A Simple and Inexpensive Electrochemical Assay for the Identification of Nitrogen Containing Explosives in the Field
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Prototype Instrument Construction
2.3. Explosive Electrochemistry and Library Development
3. Results and Discussion
3.1. Prototype Instrument
3.2. Electrochemical Library
3.3. Sample Identification
3.4. Dry Surface Sampling
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Giannoukos, S.; Brkic, B.; Taylor, S.; Marshall, A.; Verbeck, G.F. Chemical sniffing instrumentation for security applications. Chem. Rev. 2016, 116, 8146–8172. [Google Scholar] [CrossRef] [PubMed]
- Moore, D.S. Instrumentation for trace detection of high explosives. Rev. Sci. Instrum. 2004, 75, 2499–2512. [Google Scholar] [CrossRef]
- Woodfin, R.L. Trace Chemical Sensing of Explosives; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2007. [Google Scholar]
- Caygill, J.S.; Davis, F.; Higson, S.P.J. Current trends in explosive detection techniques. Talanta 2012, 88, 14–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trammell, S.A.; Hernandez, S.C.; Myers-Ward, R.L.; Zabetakis, D.; Stenger, D.A.; Gaskill, D.K.; Walton, S.G. Plasma-modified, epitaxial fabricated graphene on sic for the electrochemical detection of tnt. Sensors 2016, 16, 1281. [Google Scholar] [CrossRef] [PubMed]
- Parveen; Kant, R. General theory for pulse voltammetric techniques on rough and finite fractal electrodes for reversible redox system with unequal diffusivities. Electrochim. Acta 2016, 194, 283–291. [Google Scholar] [CrossRef]
- Ryan, P.; Zabetakis, D.; Stenger, D.A.; Trammell, S.A. Integrating paper chromatography with electrochemical detection for the trace analysis of tnt in soil. Sensors 2015, 15, 17048–17056. [Google Scholar] [CrossRef] [PubMed]
- Mohan, A.M.V.; Brunetti, B.; Bulbarello, A.; Wang, J. Electrochemical signatures of multivitamin mixtures. Analyst 2015, 140, 7522–7526. [Google Scholar] [CrossRef] [PubMed]
- Trammell, S.A.; Zabetakis, D.; Moore, M.; Verbarg, J.; Stenger, D.A. Square wave voltammetry of tnt at gold electrodes modified with self-assembled monolayers containing aromatic structures. PLoS ONE 2014, 9, e115966. [Google Scholar] [CrossRef] [PubMed]
- Munir, A.; Shah, A.; Shah, A.H.; Rana, U.A.; Adhikari, B.; Khan, S.B.; Qureshi, R.; Kraatz, H.B. Detailed electrochemistry of the environmental toxin ethylene diamine. J. Electrochem. Soc. 2014, 161, H370–H374. [Google Scholar] [CrossRef]
- Uzer, A.; Saglam, S.; Tekdemir, Y.; Ustamehmetoglu, B.; Sezer, E.; Ercag, E.; Apak, R. Determination of nitroaromatic and nitramine type energetic materials in synthetic and real mixtures by cyclic voltammetry. Talanta 2013, 115, 768–778. [Google Scholar] [CrossRef] [PubMed]
- O’Mahony, A.M.; Wang, J. Nanomaterial-based electrochemical detection of explosives: A review of recent developments. Anal. Methods 2013, 5, 4296–4309. [Google Scholar] [CrossRef]
- Ceto, X.; O’Mahony, A.M.; Wang, J.; del Valle, M. Simultaneous identification and quantification of nitro-containing explosives by advanced chemometric data treatment of cyclic voltammetry at screen-printed electrodes. Talanta 2013, 107, 270–276. [Google Scholar] [CrossRef] [PubMed]
- Barry, S.; Dawson, K.; Correa, E.; Goodacre, R.; O’Riordan, A. Highly sensitive detection of nitroaromatic explosives at discrete nanowire arrays. Faraday Discuss. 2013, 164, 283–293. [Google Scholar] [CrossRef] [PubMed]
- Vuki, M.; Shiu, K.K.; Galik, M.; O’Mahony, A.M.; Wang, J. Simultaneous electrochemical measurement of metal and organic propellant constituents of gunshot residues. Analyst 2012, 137, 3265–3270. [Google Scholar] [CrossRef] [PubMed]
- Galik, M.; O’Mahony, A.M.; Wang, J. Cyclic and square-wave voltammetric signatures of nitro-containing explosives. Electroanalysis 2011, 23, 1193–1204. [Google Scholar] [CrossRef]
- Bandodkar, A.J.; O’Mahony, A.M.; Ramirez, J.; Samek, I.A.; Anderson, S.M.; Windmiller, J.R.; Wang, J. Solid-state forensic finger sensor for integrated sampling and detection of gunshot residue and explosives: Towards ‘lab-on-a-finger’. Analyst 2013, 138, 5288–5295. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.A.; Lee, J.; Lewis, S.W.; Silvester, D.S. Detection of 2,4,6-trinitrotoluene using a miniaturized, disposable electrochemical sensor with an ionic liquid gel-polymer electrolyte film. Anal. Chem. 2017, 89, 4729–4736. [Google Scholar] [CrossRef] [PubMed]
- Ceto, X.; O’Mahony, A.M.; Samek, I.A.; Windmiller, J.R.; del Valle, M.; Wang, J. Rapid field identification of subjects involved in firearm-related crimes based on electroanalysis coupled with advanced chemometric data treatment. Anal. Chem. 2012, 84, 10306–10314. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Calabuig, A.; Ceto, X.; Del Valle, M. Electronic tongue for nitro and peroxide explosive sensing. Talanta 2016, 153, 340–346. [Google Scholar] [CrossRef] [PubMed]
- Steinberg, M.D.; Lowe, C.R. A micropower amperometric potentiostat. Sens. Actuators B: Chem. 2004, 97, 284–289. [Google Scholar] [CrossRef]
- Cruz, A.F.; Norena, N.; Kaushik, A.; Bhansali, S. A low-cost miniaturized potentiostat for point-of-care diagnosis. Biosens. Bioelectron. 2014, 62, 249–254. [Google Scholar] [CrossRef] [PubMed]
- Friedman, E.S.; Rosenbaum, M.A.; Lee, A.W.; Lipson, D.A.; Land, B.R.; Angenent, L.T. A cost-effective and field-ready potentiostat that poises subsurface electrodes to monitor bacterial respiration. Biosens. Bioelectron. 2012, 32, 309–313. [Google Scholar] [CrossRef] [PubMed]
- Beach, R.D.; Conlan, R.W.; Godwin, M.C.; Moussy, F. Towards a miniature implantable in vivo telemetry monitoring system dynamically configurable as a potentiostat or galvanostat for two- and three-electrode biosensors. IEEE Trans. Instrum. Meas. 2005, 54, 61–72. [Google Scholar] [CrossRef]
- Stanacevic, M.; Murari, K.; Rege, A.; Cauwenberghs, G.; Thakor, N.V. Vlsi potentiostat array with oversampling gain modulation for wide-range neurotransmitter sensing. IEEE Trans. Biomed. Circuits Syst. 2007, 1, 63–72. [Google Scholar] [CrossRef] [PubMed]
- Rowe, A.A.; Bonham, A.J.; White, R.J.; Zimmer, M.P.; Yadgar, R.J.; Hobza, T.M.; Honea, J.W.; Ben-Yaacov, I.; Plaxco, K.W. CheapStat: An open-source, “do-it-yourself” potentiostat for analytical and educational applications. PLoS ONE 2011, 6, e23783. [Google Scholar] [CrossRef] [PubMed]
- Bard, A.J.; Faulkner, L.R. Electrochemical Methods: Fundamentals and Applications, 2nd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2001. [Google Scholar]
- Billo, E.J. Excel for Chemists A Comprehensive Guide, 3rd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2011; p. 732. [Google Scholar]
- Lowry, S.R. Automated spectral searching in infrared, raman and near-infrared spectroscopy. In Handbook of Vibrational Spectroscopy; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2006. [Google Scholar]
Explosive | Epc, (V) vs. Ag/AgCl | Epa, (V) vs. Ag/AgCl | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Peak 1 | Peak 2 | Peak 3 | Peak 4 | Peak 1 | Peak 2 | Peak 3 | Peak 4 | Peak 5 | Peak 6 | |
TNT | −0.59 | −0.78 | −0.95 | - | −0.90 2 | −0.75 2 | −0.58 2 | 0.004 | 0.09 3 | 0.65 2 |
TNB | −0.55 | −0.73 | −0.90 | −1.34 2 | −0.90 2 | −0.73 2 | −0.55 2 | 0.04 | 0.11 3 | 0.70 2 |
Teryl | −0.41 | −0.59 | −0.77 | −1.1 | −0.71 2 | −0.58 2 | −0.40 2 | −0.15 | 0.031 | 0.78 |
2,6 DNT | −0.76 | −0.94 | - | - | −0.9 2 | −0.75 2 | 0.00 | - | - | - |
2,4-DNT | −0.72 | −0.91 | - | - | −0.85 2 | −0.70 2 | −0.01 | - | - | - |
1,3-DNB | −0.69 | −0.87 | - | - | −0.78 2 | −0.65 2 | 0.04 4 | - | - | - |
4-am | −0.78 3 | −0.83 | −0.92 | - | −0.88 2 | −0.75 2 | −0.076 | 0.02 | 0.51 2 | 0.94 |
2-am | −0.73 | −0.80 | −0.94 | - | −0.88 2 | −0.73 2 | −0.18 2,3 | 0.0 3 | 0.52 2 | 0.95 |
2-NT | −0.92 | - | - | - | −0.02 | 0.60 2 | - | - | - | - |
3-NT | −0.84 | - | - | - | −0.03 | 0.60 2 | - | - | - | - |
RDX | −1.14 | - | - | - | 0.80 | - | - | - | - | - |
NG | −1.12 4 | - | - | - | 0.78 | - | - | - | - | - |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Erickson, J.S.; Shriver-Lake, L.C.; Zabetakis, D.; Stenger, D.A.; Trammell, S.A. A Simple and Inexpensive Electrochemical Assay for the Identification of Nitrogen Containing Explosives in the Field. Sensors 2017, 17, 1769. https://doi.org/10.3390/s17081769
Erickson JS, Shriver-Lake LC, Zabetakis D, Stenger DA, Trammell SA. A Simple and Inexpensive Electrochemical Assay for the Identification of Nitrogen Containing Explosives in the Field. Sensors. 2017; 17(8):1769. https://doi.org/10.3390/s17081769
Chicago/Turabian StyleErickson, Jeffrey S., Lisa C. Shriver-Lake, Daniel Zabetakis, David A. Stenger, and Scott A. Trammell. 2017. "A Simple and Inexpensive Electrochemical Assay for the Identification of Nitrogen Containing Explosives in the Field" Sensors 17, no. 8: 1769. https://doi.org/10.3390/s17081769
APA StyleErickson, J. S., Shriver-Lake, L. C., Zabetakis, D., Stenger, D. A., & Trammell, S. A. (2017). A Simple and Inexpensive Electrochemical Assay for the Identification of Nitrogen Containing Explosives in the Field. Sensors, 17(8), 1769. https://doi.org/10.3390/s17081769