Novel Concrete Temperature Monitoring Method Based on an Embedded Passive RFID Sensor Tag
Abstract
:1. Introduction
2. Principles of Intelligent Temperature Control
3. Analysis of Electromagnetic Wave Transmission in Concrete
4. Wireless Sensor Tag
4.1. Sensor Tag Architecture
4.2. Antenna Design
4.3. Temperature Sensor Design
4.4. Rectifier Design
5. Experimental Characterization
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Su, H.; Li, J.; Hu, J.; Wen, Z. Analysis and Back-Analysis for Temperature Field of Concrete Arch Dam During Construction Period Based on Temperature Data Measured by DTS. IEEE Sens. J. 2013, 13, 1403–1412. [Google Scholar] [CrossRef]
- Ruiz, J.M.; Schindler, A.K.; Rasmussen, R.O.; Nelson, P.K.; Chang, G.K. Concrete Temperature Modeling and Strength Prediction Using Maturity Concepts in the FHWA HIPERPAV Software. In Proceedings of the 7th International Conference on Concrete Pavements. The Use of Concrete in Developing Long-Lasting Pavement Solutions for the 21st Century, Orlando, FL, USA, 9–13 September 2001; pp. 97–111. [Google Scholar]
- Delatte, N.J.; Williamson, M.S.; Fowler, D.W. Bond strength development with maturity of high-early-strength bonded concrete overlays. ACI Mater. J. 2000, 97, 201–207. [Google Scholar]
- Topcu, I.B.; Toprak, M.U. Fine aggregate and curing temperature effect on concrete maturity. Cem. Concr. Res. 2005, 35, 758–762. [Google Scholar] [CrossRef]
- Rojas, M.F.; Cabrera, J. The effect of temperature on the hydration rate and stability of the hydration phases of metakaolin–lime–water systems. Cem. Concr. Res. 2002, 32, 133–138. [Google Scholar] [CrossRef]
- Lothenbach, B.; Matschei, T.; Möschner, G.; Glasser, F.P. Thermodynamic modelling of the effect of temperature on the hydration and porosity of Portland cement. Cem. Concr. Res. 2008, 38, 1–18. [Google Scholar] [CrossRef]
- Lothenbach, B.; Winnefeld, F.; Wieland, E.; Alder, C.; Lunk, P. Effect of temperature on the pore solution, microstructure and hydration products of Portland cement pastes. Cem. Concr. Res. 2007, 37, 483–491. [Google Scholar] [CrossRef]
- Hou, X.; Zheng, W. Experiment and Analysis on Temperature Distribution of Prestressed Concrete Beams and Slabs. In Proceedings of the 2011 International Conference on Consumer Electronics, Communications and Networks (CECNet), Xianning, China, 16–18 April 2011; pp. 3156–3159. [Google Scholar]
- Duan, Q. Research of a Cold End Temperature Compensation for Thermal Couple. In Proceedings of the 2009 IEEE International Conference on Automation and Logistics, Shenyang, China, 5–7 August 2009; pp. 921–924. [Google Scholar]
- Phan, L.T.; Lawson, J.R.; Davis, F.L. Effects of elevated temperature exposure on heating characteristics, spalling, and residual properties of high performance concrete. Mater. Struct. 2001, 34, 83–91. [Google Scholar] [CrossRef]
- Mokhtar, M.R.; Owens, K.; Kwasny, J. Fiber-Optic Strain Sensor System with Temperature Compensation for Arch Bridge Condition Monitoring. IEEE Sens. J. 2012, 12, 1470–1476. [Google Scholar] [CrossRef]
- Mcpolin, D.O.; Basheer, P.A.M.; Long, A.E. Development and Longer Term In Situ Evaluation of Fiber-Optic Sensors for Monitoring of Structural Concrete. IEEE Sens. J. 2009, 9, 1537–1545. [Google Scholar] [CrossRef]
- Alsayyari, A.; Kostanic, I.; Otero, C.E. An Empirical Path Loss Model for Wireless Sensor Network Deployment in a Concrete Surface Environment. In Proceedings of the 2015 IEEE 16th Annual Wireless and Microwave Technology Conference (WAMICON), Cocoa Beach, FL, USA, 13–15 April 2015. [Google Scholar]
- Cammarano, A.; Spenza, D.; Petrioli, C. Energy-harvesting WSNs for structural health monitoring of underground train tunnels. In Proceedings of the 2013 IEEE Conference on Computer Communications Workshops, Turin, Italy, 14–19 April 2013. [Google Scholar]
- Deng, F.; He, Y.; Li, B.; Zhang, L.; Xiang, W.; Fu, Z.H.; Lei, Z. Design of an Embedded CMOS Temperature Sensor for Passive RFID Tag Chips. Sensors 2015, 15, 11442–11453. [Google Scholar] [CrossRef] [PubMed]
- Deng, F.; He, Y.G.; Li, B.; Zuo, L.; Xiang, W.; Fu, Z.H. A CMOS Pressure Sensor Tag Chip for Passive Wireless Applications. Sensors 2015, 15, 6872–6884. [Google Scholar] [CrossRef] [PubMed]
- Xiang, W.; Deng, F.; Yong, H. Design of a Humidity Sensor Tag for Passive Wireless Applications. Sensors 2015, 15, 25564–25576. [Google Scholar]
- Zhou, S.; Deng, F.; Yu, L.; Li, B.; Wu, X.; Yin, B. A Novel Passive Wireless Sensor for Concrete Humidity Monitoring. Sensors 2016, 16, 1535. [Google Scholar] [CrossRef] [PubMed]
- Bouaziz, S.; Chebila, F.; Traille, A.; Pons, P.; Aubert, H.; Tentzeris, M.M. Novel microfluidic structures for wireless passive temperature telemetry medical systems using radar interrogation techniques in ka-band. IEEE Antennas Wirel. Propag. Lett. 2012, 11, 1706–1709. [Google Scholar] [CrossRef]
- Girbau, D.; Ángel, R.; Lazaro, A.; Rima, S. Passive wireless temperature sensor based on time-coded UWB chipless RFID tags. IEEE Trans. Microw. Theory Tech. 2012, 60, 3623–3632. [Google Scholar] [CrossRef]
- De Donno, D.; Catarinucci, L.; Tarricone, L. RAMSES: RFID augmented module for smart environmental sensing. IEEE Trans. Instrum. Meas. 2014, 63, 1701–1708. [Google Scholar] [CrossRef]
- De Donno, D.; Catarinucci, L.; Tarricone, L. A Battery-Assisted Sensor-Enhanced RFID Tag Enabling Heterogeneous Wireless Sensor Networks. IEEE Sens. J. 2014, 14, 1048–1055. [Google Scholar] [CrossRef]
- Reinisch, H.; Wiessflecker, M.; Gruber, S.; Unterassinger, H.; Hofer, G.; Klamminger, M.; Pribyl, W.; Holweg, G. A multifrequency passive sensing tag with on-chip temperature sensor and off-chip sensor interface using EPC HF and UHF RFID technology. IEEE J. Solid-State Circuits 2011, 46, 3075–3088. [Google Scholar] [CrossRef]
- Vaz, A.; Ubarretxena, A.; Zalbide, I.; Pardo, D.; Solar, H.; Garcia-Alonso, A.; Berenguer, R. Full passive UHF tag with a temperature sensor suitable for human body temperature monitoring. IEEE Trans. Circuits Syst. II Exp. Briefs 2010, 57, 95–99. [Google Scholar] [CrossRef]
- Yin, J.; Yi, J.; Law, M.K.; Ling, Y.; Lee, M.C.; Ng, K.P.; Gao, B.; Luong, H.C.; Bermak, A.; Chan, M.; et al. A system-on-chip EPC Gen-2 passive UHF RFID tag with embedded temperature sensor. IEEE J. Solid-State Circuits 2010, 45, 2404–2420. [Google Scholar]
- Chen, Z.; Deng, F.; Wu, X. A Passive RFID Sensor Tag for Intelligent Concrete Temperature Control. In Proceedings of the International Conference on Mechatronics, Materials, Chemistry and Computer Engineering, Shanghai, China, 16–18 August 2015; pp. 216–218. [Google Scholar]
- Soutsos, M.N.; Bungey, J.H.; Millard, S.G.; Shaw, M.R.; Patterson, A. Dielectric properties of concrete and their influence on radar testing. NDT E Int. 2001, 34, 419–425. [Google Scholar] [CrossRef]
- Klysz, G.; Balayssac, J.P.; Ferrières, X. Evaluation of dielectric properties of concrete by a numerical FDTD model of a GPR coupled antenna—parametric study. NDT E Int. 2008, 41, 621–631. [Google Scholar] [CrossRef]
- Jiang, S.; Georgakopoulos, S.V. Optimum Wireless Powering of Sensors Embedded in Concrete. IEEE Trans. Antennas Propag. 2009, 60, 1106–1113. [Google Scholar] [CrossRef]
- Wei, P.; Che, W.Y.; Bi, Z.Y.; Chen, W.; Yan, N.; Li, Q.; Min, H. High-efficiency Differential RF front-end for a Gen2 RFID Tag. IEEE Trans. Circuits Syst. II Exp. Briefs 2011, 58, 189–194. [Google Scholar] [CrossRef]
- Manzari, S.; Musa, T.; Randazzo, M.; Rinald, Z. A Passive Temperature Radio-Sensor for Concrete Maturation Monitoring. In Proceedings of the 2014 IEEE RFID Technology and Applications Conference, Tampere, Finland, 8–9 September 2014; pp. 121–126. [Google Scholar]
- Souri, K.; Chae, Y.; Makinwa, K.A.A. A CMOS temperature sensor with a voltage-calibrated inaccuracy of 0.15 C (3σ) from 55 °C to 125 °C. IEEE J. Solid State Circuits 2013, 48, 292–301. [Google Scholar] [CrossRef]
- Wang, B.; Law, M.K.; Bermak, A.; Luong, H.C. A passive RFID tag embedded temperature sensor with improved process spreads immunity for a −30 °C to 60 °C sensing range. IEEE Trans. Circuits Syst. I 2014, 61, 337–346. [Google Scholar] [CrossRef]
- Zhou, S.; Wu, N. A Novel Ultra-Low Power Temperature Sensor for UHF RFID Tag Chip. In Proceedings of the 2007 IEEE Asian Solid-State Circuits Conference (ASSCC), Jeju, Korea, 12–14 November 2007; pp. 464–467. [Google Scholar]
- Law, M.K.; Bermak, A.; Luong, H.C. A sub-µW embedded CMOS temperature sensor for RFID food monitoring application. IEEE J. Solid State Circuits 2010, 45, 1246–1255. [Google Scholar] [CrossRef]
- Law, M.K.; Bermak, A. A 405-nW CMOS temperature sensor based on linear MOS operation. IEEE Trans. Circuits Syst. II Exp. Briefs 2009, 56, 891–895. [Google Scholar] [CrossRef]
- Danneels, H.; Piette, F.; de Smedt, V.; Dehaene, W.; Gielen, G. A novel PLL-based frequency-to-digital conversion mechanism for sensor interfaces. Sens. Actuators A Phys. 2011, 172, 220–227. [Google Scholar] [CrossRef]
- Kamalinejad, P.; Keikhosravy, K.; Mirabbasi, S. A CMOS Rectifier with an Extended High-Efficiency Region of Operation. In Proceedings of the 2014 IEEE RFID Technology and Applications Conference (RFID-TA), Johor Bahru, Malaysia, 4–5 September 2013; pp. 1–6. [Google Scholar]
Methods | Convenience | Real-Time | Cost | Life Time | Accuracy |
---|---|---|---|---|---|
TTM | moderate | good | moderate | moderate | good |
FTD | disappointing | good | high | moderate | outstanding |
WSN | outstanding | outstanding | low | moderate | moderate |
This work | outstanding | outstanding | ultra-low | long | moderate |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Deng, F.; He, Y.; Li, B.; Liang, Z.; Zhou, S. Novel Concrete Temperature Monitoring Method Based on an Embedded Passive RFID Sensor Tag. Sensors 2017, 17, 1463. https://doi.org/10.3390/s17071463
Liu Y, Deng F, He Y, Li B, Liang Z, Zhou S. Novel Concrete Temperature Monitoring Method Based on an Embedded Passive RFID Sensor Tag. Sensors. 2017; 17(7):1463. https://doi.org/10.3390/s17071463
Chicago/Turabian StyleLiu, Yongsheng, Fangming Deng, Yigang He, Bing Li, Zhen Liang, and Shuangxi Zhou. 2017. "Novel Concrete Temperature Monitoring Method Based on an Embedded Passive RFID Sensor Tag" Sensors 17, no. 7: 1463. https://doi.org/10.3390/s17071463
APA StyleLiu, Y., Deng, F., He, Y., Li, B., Liang, Z., & Zhou, S. (2017). Novel Concrete Temperature Monitoring Method Based on an Embedded Passive RFID Sensor Tag. Sensors, 17(7), 1463. https://doi.org/10.3390/s17071463