Flavonoid and Antioxidant Capacity of Propolis Prediction Using Near Infrared Spectroscopy
Abstract
:1. Introduction
2. Materials and Methods
2.1.Samples
2.2. Chemical Methods
2.2.1. Flavones and Flavonols
2.2.2. Flavanones and Dihydroflavonols
2.2.3. Antioxidant Activity, Inhibiting Capacity of the ABTS Radical
2.2.4. Inhibiting Activity of the Linoleic Acid/β-Carotene Radical
2.3. NIR Spectroscopy
2.4. Chemometric Methods, NIR-Chemometric Methods
3. Results and Discussion
3.1. Chemical Analyses and Spectral Information
3.2. NIR Calibration Equations
3.3. Internal Validation (Prediction)
3.4. External Validation
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Farré, R.; Frasquet, I.; Sánchez, A. El propóleo y la salud. ARS Pharm. 2004, 45, 21–43. [Google Scholar]
- Dussart, E.; Bartholomé, Y. Elaboración de Subproductos de la Miel y las Colmenas; IICA: Managua, Nicaragua, 2007; pp. 1–51. [Google Scholar]
- Pineda, J.; Principal, J.; Barrios, C.; Milla, D.; Solano, Y.; Gil, E. Propiedad fungistática in vitro de propóleos sobre tres aislamientos de Colletotrichum gloeosporioides. Zootec. Trop. 2010, 28, 83–91. [Google Scholar]
- Alarcón, R. Estudio Químico de Propóleos. Ph.D. Thesis, Universidad Austral de Chile, Valdivia, Chile, 1989. [Google Scholar]
- Bankova, V. Recent trends and important developments in propolis research. Evid. Based Complement. Altern. Med. 2005, 2, 29–32. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Caravaca, A.M.; Gómez-Romero, M.; Arráez-Román, D.; Segura-Carretero, A.; Fernández-Gutiérrez, A. Advances in the analysis of phenolic compounds in products derived from bees. J. Pharm. Biomed. Anal. 2006, 41, 1220–1234. [Google Scholar] [CrossRef] [PubMed]
- Grange, J.M.; Davey, R.W. Antibacterial properties of propolis (bee glue). J. R. Soc. Med. 1990, 83, 159–160. [Google Scholar] [PubMed]
- Marcucci, M.C. Propolis: Chemical composition biological properties & therapeutic activity. Apidologie 1995, 26, 83–99. [Google Scholar]
- Kujumgiev, A.; Tsvetkova, I.; Serkedjieva, Y.; Bankova, V.; Christov, R.; Popov, S. Antibacterial, antifungal and antiviral activity of propolis from different geographic origin. J. Ethnopharm. 1999, 64, 235–240. [Google Scholar] [CrossRef]
- Sforcin, J.M.; Bankova, V. Propolis: Is there a potential for the development of new drugs? J. Ethnopharmacol. 2011, 133, 253–260. [Google Scholar] [CrossRef] [PubMed]
- Bonvehí, J.S.; Coll, F.V. Phenolic composition of propolis from China and from South-America. Z. Naturf. C 1994, 49, 712–718. [Google Scholar]
- Popova, M.; Bankova, V.; Butovska, D.; Petkov, V.; Nikolova, B. Validated methods for the quantification of biologically active constituents of poplar-type propolis. Phytochem. Anal. 2004, 15, 235–240. [Google Scholar] [CrossRef] [PubMed]
- Valencia, D.; Alday, E.; Robles, R.; Garibay, A.; Gálvez, J.; Salas, M.; Jiménez, M.; Velázquez, E.; Hernández, J.; Velázquez, C. Seasonal effect on chemical composition and biological activities of Sonoran propolis. Food Chem. 2012, 131, 645–651. [Google Scholar] [CrossRef]
- Nagy, M.; Grancai, D. Colorimetric determination of flavanones in propolis. Pharmazie 1996, 51, 100–101. [Google Scholar]
- Falcão, S.; Freire, C.; Vilas, M.A. Proposal for Physicochemical Standards and Antioxidant Activity of Portuguese Propolis. J. Am. Oil Chem. Soc. 2013, 90, 1729–1741. [Google Scholar] [CrossRef]
- García, M.; Medina, R.; Hidalgo, P.; Delgado, M.; Truffin, E.; Gómez, R. Actividad in vitro del Propóleos frente a Patógenos Bacterianos aislados de Infecciones Humanas. Lat. Am. J. Pharm. 2007, 26, 100–102. [Google Scholar]
- Hostettmann, K.; Wolfender, J.; Rodríguez, S. Rapid detection and subsequent isolation of bioactive constituents of crude plant extract. Planta Méd. 1997, 63, 2–4. [Google Scholar] [CrossRef] [PubMed]
- Popova, M.; Silic, S.; Kaftanoglu, O.; Bankova, V. Antibacterial activity of Turkish propolis and its qualitative and quantitative chemical composition. Phytomedicine 2005, 12, 221–228. [Google Scholar] [CrossRef] [PubMed]
- Ahn, M.; Kumazawa, S.; Usui, Y.; Nakamura, J.; Matsuka, M.B.; Zhu, F.C.; Nakayama, T. Antioxidant activity and constituents of propolis collected in various areas of China. Food Chem. 2007, 101, 1383–1392. [Google Scholar] [CrossRef]
- Gülçin, S.; Bursal, E.; Hilal, M.; Bilsel, M.; Goren, A. Polyphenol contents and antioxidant activity of lyophilized aqueous extract of propolis from Erzurum, Turkey. Food Chem. Toxicol. 2010, 4, 2227–2238. [Google Scholar] [CrossRef] [PubMed]
- Graça, M.; Nunes, S.; Anahi, S.; Cavaco, A.; Antunes, M. Phenols and antioxidant activity of hydro-alcoholic extracts of propolis from Algarve, South of Portugal. Food Chem. Toxicol. 2010, 4, 3418–3423. [Google Scholar]
- Debbache, N.; Atmani, D.; Atmani, D. Chemical analysis and biological activities of Populusnigra, flower buds extracts as source of propolis in Algeria. Ind. Crops Prod. 2014, 53, 85–92. [Google Scholar] [CrossRef]
- Kumazawa, S.; Hamasaka, T.; Nakayama, T. Antioxidant activity of propolis of various geographic origins. Food Chem. 2004, 84, 329–339. [Google Scholar] [CrossRef]
- Chaillou, L.; Nazareno, M. New method to determine antioxidant activity of polyphenols. J. Agric. Food Chem. 2006, 54, 8397–8402. [Google Scholar] [CrossRef] [PubMed]
- Chaillou, L.; Nazareno, M. Bioactivity of propolis from Santiago del Estero, Argentina, related to their chemical composition. LWT Food Sci. Technol. 2009, 42, 1422–1427. [Google Scholar] [CrossRef]
- Oldoni, T.L.; Cabral, I.; Regitano, M.; Rosalen, P.; Ikegaki, M.; Nascimento, A.; Alencar, S. Isolation and analysis of bioactive isoflavonoids and chalcone from a new type of Brazilian propolis. Sep. Purif. Technol. 2011, 77, 208–213. [Google Scholar] [CrossRef]
- Shimomura, K.; Inui, S.; Sugiyama, Y.; Kurosawa, M.; Nakamura, J.; Choi, S.J.; Ahn, M.R.; Kumazawa, S. Identification of the Plant Origin of Propolis from Jeju Island, Korea, by Observation of Honeybee Behavior and phytochemical Analysis. Biosci. Biotechnol. Biochem. 2012, 76, 2135–2138. [Google Scholar] [CrossRef] [PubMed]
- Delgado-Aceves, M.; Andrade-Ortega, J.A.; Ramírez-Barragán, C.A. Physical-chemical description of propolis collected in La Primavera forest, Zapopan, Jalisco state. Rev. Mex. Cienc. For. 2015, 6, 74–87. [Google Scholar]
- Nie, P.; Zhengyan, X.; Da, S.; He, Y. Application of visible and near infrared spectroscopy for rapid analysis of chrysin and galangin in Chinese propolis. Sensors 2013, 13, 10539–19549. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Yan, S.M.; Cai, C.B.; Yu, X.P. Untargeted detection and quantitative analysis of poplar balata (PB) in Chinese propolis by FT-NIR spectroscopy and chemometrics. Food Chem. 2013, 141, 4132–4137. [Google Scholar] [CrossRef] [PubMed]
- Hogendoorn, E.A.; Sommeijer, M.J.; Marjo, J.; Vredenbregt, M.J. Alternative method for measuring beeswax content in propolis from The Netherlands. J. Apic. Sci. 2013, 57, 81–90. [Google Scholar] [CrossRef]
- González-Martín, M.I.; Escuredo, O.; Revilla, I.; Vivar-Quintana, A.M.; Coello, M.C.; Riocerezo, C.P.; Moncada, G.W. Determination of the Mineral Composition and Toxic Element Contents of Propolis by Near Infrared Spectroscopy. Sensors 2015, 15, 27854–27868. [Google Scholar] [CrossRef] [PubMed]
- Venegas, Y.; Peña, C.; Pastene, E.; Contreras, D. A new near-infrared method for simultaneous determination of caffeic acid phenethyl ester and antioxidant activity of propolis samples. J. Apic. Res. 2015, 55, 8–18. [Google Scholar] [CrossRef]
- González Martín, M.I.; Revilla, I.; Vivar Quintana, A.M.; Betances Salcedo, E.V. Pesticide residues in propolis from Spain and Chile. An approach using near infrared spectroscopy. Talanta 2017, 165, 533–539. [Google Scholar]
- Popova, M.; Bankova, V.; Stefan, B.; Tsvetkova, I.; Naydenski, C.; Marcazzan, G.; Sabatini, A. Chemical characteristics of poplar type propolis of different geographic origin. Apidologie 2007, 38, 306–311. [Google Scholar] [CrossRef]
- Chen, E.H.; Pryce, B.A.; Tzeng, J.A.; González, G.A.; Olson, E.N. Control of myoblast fusion by a guanine nucleotide exchange factor, loner, and its effector ARF6. Cell 2003, 114, 751–762. [Google Scholar] [CrossRef]
- Emmons, C.; Peterson, D.; Paul, G. Antioxidant capacity of oat (Avena sativa L.) extracts. 1. In vitro antioxidant activity and content of phenolic and tocol antioxidants. J. Agric. Food Chem. 1999, 47, 4894–4898. [Google Scholar] [CrossRef] [PubMed]
- Martens, D.A. Nitrogen cycling under different soil management systems. Adv. Agron. 2001, 70, 143–192. [Google Scholar]
- Shenk, J.S.; Westhaus, M.O. Analysis of Agriculture and Food Products by Near Infrared Reflectance Spectroscopy; Monograph; Penn State University and Infrasoft: Port Matilda, PA, USA, 1993. [Google Scholar]
- Shenk, J.S.; Westerhaus, M.O. Routine Operation, Calibration, Development and Network System Management Manual; NIRSystems Inc.: Silver Spring, MD, USA, 1995. [Google Scholar]
- Davies, A.M.C.; Williams, P.H. Near Infrared Spectroscopy: The Future Waves; NIR Publications: Chichester, UK, 1996. [Google Scholar]
Chemical Data Obtained by Spectrophotometry | |||||||||
---|---|---|---|---|---|---|---|---|---|
Countries | Spain | Chile | |||||||
Regions/n° of Samples | Galicia/14 | Castilla y León/33 | Bio-Bio/52 | ||||||
Constituents | Min–Max | Mean | SD | Min–Max | Mean | SD | Min–Max | Mean | SD |
Total flavones + flavonols (mg quercetin/g propolis) | 28.2–149.6 | 61.5 | 36.3 | 19.9–190.3 | 88.5 | 38.9 | 0–161.1 | 57.3 | 35.6 |
Total flavones + flavonols (mg rutin/g propolis) | 10.4–58.7 | 25.8 | 13.7 | 10.1–74.3 | 35.9 | 14.6 | 0–63.3 | 24.1 | 13.6 |
Total flavanones + dihydroflavonols (mg pinocembrin/g propolisextract) | 31.8–73.9 | 49.4 | 9.6 | 31.7–81.6 | 56.7 | 15.3 | 27.0–149.7 | 75.8 | 34.3 |
ABTS (nmolTrolox/mg propolis) | 1552.1–2012.6 | 1777.1 | 195.1 | 1197.7–2649.3 | 1907.7 | 384.2 | 641.2–8215.4 | 3863.5 | 1911.2 |
Linoleic acid/β-carotene (% inhibition) | 72.7–83.3 | 78.0 | 3.7 | 21.6–82.2 | 56.5 | 21.1 | 54.7–88.1 | 70.0 | 7.1 |
Constituents | Mathematical Treatment | N | Min–Max | SEC | SECV | SD | R2 | RMSEP | Regression Line |
---|---|---|---|---|---|---|---|---|---|
Total flavones + flavonols (mg quercetin/g propolis) | Standard MSC 2,4,4,1 | 65 | 0–183.4 | 24.1 | 29.4 | 37.9 | 0.63 | 23.4 | CNIR = 1.00 CRef + 1.78 |
Total flavones + flavonols (mg rutin/g propolis) | Detrend only 0,0,1,1 | 65 | 0–72.0 | 9.5 | 11.8 | 14.4 | 0.62 | 8.9 | CNIR = 0.98 CRef + 2.33 |
Total flavanones + dihydroflavonols (mg pinocembrin/g propolis extract) | Standard MSC 2,4,4,1 | 62 | 9.89–109.4 | 10.2 | 13.4 | 16.6 | 0.68 | 9.5 | CNIR = 1 CRef + 0.00 |
ABTS (nmolTrolox/mg propolis) | Detrend only 2,10,10,1 | 63 | 0–3212.7 | 386. 1 | 449.3 | 707.7 | 0.87 | 119.6 | CNIR = 0.99 CRef + 44.03 |
Linoleic acid/β-carotene (% inhibition) | SNV only 1,4,4,1 | 66 | 22.7–86.8 | 72.3 | 139 | 15.0 | 0.65 | 9.41 | CNIR = 0.96 CRef + 1.9 |
Constituents | p (Level of Significance) | Residual Mean | RMSEP | R2 |
---|---|---|---|---|
Total (flavones + flavonols) (mg quercetin/g propolis) | 0.97 | 98.8 | 6.6 | 0.60 |
Total (flavones + flavonols) (mg rutin/g propolis) | 0.97 | 74.1 | 3.9 | 0.61 |
Total (flavanones + dihydroflavonols) (mg pinocembrin/g propolis extract) | 0.59 | 26.7 | 4.1 | 0.63 |
ABTS (nmolTrolox/mg propolis) | 0.41 | 45.2 | 68.5 | 0.86 |
Linoleic acid/β-carotene (% inhibition) | 1.00 | 20.4 | 3.8 | 0.64 |
Total (Flavones + Flavonols) (mg Quercetin/g Propolis | Total (Flavones + Flavonols) (mg Rutin/g Propolis) | Total (Flavanones + Dihydroflavonols) (mg Pinocembrin/g Propolis Extract) | ABTS (nmolTrolox/mg Propolis) | Linoleic acid/β-Carotene (% Inhibition) | |||||
---|---|---|---|---|---|---|---|---|---|
λ (nm) | β | λ (nm) | β | λ (nm) | β | λ (nm) | β | λ (nm) | β |
1282 | 956.2 | 1266 | 354.2 | 1156 | 63.6 | 1218 | 7754.0 | 1542 | 110,178.8 |
1304 | 919.5 | 1752 | 186.6 | 1454 | 65.8 | 1454 | 4155.6 | 1828 | 115,808.4 |
1750 | 835.6 | 1540 | −571.3 | 1594 | −210.2 | 1408 | −8605.2 | 1962 | 148,099.2 |
1540 | −2899.0 | 1848 | −516.7 | 1796 | −97.6 | 1796 | −8331.7 | 1512 | −158,593.2 |
1856 | −2290.6 | 1812 | 142,605.7 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Betances-Salcedo, E.; Revilla, I.; Vivar-Quintana, A.M.; González-Martín, M.I. Flavonoid and Antioxidant Capacity of Propolis Prediction Using Near Infrared Spectroscopy. Sensors 2017, 17, 1647. https://doi.org/10.3390/s17071647
Betances-Salcedo E, Revilla I, Vivar-Quintana AM, González-Martín MI. Flavonoid and Antioxidant Capacity of Propolis Prediction Using Near Infrared Spectroscopy. Sensors. 2017; 17(7):1647. https://doi.org/10.3390/s17071647
Chicago/Turabian StyleBetances-Salcedo, Eddy, Isabel Revilla, Ana M. Vivar-Quintana, and M. Inmaculada González-Martín. 2017. "Flavonoid and Antioxidant Capacity of Propolis Prediction Using Near Infrared Spectroscopy" Sensors 17, no. 7: 1647. https://doi.org/10.3390/s17071647
APA StyleBetances-Salcedo, E., Revilla, I., Vivar-Quintana, A. M., & González-Martín, M. I. (2017). Flavonoid and Antioxidant Capacity of Propolis Prediction Using Near Infrared Spectroscopy. Sensors, 17(7), 1647. https://doi.org/10.3390/s17071647