIO-based | 99.75 (96.62, 100.00) | 99.76 (96.62, 100.00) | 99.76 (96.62, 100.00) |
ICAQIO-based | 99.38 (89.84, 100.00) | 99.38 (89.84, 100.00) | 99.38 (89.94, 100.00) |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Billeci, L.; Varanini, M. A Combined Independent Source Separation and Quality Index Optimization Method for Fetal ECG Extraction from Abdominal Maternal Leads. Sensors 2017, 17, 1135. https://doi.org/10.3390/s17051135
Billeci L, Varanini M. A Combined Independent Source Separation and Quality Index Optimization Method for Fetal ECG Extraction from Abdominal Maternal Leads. Sensors. 2017; 17(5):1135. https://doi.org/10.3390/s17051135
Chicago/Turabian StyleBilleci, Lucia, and Maurizio Varanini. 2017. "A Combined Independent Source Separation and Quality Index Optimization Method for Fetal ECG Extraction from Abdominal Maternal Leads" Sensors 17, no. 5: 1135. https://doi.org/10.3390/s17051135
APA StyleBilleci, L., & Varanini, M. (2017). A Combined Independent Source Separation and Quality Index Optimization Method for Fetal ECG Extraction from Abdominal Maternal Leads. Sensors, 17(5), 1135. https://doi.org/10.3390/s17051135