Unambiguous Imaging of Static Scenes and Moving Targets with the First Chinese Dual-Channel Spaceborne SAR Sensor
Abstract
:1. Introduction
2. Gaofen-3 DRC Mode and Signal Model
2.1. Gaofen-3 DRC Mode
2.2. Signal Model
m | index of receive channels, m = 1,2; |
, | range time and azimuth time, respectively; |
, | total random amplitude error and phase error of the m-th channel, respectively; |
, | range antenna pattern and azimuth antenna pattern, respectively; |
platform velocity; | |
d | distance between adjacent receive channels; |
azimuth center of m-th receive channel; | |
measurement error of azimuth center of the antenna; | |
along-track and radial velocity of the moving target, respectively; | |
wavelength of the radar signal; | |
point scattering coefficient at ; | |
complex scattering coefficient of the target; | |
synthetic aperture time; | |
, | pulse width and chirp rate of transmitted signal, respectively; and |
pulse repetition frequency (PRF). |
2.2.1. Signal Model of Static Scene
2.2.2. Signal Model of Moving Targets
3. Processing Overview
3.1. Channel Imbalance Estimation
3.2. Reconstruction Algorithm
3.2.1. Static Scene Reconstruction
3.2.2. Motion-Adapted HRWS Reconstruction
3.3. Radial Velocity Estimation
4. Experimental Results
4.1. Static Scene Imaging
4.2. Estimation and Imaging of Moving Targets
5. Discussion
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Currie, A.; Brown, M.A. Wide-swath SAR. Proc. Inst. Elect. Eng. F—Radar Signal Process. 1992, 139, 122–135. [Google Scholar] [CrossRef]
- Gebert, N.; Krieger, G.; Moreira, A. Digital beamforming on receive: Techniques and optimization strategies for high-resolution wideswath SAR imaging. IEEE Trans. Aerosp. Electron. Syst. 2009, 45, 564–592. [Google Scholar] [CrossRef]
- Gabele, M.; Bräutigam, B.D.; Schulze, S.U.; Steinbrecher, U.; Tous-Ramon, N.; Younis, M. Fore and Aft Channel Reconstruction in the TerraSAR-X Dual Receive Antenna Mode. IEEE Trans. Geosci. Remote Sens. 2010, 48, 795–806. [Google Scholar] [CrossRef] [Green Version]
- Okada, Y.; Nakamura, S.; Iribe, K.; Yokota, Y.; Tsuji, M.; Tsuchida, M.; Hariu, K.; Kankaku, Y.; Suzuki, S.; Osawa, Y. System design of wide swath, high resolution, full polarimetric L-band SAR onboard ALOS-2. In Proceedings of the 2013 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Melbourne, Australia, 21–26 July 2013; pp. 2408–2411. [Google Scholar]
- Feng, J.; Gao, C.; Zhang, Y.; Wang, R. Phase mismatch calibration of the multichannel SAR based on azimuth cross correlation. IEEE Geosci. Remote Sens. Lett. 2013, 10, 903–907. [Google Scholar] [CrossRef]
- Yang, T.; Li, Z.; Liu, Y.; Suo, Z.; Bao, Z. Channel Error Estimation Methods for Multichannel SAR Systems in Azimuth. IEEE Geosci. Remote Sens. Lett. 2013, 10, 548–552. [Google Scholar] [CrossRef]
- Jin, T.; Qiu, X.; Hu, D.; Ding, C. Estimation Accuracy and Cramer–Rao Lower Bounds for Errors in Multichannel HRWS SAR Systems. IEEE Geosci. Remote Sens. Lett. 2016, 13, 1772–1776. [Google Scholar] [CrossRef]
- Krieger, G.; Gebert, N.; Moreira, A. Unambiguous SAR Signal Reconstruction from Nonuniform Displaced Phase Center Sampling. IEEE Geosci. Remote Sens. Lett. 2004, 1, 260–264. [Google Scholar] [CrossRef]
- Kim, J.; Younis, M.; Prats, P.; Gabele, M.; Krieger, G. First Spaceborne Demonstration of Digital Beamforming for Azimuth Ambiguity Suppression. IEEE Trans. Geosci. Remote Sens. 2013, 51, 579–590. [Google Scholar] [CrossRef] [Green Version]
- Tan, W.; Xu, W.; Huang, P.; Huang, Z.; Qi, Y.; Han, K. Investigation of Azimuth Multichannel Reconstruction for Moving Targets in High Resolution Wide Swath SAR. Sensors 2017, 17, 1270. [Google Scholar] [CrossRef] [PubMed]
- Baumgartner, S.V.; Krieger, G. Experimental verification of high-resolution wide-swath moving target indication. In Proceedings of the 11th European Conference on Synthetic Aperture Radar (EUSAR), Hamburg, Germany, 6–9 June 2016; pp. 1265–1270. [Google Scholar]
- Shen, C. SAR Along-track Interferometry with Application to RADARSAT-2 Ground Moving Target Indication. Proc. SPIE-Int. Soc. Opt. Eng. 2003, 4885, 246–255. [Google Scholar]
- Suchandt, S.; Runge, H.; Steinbrecher, U. Ship detection and measurement using the TerraSAR-X dual-receive antenna mode. In Proceedings of the 2010 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Honolulu, HI, USA, 25–30 July 2010; pp. 2860–2863. [Google Scholar]
- Delphine, C.M.; Sikaneta, I. A Generalization of DPCA Processing for Multichannel SAR/GMTI Radars. IEEE Trans. Geosci. Remote Sens. 2013, 51, 560–572. [Google Scholar]
- Xu, J.; Huang, Z.; Yan, L.; Zhou, X.; Zhang, F.; Long, T. SAR Ground Moving Target Indication Based on Relative Residue of DPCA Processing. Sensors 2016, 16, 1676. [Google Scholar] [CrossRef] [PubMed]
- Erten, E. The Performance Analysis Based on SAR Sample Covariance Matrix. Sensors 2012, 12, 2766–2786. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.; Li, Z.; Suo, Z.; Bao, Z. Ground Moving Target Indication for High-Resolution Wide-Swath Synthetic Aperture Radar Systems. IET Radar Sonar Navig. 2014, 8, 227–232. [Google Scholar] [CrossRef]
- Zhang, S.; Xing, M.; Xia, X.; Guo, R.; Liu, Y.; Bao, Z. Robust Clutter Suppression and Moving Target Imaging Approach for Multichannel in Azimuth High-Resolution and Wide-Swath Synthetic Aperture Radar. IEEE Trans. Geosci. Remote Sens. 2015, 53, 687–709. [Google Scholar] [CrossRef]
- Yang, T.; Wang, Y.; Li, W. A Moving Target Imaging Algorithm for HRWS SAR/GMTI Systems. IEEE Trans. Aerosp. Electron. Syst. in press. [CrossRef]
- Jin, T.; Qiu, X.; Hu, D.; Ding, C. An ML-Based Radial Velocity Estimation Algorithm for Moving Targets in Spaceborne High-Resolution and Wide-Swath SAR Systems. Remote Sens. 2017, 9, 404. [Google Scholar] [CrossRef]
- Jin, T.; Qiu, X.; Hu, D.; Ding, C. Channel error estimation methods comparison under different conditions for multichannel HRWS SAR systems. J. Comput. Commun. 2016, 4, 88–94. [Google Scholar] [CrossRef]
Parameter | Symbol | Value |
---|---|---|
Wavelength | 0.05556 m | |
Look Angle | 28.81° | |
PRF | 1877.7 Hz | |
Doppler Bandwidth | 2470.53 Hz | |
Satellite Velocity | 7569.5 m/s | |
Sample Frequency | 133.33 MHz | |
Bandwidth | 80 MHz | |
Pulsewidth | 54.99 us |
Scenes | Estimated Amplitude Error | Estimated Phase Error with the OSM (°) | Estimated Phase Error with the Correlation Method (°) |
---|---|---|---|
Scene 1 | 1.1415 | 14.540 | 14.336 |
Scene 2 | 1.1250 | 14.657 | 14.483 |
Scene 3 | 1.1777 | 14.494 | 14.320 |
Scene 4 | 1.1661 | 15.249 | 15.092 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, T.; Qiu, X.; Hu, D.; Ding, C. Unambiguous Imaging of Static Scenes and Moving Targets with the First Chinese Dual-Channel Spaceborne SAR Sensor. Sensors 2017, 17, 1709. https://doi.org/10.3390/s17081709
Jin T, Qiu X, Hu D, Ding C. Unambiguous Imaging of Static Scenes and Moving Targets with the First Chinese Dual-Channel Spaceborne SAR Sensor. Sensors. 2017; 17(8):1709. https://doi.org/10.3390/s17081709
Chicago/Turabian StyleJin, Tingting, Xiaolan Qiu, Donghui Hu, and Chibiao Ding. 2017. "Unambiguous Imaging of Static Scenes and Moving Targets with the First Chinese Dual-Channel Spaceborne SAR Sensor" Sensors 17, no. 8: 1709. https://doi.org/10.3390/s17081709
APA StyleJin, T., Qiu, X., Hu, D., & Ding, C. (2017). Unambiguous Imaging of Static Scenes and Moving Targets with the First Chinese Dual-Channel Spaceborne SAR Sensor. Sensors, 17(8), 1709. https://doi.org/10.3390/s17081709