Analysis of Gamma-Band Activity from Human EEG Using Empirical Mode Decomposition
Abstract
:1. Introduction
1.1. Electroencephalogram (EEG)
1.2. Gamma Activity
1.3. Empirical Mode Decomposition (EMD)
1.4. Study Objectives
2. Materials and Methods
2.1. Sample
2.2. Data Acquisition
2.3. Data Analysis
2.4. EMD Analysis of the EEG Signal
2.5. Calculation of TFA-GBA
2.6. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Lally, N.; Mullins, P.G.; Roberts, M.V.; Price, D.; Gruber, T.; Haenschel, C. Glutamatergic correlates of gamma-band oscillatory activity during cognition: A concurrent ER-MRS and EEG study. Neuroimage 2014, 85, 823–833. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Liu, A.; Peng, H.; Ward, R. A Preliminary Study of Muscular Artifact Cancellation in Single-Channel EEG. Sensors 2014, 14, 18370–18389. [Google Scholar] [CrossRef] [PubMed]
- Bhardwaj, S.; Jadhav, P.; Adapa, B.; Acharyya, A.; Naik, G.R. Online and automated reliable system design to remove blink and muscle artefact in EEG. In Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan, Italy, 25–29 August 2015; pp. 6784–6787. [Google Scholar]
- Kwon, Y.; Kim, K.I.; Tompkin, J.; Kim, J.H.; Theobalt, C. Efficient Learning of Image Super-Resolution and Compression Artifact Removal with Semi-Local Gaussian Processes. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 37, 1792–1805. [Google Scholar] [CrossRef] [PubMed]
- Feis, R.A.; Smith, S.M.; Filippini, N.; Douaud, G.; Dopper, E.G.; Heise, V.; Trachtenberg, A.J.; van Swieten, J.C.; van Buchem, M.A.; Rombouts, S.A.; et al. ICA-based artifact removal diminishes scan site differences in multi-center resting-state fMRI. Front. Neurosci. 2015, 9. [Google Scholar] [CrossRef] [PubMed]
- Uhlhaas, P.J.; Singer, W. High-frequency oscillations and the neurobiology of schizophrenia. Dialogues Clin. Neurosci. 2013, 15, 301–313. [Google Scholar] [PubMed]
- Sharma, R.; Pachori, R.B. Classification of epileptic seizures in EEG signals based on phase space representation of intrinsic mode functions. Expert Syst. Appl. 2015, 42, 1106–1117. [Google Scholar] [CrossRef]
- Urigüen, J.A.; Garcia-Zapirain, B. EEG artifact removal—State-of-the-art and guidelines. J. Neural Eng. 2015, 12, 31001. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Naik, G.R. Hung Nguyen Single channel blind source separation based local mean decomposition for Biomedical applications. In Proceedings of the 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Osaka, Japan, 3–7 July 2013; pp. 6812–6815. [Google Scholar]
- Shin, Y.; Lee, S.; Ahn, M.; Cho, H.; Jun, S.C.; Lee, H.-N. Noise robustness analysis of sparse representation based classification method for non-stationary EEG signal classification. Biomed. Signal Process. Control 2015, 21, 8–18. [Google Scholar] [CrossRef]
- Li, M.; Chen, W.; Zhang, T. Classification of epilepsy EEG signals using DWT-based envelope analysis and neural network ensemble. Biomed. Signal Process. Control 2017, 31, 357–365. [Google Scholar] [CrossRef]
- Zhang, X.; Li, J.; Liu, Y.; Zhang, Z.; Wang, Z.; Luo, D.; Zhou, X.; Zhu, M.; Salman, W.; Hu, G.; et al. Design of a Fatigue Detection System for High-Speed Trains Based on Driver Vigilance Using a Wireless Wearable EEG. Sensors 2017, 17, 486. [Google Scholar] [CrossRef] [PubMed]
- Chai, R.; Naik, G.; Nguyen, T.N.; Ling, S.; Tran, Y.; Craig, A.; Nguyen, H. Driver Fatigue Classification with Independent Component by Entropy Rate Bound Minimization Analysis in an EEG-based System. IEEE J. Biomed. Health Inform. 2016. [Google Scholar] [CrossRef] [PubMed]
- Ramyead, A.; Studerus, E.; Kometer, M.; Uttinger, M.; Gschwandtner, U.; Fuhr, P.; Riecher-Rössler, A. Prediction of psychosis using neural oscillations and machine learning in neuroleptic-naïve at-risk patients. World J. Biol. Psych. 2016, 17, 285–295. [Google Scholar] [CrossRef] [PubMed]
- Ramyead, A.; Studerus, E.; Kometer, M.; Heitz, U.; Gschwandtner, U.; Fuhr, P.; Riecher-Rössler, A. Neural oscillations in antipsychotic-naïve patients with a first psychotic episode. World J. Biol. Psych. 2016, 17, 296–307. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Li, H.; Mandic, D. Blind source separation and artefact cancellation for single channel bioelectrical signal. In Proceedings of the 2016 IEEE 13th International Conference on Wearable and Implantable Body Sensor Networks (BSN), San Francisco, CA, USA, 14–17 June 2016; IEEE: New York, NY, USA, 2016; pp. 177–182. [Google Scholar]
- Chen, X.; Liu, A.; Chiang, J.; Wang, Z.J.; McKeown, M.J.; Ward, R.K. Removing Muscle Artifacts from EEG Data: Multichannel or Single-Channel Techniques? IEEE Sens. J. 2016, 16, 1986–1997. [Google Scholar] [CrossRef]
- Maddirala, A.; Shaik, R.A. Removal of EOG Artifacts from Single Channel EEG Signals Using Combined Singular Spectrum Analysis and Adaptive Noise Canceler. IEEE Sens. J. 2016, 16, 8279–8287. [Google Scholar] [CrossRef]
- Minguillon, J.; Lopez-Gordo, M.A.; Pelayo, F. Trends in EEG-BCI for daily-life: Requirements for artifact removal. Biomed. Signal Process. Control 2017, 31, 407–418. [Google Scholar] [CrossRef]
- Lucey, B.P.; Mcleland, J.S.; Toedebusch, C.D.; Boyd, J.; Morris, J.C.; Landsness, E.C.; Yamada, K.; Holtzman, D.M. Comparison of a single-channel EEG sleep study to polysomnography. J. Sleep Res. 2016, 25, 625–635. [Google Scholar] [CrossRef] [PubMed]
- Da Silveira, T.L.; Kozakevicius, A.J.; Rodrigues, C.R. Single-channel EEG sleep stage classification based on a streamlined set of statistical features in wavelet domain. Med. Biol. Eng. Comput. 2017, 55, 343–352. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Wang, Y.; Li, G. Effect of intermittent hypoxic training on hypoxia tolerance based on single-channel EEG. Neurosci. Lett. 2016, 617, 39–45. [Google Scholar] [CrossRef] [PubMed]
- Uhlhaas, P.J.; Haenschel, C.; Nikolić, D.; Singer, W. The role of oscillations and synchrony in cortical networks and their putative relevance for the pathophysiology of schizophrenia. Schizophr. Bull. 2008, 34, 927–943. [Google Scholar] [CrossRef] [PubMed]
- Uhlhaas, P.J.; Pipa, G.; Neuenschwander, S.; Wibral, M.; Singer, W. A new look at gamma? High- (>60 Hz) γ-band activity in cortical networks: Function, mechanisms and impairment. Prog. Biophys. Mol. Biol. 2011, 105, 14–28. [Google Scholar] [CrossRef] [PubMed]
- Cheyne, D.; Bells, S.; Ferrari, P.; Gaetz, W.; Bostan, A.C. Self-paced movements induce high-frequency gamma oscillations in primary motor cortex. Neuroimage 2008, 42, 332–342. [Google Scholar] [CrossRef] [PubMed]
- Cheyne, D.; Ferrari, P. MEG studies of motor cortex gamma oscillations: Evidence for a gamma “fingerprint” in the brain? Front. Hum. Neurosci. 2013, 7, 575. [Google Scholar] [CrossRef] [PubMed]
- Pfurtscheller, G. EEG event-related desynchronization (ERD) and synchronization (ERS). Electroencephalogr. Clin. Neurophysiol. 1997, 103, 26. [Google Scholar] [CrossRef]
- Tan, H.-R.M.; Lana, L.; Uhlhaas, P.J. High-frequency neural oscillations and visual processing deficits in schizophrenia. Front. Psychol. 2013, 4, 621. [Google Scholar] [CrossRef] [PubMed]
- Amo, C.; del Castillo, M.O.; Barea, R.; de Santiago, L.; Martínez-Arribas, A.; Amo-López, P.; Boquete, L. Induced Gamma-Band Activity During Voluntary Movement: EEG Analysis for Clinical Purposes. Motor Control 2016, 20, 409–428. [Google Scholar] [CrossRef] [PubMed]
- Pfurtscheller, G.; Lopes da Silva, F.H. Event-related EEG/MEG synchronization and desynchronization: Basic principles. Clin. Neurophysiol. 1999, 110, 1842–1857. [Google Scholar] [CrossRef]
- Minzenberg, M.J.; Yoon, J.H.; Cheng, Y.; Carter, C.S. Sustained Modafinil Treatment Effects on Control-Related Gamma Oscillatory Power in Schizophrenia. Neuropsychopharmacology 2016, 41, 1231–1240. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Liu, X.; Cai, C.; Yang, Y.; Li, D.; Xiao, L.; Xiong, D.; Hu, L.; Qiu, Y. Changes of gamma-band oscillatory activity to tonic muscle pain. Neurosci. Lett. 2016, 627, 126–131. [Google Scholar] [CrossRef] [PubMed]
- Karch, S.; Loy, F.; Krause, D.; Schwarz, S.; Kiesewetter, J.; Segmiller, F.; Chrobok, A.I.; Keeser, D.; Pogarell, O. Increased Event-Related Potentials and Alpha-, Beta-, and Gamma-Activity Associated with Intentional Actions. Front. Psychol. 2016, 7. [Google Scholar] [CrossRef] [PubMed]
- Başar, E.; Femir, B.; Emek-Savaş, D.D.; Güntekin, B.; Yener, G.G. Increased long distance event-related gamma band connectivity in Alzheimer’s disease. NeuroImage Clin. 2017, 14, 580–590. [Google Scholar] [CrossRef] [PubMed]
- Huang, N.E.; Wu, Z. A review on Hilbert-Huang transform: Method and its applications to geophysical studies. Rev. Geophys. 2008, 46. [Google Scholar] [CrossRef]
- Nunes, J.; Bouaoune, Y.; Delechelle, E.; Niang, O.; Bunel, P. Image analysis by bidimensional empirical mode decomposition. Image Vis. Comput. 2003, 21, 1019–1026. [Google Scholar] [CrossRef]
- Subhani, S.K.; Suresh, B.; Ghali, V.S. Empirical mode decomposition approach for defect detection in non-stationary thermal wave imaging. NDT E Int. 2016, 81, 39–45. [Google Scholar] [CrossRef]
- Camarena-Martinez, D.; Valtierra-Rodriguez, M.; Perez-Ramirez, C.A.; Amezquita-Sanchez, J.P.; de Jesus Romero-Troncoso, R.; Garcia-Perez, A. Novel Downsampling Empirical Mode Decomposition Approach for Power Quality Analysis. IEEE Trans. Ind. Electron. 2016, 63, 2369–2378. [Google Scholar] [CrossRef]
- Naik, G.R.; Selvan, S.E.; Nguyen, H.T. Single-Channel EMG Classification with Ensemble-Empirical-Mode-Decomposition-Based ICA for Diagnosing Neuromuscular Disorders. IEEE Trans. Neural Syst. Rehabil. Eng. 2016, 24, 734–743. [Google Scholar] [CrossRef] [PubMed]
- Liang, H.; Bressler, S.L.; Buffalo, E.; Desimone, R.; Fries, P. Empirical mode decomposition of field potentials from macaque V4 in visual spatial attention. Biol. Cybern. 2005, 92, 380–392. [Google Scholar] [CrossRef] [PubMed]
- Noshadi, S.; Abootalebi, V.; Sadeghi, M.T.; Shahvazian, M.S. Selection of an efficient feature space for EEG-based mental task discrimination. Biocybern. Biomed. Eng. 2014, 34, 159–168. [Google Scholar] [CrossRef]
- Bashar, S.K.; Bhuiyan, M.I.H. Classification of motor imagery movements using multivariate empirical mode decomposition and short time Fourier transform based hybrid method. Eng. Sci. Technol. Int. J. 2016, 19, 1457–1464. [Google Scholar] [CrossRef]
- Chang, C.-F.; Liang, W.-K.; Lai, C.-L.; Hung, D.L.; Juan, C.-H. Theta Oscillation Reveals the Temporal Involvement of Different Attentional Networks in Contingent Reorienting. Front. Hum. Neurosci. 2016, 10. [Google Scholar] [CrossRef] [PubMed]
- Cheolsoo, P.; Looney, D.; Kidmose, P.; Ungstrup, M.; Mandic, D.P. Time-Frequency Analysis of EEG Asymmetry Using Bivariate Empirical Mode Decomposition. IEEE Trans. Neural Syst. Rehabil. Eng. 2011, 19, 366–373. [Google Scholar] [CrossRef] [PubMed]
- Park, C.; Plank, M.; Snider, J.; Kim, S.; Huang, H.C.; Gepshtein, S.; Coleman, T.P.; Poizner, H. EEG Gamma Band Oscillations Differentiate the Planning of Spatially Directed Movements of the Arm Versus Eye: Multivariate Empirical Mode Decomposition Analysis. IEEE Trans. Neural Syst. Rehabil. Eng. 2014, 22, 1083–1096. [Google Scholar] [CrossRef] [PubMed]
- Oldfield, R.C. The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia 1971, 9, 97–113. [Google Scholar] [CrossRef]
- Herrmann, C.; Demiralp, T. Human EEG gamma oscillations in neuropsychiatric disorders. Clin. Neurophysiol. 2005, 116, 2719–2733. [Google Scholar] [CrossRef] [PubMed]
- Oostenveld, R.; Fries, P.; Maris, E.; Schoffelen, J.-M. FieldTrip: Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Comput. Intell. Neurosci. 2011, 2011, 156869. [Google Scholar] [CrossRef] [PubMed]
- Huang, N.E.; Shen, Z.; Long, S.R.; Wu, M.C.; Shih, H.H.; Zheng, Q.; Yen, N.-C.; Tung, C.C.; Liu, H.H. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. A Math. Phys. Eng. Sci. 1998, 454, 903–995. [Google Scholar] [CrossRef]
- Tsai, F.-F.; Fan, S.-Z.; Lin, Y.-S.; Huang, N.E.; Yeh, J.-R. Investigating Power Density and the Degree of Nonlinearity in Intrinsic Components of Anesthesia EEG by the Hilbert-Huang Transform: An Example Using Ketamine and Alfentanil. PLoS ONE 2016, 11, e0168108. [Google Scholar] [CrossRef] [PubMed]
- Liang, H.; Bressler, S.L.; Desimone, R.; Fries, P. Empirical mode decomposition: A method for analyzing neural data. Neurocomputing 2005, 65, 801–807. [Google Scholar] [CrossRef]
- Hsu, C.-H.; Lee, C.-Y.; Liang, W.-K. An improved method for measuring mismatch negativity using ensemble empirical mode decomposition. J. Neurosci. Methods 2016, 264, 78–85. [Google Scholar] [CrossRef] [PubMed]
- Flandrin, P.; Rilling, G.; Goncalves, P. Empirical Mode Decomposition as a Filter Bank. IEEE Signal Process. Lett. 2004, 11, 112–114. [Google Scholar] [CrossRef]
- Shibata, T.; Shimoyama, I.; Ito, T.; Abla, D.; Iwasa, H.; Koseki, K.; Yamanouchi, N.; Sato, T.; Nakajima, Y. Attention changes the peak latency of the visual gamma-band oscillation of the EEG. Neuroreport 1999, 10, 1167–1170. [Google Scholar] [CrossRef] [PubMed]
- Ball, T.; Demandt, E.; Mutschler, I.; Neitzel, E.; Mehring, C.; Vogt, K.; Aertsen, A.; Schulze-Bonhage, A. Movement related activity in the high gamma range of the human EEG. Neuroimage 2008, 41, 302–310. [Google Scholar] [CrossRef] [PubMed]
- Babiloni, C.; Del Percio, C.; Vecchio, F.; Sebastiano, F.; Di Gennaro, G.; Quarato, P.P.; Morace, R.; Pavone, L.; Soricelli, A.; Noce, G.; et al. Alpha, beta and gamma electrocorticographic rhythms in somatosensory, motor, premotor and prefrontal cortical areas differ in movement execution and observation in humans. Clin. Neurophysiol. 2016, 127, 641–654. [Google Scholar] [CrossRef] [PubMed]
- Fitzgibbon, S.P.; Lewis, T.W.; Powers, D.M.; Whitham, E.W.; Willoughby, J.O.; Pope, K.J. Surface Laplacian of central scalp electrical signals is insensitive to muscle contamination. IEEE Trans. Biomed. Eng. 2013, 60, 4–9. [Google Scholar] [CrossRef] [PubMed]
- Chai, R.; Tran, Y.; Naik, G.R.; Nguyen, T.N.; Ling, S.H.; Craig, A.; Nguyen, H.T. Classification of EEG based-mental fatigue using principal component analysis and Bayesian neural network. In Proceedings of the 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Orlando, FL, USA, 16–20 August 2016; pp. 4654–4657. [Google Scholar]
Experiment | Gamma Oscillations | Waveform * | TFA Output µV2 | Processing Method |
---|---|---|---|---|
Basal (b) activity | Spontaneous | x(t) = EEGb | GBAb | Typical |
IMFb1 | GBAb1 | Based on IMF1 | ||
IMFb1 | GBAb2 | Based on IMF2 | ||
Motor (m) activity | Induced | x(t) = EEGm | GBAm | Typical |
IMFm1 | GBAm1 | Based on IMF1 | ||
IMFm2 | GBAm2 | Based on IMF2 |
GBAb | GBAb1 | GBAb2 |
---|---|---|
0.0151 | 0.0059 | 0.0072 |
(0.0121–0.0180) | (0.0045–0.0072) | (0.0058–0.0086) |
Case | Left Hand | Right Hand |
---|---|---|
GBAm | 0.0186 | 0.0194 |
(0.0146–0.0225) | (0.0156–0.0232) | |
GBAm1 | 0.0081 | 0.0088 |
(0.0064–0.0098) | (0.0071–0.0105) | |
GBAm2 | 0.0082 | 0.0083 |
(0.0063–0.0100) | (0.0063–0.0104) |
Right Hand | Left Hand | ||||||
---|---|---|---|---|---|---|---|
Typical | Based on IMFs | Typical | Based on IMFs | ||||
Subject | Laterality * | ERSRH * | ERS1RH * | ERS2RH * | ERSLH * | ERS1LH * | ERS2LH * |
1 | A | 30.7% | 54.6% | 3.5% | 57.5% | 67.6% | 43.0% |
2 | R | 32.0% | 48.6% | 22.6% | 3.9% | 5.4% | 3.8% |
3 | R | 13.0% | 16.7% | 6.7% | 7.2% | 13.3% | −3.3% |
4 | R | 35.6% | 15.6% | 61.3% | 17.8% | 9.4% | 33.3% |
5 | R | 95.4% | 291.7% | 1.7% | 23.1% | 88.9% | 3.4% |
6 | R | 68.5% | 429.4% | −19.3% | 41.3% | 294.1% | −23.8% |
7 | R | 1.0% | −2.0% | 5.4% | 2.0% | 0.0% | 2.7% |
8 | R | 25.3% | 40.8% | 17.0% | 24.7% | 46.0% | 10.2% |
9 | R | 9.4% | 37.9% | −16.4% | 17.2% | 44.8% | −7.3% |
10 | L | 1.7% | −2.0% | 7.4% | 23.3% | 24.0% | 25.9% |
11 | R | 23.0% | 47.4% | 1.1% | 18.4% | 32.2% | 7.0% |
12 | L | 30.3% | 35.8% | 22.3% | 59.1% | 68.4% | 46.2% |
13 | R | 20.2% | 25.8% | 13.0% | 22.2% | 23.2% | 19.3% |
14 | R | 38.0% | 59.7% | 24.2% | 34.1% | 56.8% | 19.7% |
15 | R | 11.0% | 29.1% | −1.0% | 14.3% | 35.6% | 3.8% |
16 | R | 27.8% | 41.1% | 15.8% | 26.4% | 32.6% | 20.4% |
17 | L | 24.6% | 35.7% | 13.0% | 6.4% | 14.9% | −0.5% |
18 | R | 92.3% | 296.8% | −10.4% | 19.2% | 65.0% | −4.3% |
19 | R | 60.3% | 26.0% | 104.0% | 38.2% | 28.6% | 52.7% |
20 | R | 1.4% | 51.8% | −19.3% | 5.0% | 49.5% | −14.3% |
21 | R | 1.6% | −0.8% | 7.8% | 2.5% | −1.4% | 9.0% |
22 | A | 13.4% | 89.6% | −10.8% | 5.8% | 76.0% | −15.9% |
23 | R | 32.9% | 19.6% | 47.2% | 22.7% | 26.4% | 21.2% |
24 | R | 64.7% | 146.5% | 18.1% | 37.1% | 76.6% | 13.4% |
25 | A | 21.1% | 11.1% | 33.4% | 24.4% | 14.0% | 36.5% |
Hand | N | TEST | p | |
---|---|---|---|---|
Right hand | ERS and ERS1 | 25 | T-Student | 0.023 |
ERS and ERS2 | 25 | T-Student | 0.021 | |
ERS1 and ERS2 | 25 | T-Student | 0.020 | |
Left hand | ERS and ERS1 | 25 | T-Student | 0.001 |
ERS and ERS2 * | 25 | Wilcoxon | 0.006 | |
ERS1 and ERS2 * | 25 | Wilcoxon | 0.002 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amo, C.; De Santiago, L.; Barea, R.; López-Dorado, A.; Boquete, L. Analysis of Gamma-Band Activity from Human EEG Using Empirical Mode Decomposition. Sensors 2017, 17, 989. https://doi.org/10.3390/s17050989
Amo C, De Santiago L, Barea R, López-Dorado A, Boquete L. Analysis of Gamma-Band Activity from Human EEG Using Empirical Mode Decomposition. Sensors. 2017; 17(5):989. https://doi.org/10.3390/s17050989
Chicago/Turabian StyleAmo, Carlos, Luis De Santiago, Rafael Barea, Almudena López-Dorado, and Luciano Boquete. 2017. "Analysis of Gamma-Band Activity from Human EEG Using Empirical Mode Decomposition" Sensors 17, no. 5: 989. https://doi.org/10.3390/s17050989
APA StyleAmo, C., De Santiago, L., Barea, R., López-Dorado, A., & Boquete, L. (2017). Analysis of Gamma-Band Activity from Human EEG Using Empirical Mode Decomposition. Sensors, 17(5), 989. https://doi.org/10.3390/s17050989