A Capacitance-To-Digital Converter for MEMS Sensors for Smart Applications
Abstract
:1. Introduction
2. MEMS Topology
3. CDC with Self-Oscillated Noise-Shaping Integrating Dual Slope
3.1. Front-End Circuit
3.2. Self-Oscillated Noise-Shaping Integrating Dual-Slope ADC
3.3. Circuit Design
4. Measurements
- Oscilloscope: Tektronix DPO 5034 with BW = 350 MHz and 3 Gsamples/s.
- Clock generator: Tektronix AFG 310.2
- Power supply: Agilent E3631A Triple Output DC Power Supply.
- Pressure controller: Druck Pace 5000
- Bitstream Analyzer: GP_24132
- Temperature test chamber: Vötsch VT 7004.
5. Discussion and Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Langfelder, G.; Buffa, C.; Frangi, A.; Tocchio, A.; Lasalandra, E.; Longoni, A. Z-Axis Magnetometers for MEMS Inertial Measurement Units Using an Industrial Process. IEEE Trans. Ind. Electron. 2013, 60, 3983–3990. [Google Scholar] [CrossRef]
- Xia, S.; Makinwa, K.; Nihtianov, S. A capacitance-to-digital converter for displacement sensing with 17b resolution and 20μs conversion time. In Proceedings of the International Solid-State Circuits Conference Digest of Technical Papers, San Francisco, CA, USA, 19–23 February 2012; pp. 198–200. [Google Scholar]
- Oh, S.; Jung, W.; Yang, K.; Blaauw, D.; Sylvester, D. 15.4b incremental sigma-delta capacitance-to-digital converter with zoom-in 9b asynchronous SAR. In Proceedings of the Symposium on VLSI Circuits Digest of Technical Papers, Honolulu, HI, USA, 10–13 June 2014; pp. 1–2. [Google Scholar]
- Tan, Z.; Chae, Y.; Daamen, R.; Humbert, A.; Ponomarev, Y.V.; Pertijs, M.A.P. A 1.2V 8.3nJ energy-efficient CMOS humidity sensor for RFID applications. In Proceedings of the Symposium on VLSI Circuits Digest of Technical Papers, Honolulu, HI, USA, 13–15 June 2012; pp. 24–25. [Google Scholar]
- Jung, W.; Jeong, S.; Oh, S.; Sylvester, D.; Blaauw, D. 27.6 A 0.7pF-to-10nF fully digital capacitance-to-digital converter using iterative delay-chain discharge. In Proceedings of the International Solid-State Circuits Conference Digest of Technical Papers, San Francisco, CA, USA, 22–26 February 2015; pp. 1–3. [Google Scholar]
- Tan, Z.; Shalmany, S.H.; Meijer, G.C.M.; Pertijs, M.A.P. An Energy-Efficient 15-Bit Capacitive-Sensor Interface Based on Period Modulation. J. Solid-State Circuits 2012, 47, 1703–1711. [Google Scholar] [CrossRef]
- Sanjurjo, J.P.; Prefasi, E. A high-sensitivity reconfigurable integrating dual-slope CDC for MEMS capacitive sensors. In Proceedings of the 11th Conference on Ph.D. Research in Microelectronics and Electronics (PRIME), Glasgow, UK, 29 June–2 July 2015; pp. 149–152. [Google Scholar]
- Maghari, N.; Temes, G.C.; Moon, U. Noise-shaped integrating quantisers in ΔΣ modulators. Electron. Lett. 2009, 45, 612–613. [Google Scholar] [CrossRef]
- Hernández, L.; Prefasi, E. Multistage ADC based on integrating quantiser and gated ring oscillator. Electron. Lett. 2013, 49, 526–527. [Google Scholar] [CrossRef]
- Cannillo, F.; Prefasi, E.; Hernández, L.; Pun, E.; Yazicioglu, F.; van Hoof, C. 1.4V 13μW 83dB DR CT-ΣΔ modulator with Dual-Slope quantizer and PWM DAC for biopotential signal acquisition. In Proceedings of the European Solid-State Circuits Conference (ESSCIRC), Helsinki, Finland, 12–16 September 2011; pp. 267–270. [Google Scholar]
- Senturia, S.D. Microsystem Design; Kluwer Academic Publishcers: Dordrecht, The Netherlands, 2001. [Google Scholar]
- Enz, C.C.; Temes, G.C. Circuit techniques for reducing the effects of op-amp imperfections: Autozeroing, correlated double sampling, and chopper stabilization. Proc. IEEE 1996, 84, 1584–1614. [Google Scholar] [CrossRef]
- Oh, S.; Lee, Y.; Wang, J.; Foo, Z.; Kim, Y.; Jung, W.; Li, Z.; Blaauw, D.; Sylvester, D. A Dual-Slope Capacitance-to-Digital Converter Integrated in an Implantable Pressure-Sensing System. J. Solid-State Circuits 2015, 50, 1581–1591. [Google Scholar] [CrossRef]
- Circuit Techniques for Reducing the Effects of Op-Amp Imperfections: Autozeroing, Correlated Double Sampling, and Chopper Stabilization. Available online: http://www.analog.com/media/en/technical-documentation/data-sheets/AD7745_7746 (accessed on 2 March 2017).
- Gozzini, F.; Ferrari, G.; Sampietro, M. An instrument-on-chip for impedance measurements on nanobiosensors with attoFarad resoution. In Proceedings of the International Solid-State Circuits Conference Digest of Technical Papers, San Francisco, CA, USA, 8–12 February 2009; pp. 346–347. [Google Scholar]
- Amini, B.V.; Pourkamali, S.; Ayazi, F. A 2.5V 14-bit ΣΔ CMOS-SOI capacitive accelerometer. In Proceedings of the International Solid-State Circuits Conference Digest of Technical Papers, San Francisco, CA, USA, 15–19 February 2004; pp. 314–323. [Google Scholar]
- Tan, Z.; Daamen, R.; Humbert, A.; Souri, K.; Chae, Y.; Ponomarev, Y.V.; Pertijs, M.A.P. A 1.8V 11μW CMOS smart humidity sensor for RFID sensing applications. In Proceedings of the Asian Solid-State Circuits Conference Digest of Technical Papers, Jeju, Korea, 14–16 November 2011; pp. 105–108. [Google Scholar]
- Bracke, W.; Merken, P.; Puers, R.; van Hoof, C. Ultra-Low-Power Interface Chip for Autonomous Capacitive Sensor Systems. IEEE Tran. Circuits Syst. I Regul. Pap. 2007, 54, 130–140. [Google Scholar] [CrossRef]
- Shin, D.Y.; Lee, H.; Kim, S. A Delta–Sigma Interface Circuit for Capacitive Sensors with an Automatically Calibrated Zero Point. IEEE Trans. Circuits Syst. II Express Briefs 2011, 58, 90–94. [Google Scholar] [CrossRef]
- Sanyal, A.; Sun, N. A 55fJ/conv-step hybrid SAR-VCO ΔΣ capacitance-to-digital converter in 40nm CMOS. In Proceedings of the European Solid-State Circuits Conference (ESSCIRC), Lausanne, Switzerland, 12–15 September 2016; pp. 385–388. [Google Scholar]
- Ha, H.; Sylvester, D.; Blaauw, D.; Sim, J.Y. 12.6 A 160nW 63.9fJ/conversion-step capacitance-to-digital converter for ultra-low-power wireless sensor nodes. In Proceedings of the International Solid-State Circuits Conference Digest of Technical Papers, San Francisco, CA, USA, 9–13 February 2014; pp. 220–221. [Google Scholar]
- Jiang, H.; Wang, Z.; Liu, L.; Zhang, C.; Wang, Z. A combined low power SAR capacitance-to-digital/analog-to-digital converter for multisensory system. In Proceedings of the International Midwest Symposium on Circuits and Systems (MWSCAS), Boise, ID, USA, 5–8 August 2012; pp. 1000–1003. [Google Scholar]
- Xiao, Y.; Zhang, T.; Mak, P.I.; Law, M.K.; Martins, R.P. A 0.8 µW 8-bit 1.5~20-pF-input-range capacitance-to-digital converter for lab-on-chip digital microfluidics systems. In Proceedings of the Biomedical Circuits and Systems Conference (BioCAS), Hsinchu, China, 28–30 November 2012; pp. 384–387. [Google Scholar]
- Danneels, H.; Coddens, K.; Gielen, G. A fully-digital, 0.3V, 270 nW capacitive sensor interface without external references. In Proceedings of the European Solid-State Circuits Conference (ESSCIRC), Helsinki, Finland, 12–16 September 2011; pp. 287–290. [Google Scholar]
- Singh, T.; Saether, T.; Ytterdal, T. Current-Mode Capacitive Sensor Interface Circuit with Single-Ended to Differential Output Capability. IEEE Trans. Instrum. Meas. 2009, 58, 3914–3920. [Google Scholar] [CrossRef]
- Bruschi, P.; Nizza, N.; Piotto, M. A Current-Mode, Dual Slope, Integrated Capacitance-to-Pulse Duration Converter. IEEE J. Solid-State Circuits 2007, 42, 1884–1891. [Google Scholar] [CrossRef]
- Scotti, G.; Pennisi, S.; Monsurrò, P.; Trifiletti, A. 88-uA 1-MHz Stray-Insensitive CMOS Current-Mode Interface IC for Differential Capacitive Sensors. IEEE Trans. Circuits Syst. I Regul. Pap. 2014, 61, 1905–1916. [Google Scholar] [CrossRef]
Reference | Type | Measure Time (ms) | Power (µW) | Sensor Range (pF) | Resolution Cap. (aF) | SNRcap 1 (dB) | FoM 2 (pJ/conv) |
---|---|---|---|---|---|---|---|
[2] | ΔΣ | 0.020 | 15000 | 10 | 65 | 94.71 | 6.75 |
[3] | Inc. | 0.23 | 33.7 | 24 | 160 | 94.5 | 0.179 |
[4] | ΔΣ | 0.8 | 10 | 1 | 70 | 74 | 2 |
[5] | ΔΣ | 0.019 | 1.84 | 0.7 | 12,300 | 26.1 | 2.13 |
[6] | DS | 7.6 | 211 | 6.8 | 170 | 83 | 139 |
[13] | DS | 6.4 | 0.1 | 25.4 | 55,300 | 44.2 | 5.31 |
[14] | ΔΣ | 1090 | 3750 | 8 | 4.2 | 116.6 | 742 |
[15] | ΔΣ | 100 | 60000 | 4 | 1 | 123 | 5190 |
[16] | ΔΣ | 13.3 | 6000 | 0.16 | 4 | 83 | 6,900 |
[17] | ΔΣ | 10.2 | 10 | 2 | 80 | 78,9 | 14.9 |
[18] | ΔΣ | 100 | 7 | 0.4 | 1110 | 42.1 | 6730 |
[19] | Inc. | 0.001 | 1440 | 1 | 490 | 57.2 | 2.44 |
[20] | Inc. | 0.001 | 7.5 | 5 | 1100 | 64.1 | 0.006 |
[21] | SAR | 4 | 0.16 | 72.8 | 60 | 72.6 | 0.183 |
[22] | SAR | 0.005 | 6.7 | 3.2 | 470 | 67.6 | 0.017 |
[23] | SAR | 100 | 0.8 | 18.5 | 30,400 | 46.7 | 455 |
[24] | Digital | 1 | 0.27 | 0.3 | 1200 | 38.9 | 3.74 |
[25] | Current | 0.004 | 725 | 0.75 | 1130 | 47.4 | 13.2 |
[26] | DS | 0.02 | 15800 | 0.4 | 733 | 45.7 | 2010 |
[27] | Current | 0.002 | 220 | 1.8 | 800 | 58 | 0.67 |
This work | Int. DS | 20 | 220 | 1 | 5.4 | 96.3 | 82.2 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pérez Sanjurjo, J.; Prefasi, E.; Buffa, C.; Gaggl, R. A Capacitance-To-Digital Converter for MEMS Sensors for Smart Applications. Sensors 2017, 17, 1312. https://doi.org/10.3390/s17061312
Pérez Sanjurjo J, Prefasi E, Buffa C, Gaggl R. A Capacitance-To-Digital Converter for MEMS Sensors for Smart Applications. Sensors. 2017; 17(6):1312. https://doi.org/10.3390/s17061312
Chicago/Turabian StylePérez Sanjurjo, Javier, Enrique Prefasi, Cesare Buffa, and Richard Gaggl. 2017. "A Capacitance-To-Digital Converter for MEMS Sensors for Smart Applications" Sensors 17, no. 6: 1312. https://doi.org/10.3390/s17061312
APA StylePérez Sanjurjo, J., Prefasi, E., Buffa, C., & Gaggl, R. (2017). A Capacitance-To-Digital Converter for MEMS Sensors for Smart Applications. Sensors, 17(6), 1312. https://doi.org/10.3390/s17061312