III–V-on-Silicon Photonic Integrated Circuits for Spectroscopic Sensing in the 2–4 μm Wavelength Range
Abstract
:1. Introduction
2. Mid-Infrared Silicon Photonic Integrated Circuits
3. III–V-on-Silicon Platform for the 2 μm Wavelength Range
3.1. Heterogeneously Integrated 2.3 μm Range Distributed Feedback Lasers and Laser Arrays
3.2. III–V-on-Silicon Photodetectors in the 2 μm Wavelength Range
4. GaSb/Silicon Hybrid External Cavity Laser
5. Mid-Infrared AWG Spectrometers in the 2–4 μm Wavelength Range
6. On-Chip Mid-Infrared Photothermal Spectroscopy
7. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Vivien, L.; Pavesi, L. (Eds.) Handbook of Silicon Photonics; Taylor & Francis: Didcot, UK; Abingdon, UK, 2013. [Google Scholar]
- Miller, D.A.B. Device requirements for optical interconnects to silicon chips. IEEE Proc. 2009, 97, 1166–1185. [Google Scholar] [CrossRef]
- Robinson, J.T.; Chen, L.; Lipson, M. On-chip gas detection in silicon optical microcavities. Opt. Express 2008, 16, 4296–4301. [Google Scholar] [CrossRef] [PubMed]
- Stievater, T.H.; Pruessner, M.W.; Park, D.; McGill, R.R.A.; Kozak, D.A.; Furstenberg, R.; Holmstrom, S.A.; Khurgin, J.B. Trace gas absorption spectroscopy using functionalized microring resonators. Opt. Lett. 2014, 39, 969–972. [Google Scholar] [CrossRef] [PubMed]
- Yebo, N.A.; Sree, S.P.; Levrau, E.; Detavernier, C.; Hens, Z.; Martens, J.A.; Baets, R. Selective and reversible ammonia gas detection with nanoporous film functionalized silicon photonic micro-ring resonator. Opt. Express 2012, 20, 11855–11862. [Google Scholar] [CrossRef] [PubMed]
- Kindt, J.T.; Luchansky, M.S.; Qavi, A.J.; Lee, S.H.; Bailey, R.C. Subpicogram per milliliter detection of interleukins using silicon photonic microring resonators and an enzymatic signal enhancement strategy. Anal. Chem. 2013, 85, 10653–10657. [Google Scholar] [CrossRef] [PubMed]
- Lai, W.; Chakravarty, S.; Zou, Y.; Chen, R.T. Silicon nano-membrane based photonic crystal microcavities for high sensitivity bio-sensing. Opt. Lett. 2012, 37, 1208–1210. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Segers, P.; Dirckx, J.; Baets, R. On-chip laser Doppler vibrometer for arterial pulse wave velocity measurement. Biomed. Opt. Express 2013, 4, 1229–1235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ryckeboer, E.; Bockstaele, R.; Vanslembrouck, M.; Baets, R. Glucose sensing by waveguide-based absorption spectroscopy on a silicon chip. Biomed. Opt. Express 2014, 5, 1636–1648. [Google Scholar] [CrossRef] [PubMed]
- Zhang, E.J.; Tombez, L.; Orcutt, J.; Kamlapurkar, S.; Wysocki, G.; Green, W.M. Silicon Photonic On-chip Trace-gas Spectroscopy of Methane. In Proceedings of the 2016 Conference on Lasers and Electro-Optics (CLEO), San Jose, CA, USA, 5–10 June 2016; p. SF2H.1. [Google Scholar]
- Rothman, L.; Gordon, I.; Babikov, Y.; Barbe, A.; Benner, D.C.; Bernath, P.; Birk, M.; Bizzocchi, L.; Boudon, V.; Brown, L.; et al. The HITRAN 2012 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 2013, 130, 4–50. [Google Scholar] [CrossRef] [Green Version]
- Geiser, P. New Opportunities in Mid-Infrared Emission Control. Sensors 2015, 15, 22724–22736. [Google Scholar] [CrossRef] [PubMed]
- Hodgkinson, J.; Tatam, R.P. Optical gas sensing: A review. Meas. Sci. Technol. 2013, 24. [Google Scholar] [CrossRef]
- Petrich, W. Mid-infrared and Raman spectroscopy for medical diagnostics. Appl. Spectrosc. Rev. 2001, 36, 181–237. [Google Scholar] [CrossRef]
- Mizaikoff, B. Waveguide-enhanced mid-infrared chem/bio sensors. Chem. Soc. Rev. 2013, 42, 8683–8699. [Google Scholar] [CrossRef] [PubMed]
- Singh, V.; Lin, P.T.; Patel, N.; Lin, H.; Li, L.; Zou, Y.; Deng, F.; Ni, C.; Hu, J.; Giammarco, J.; et al. Mid-infrared materials and devices on a Si platform for optical sensing. Sci. Technol. Adv. Mater. 2014, 15. [Google Scholar] [CrossRef] [PubMed]
- Mashanovich, G.Z.; Gardes, F.Y.; Thomson, D.J.; Hu, Y.; Li, K.; Nedeljkovic, M.; Soler Penades, J.; Khokhar, A.Z.; Mitchell, C.J.; Stankovic, S.; et al. Silicon photonic waveguides and devices for near- and mid-IR applications. IEEE J. Sel. Top. Quantum Electron. 2015, 21. [Google Scholar] [CrossRef] [Green Version]
- Hu, J. Ultra-sensitive chemical vapor detection using micro-cavity photothermal spectroscopy. Opt. Express 2010, 18, 22174–22186. [Google Scholar] [CrossRef] [PubMed]
- Gaiduk, A.; Yorulmaz, M.; Ruijgrok, P.V.; Orrit, M. Room-temperature detection of a single molecule’s absorption by photothermal contrast. Science 2010, 330, 353–356. [Google Scholar] [CrossRef] [PubMed]
- Stievater, T.H.; Papanicolaou, N.A.; Bass, R.; Rabinovich, W.S.; McGill, R.A. Micromechanical photothermal spectroscopy of trace gases using functionalized polymers. Opt. Lett. 2012, 37, 2328–2330. [Google Scholar] [CrossRef] [PubMed]
- Jin, W.; Cao, Y.; Yang, F.; Ho, H.L. Ultra-sensitive all-fibre photothermal spectroscopy with large dynamic range. Nat. Commun. 2015, 6. [Google Scholar] [CrossRef] [PubMed]
- Vermeulen, P.; Cognet, L.; Lounis, B. Photothermal microscopy: Optical detection of small absorbers in scattering environments. J. Microsc. 2014, 254, 115–121. [Google Scholar] [CrossRef] [PubMed]
- Heylman, K.D.; Knapper, K.A.; Goldsmith, R.H. Photothermal microscopy of nonluminescent single particles enabled by optical microresonators. J. Phys. Chem. Lett. 2014, 5, 1917–1923. [Google Scholar] [CrossRef] [PubMed]
- Patimisco, P.; Scamarcio, G.; Tittel, F.K.; Spagnolo, V. Quartz-enhanced photoacoustic spectroscopy: A review. Sensors 2014, 14, 6165–6206. [Google Scholar] [CrossRef] [PubMed]
- Spagnolo, V.; Patimisco, P.; Borri, S.; Scamarcio, G.; Bernacki, B.E.; Kriesel, J. Part-per-trillion level SF6 detection using a quartz enhanced photoacoustic spectroscopy-based sensor with single-mode fiber-coupled quantum cascade laser excitation. Opt. Lett. 2012, 37, 4461–4463. [Google Scholar] [CrossRef] [PubMed]
- Lim, A.E.-J.; Song, J.; Fang, Q.; Li, C.; Tu, C.; Duan, N.; Chen, K.K.; Tern, R.P.-C.; Liow, T.-Y. Review of silicon photonics foundry effects. IEEE J. Sel. Top. Quantum Electron. 2014, 20. [Google Scholar] [CrossRef]
- Soref, R. Mid-infrared photonics in silicon and germanium. Nat. Photonics 2010, 4, 495–497. [Google Scholar] [CrossRef]
- Xia, Y.; Qiu, C.Y.; Zhang, X.Z.; Gao, W.L.; Shu, J.; Xu, Q.F. Suspended Si Ring Resonator for Mid-IR Application. Opt. Lett. 2013, 38, 1122–1124. [Google Scholar] [CrossRef] [PubMed]
- Lin, P.T.; Singh, V.; Cai, Y.; Kimerling, L.C.; Agarwal, A. Air-clad silicon pedestal structures for broadband mid-infrared microphotonics. Opt. Lett. 2013, 7, 1031–1033. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Cheng, Z.; Xu, K.; Tsang, H.K.; Xu, J.B. High-responsivity graphene/silicon-heterostructure waveguide photodetectors. Nat. Photonics 2013, 7, 888–891. [Google Scholar] [CrossRef]
- Miller, S.; Griffith, A.; Yu, M.; Gaeta, A.; Lipson, M. Low-Loss Air-Clad Suspended Silicon Platform for Mid-Infrared Photonics. In Proceedings of the 2016 Conference on Lasers and Electro-Optics (CLEO), San Jose, CA, USA, 5–10 June 2016; p. STu3Q.6. [Google Scholar]
- Penades, J.S.; Ortega-Moñux, A.; Nedeljkovic, M.; Wangüemert-Pérez, J.G.; Halir, R.; Khokhar, A.Z.; Alonso-Ramos, C.; Qu, Z.; Molina-Fernández, I.; Cheben, P.; et al. Suspended silicon mid-infrared waveguide devices with subwavelength grating metamaterial cladding. Opt. Express 2016, 24, 22908–22916. [Google Scholar] [CrossRef] [PubMed]
- Miller, S.; Yu, M.; Ji, X.; Griffith, A.; Cardenas, J.; Gaeta, A.; Lipson, M. Low-loss silicon platform for broadband mid-infrared photonics. Optica 2017, 7, 707–712. [Google Scholar] [CrossRef]
- Lin, P.T.; Kwok, S.W.; Lin, H.-Y.G.; Singh, V.; Kimerling, L.C.; Whitesides, G.M.; Agarwal, A. Mid-Infrared Spectrometer Using Opto-Nanofluidic Slot-Waveguide for Label-Free On-Chip Chemical Sensing. Nano Lett. 2014, 14, 231–238. [Google Scholar] [CrossRef] [PubMed]
- Scullion, M.G.; Krauss, T.F.; di Falco, A. Slotted photonic crystal sensors. Sensors 2013, 13, 3675–3710. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, Z.; Lin, P.; Singh, V.; Kimerling, L.; Hu, J.; Richardson, K.; Agarwal, A.; Tan, D.T.H. On-chip mid-infrared gas detection using chalcogenide glass waveguide. Appl. Phys. Lett. 2016, 108. [Google Scholar] [CrossRef]
- Chen, Y.; Lin, H.; Hu, J.; Li, M. Heterogeneously Integrated Silicon Photonics for the Mid-Infrared and Spectroscopic Sensing. ACS Nano 2014, 8, 6955–6961. [Google Scholar] [CrossRef] [PubMed]
- Hattasan, N.; Kuyken, B.; Leo, F.; Ryckeboer, E.; Vermeulen, D.; Roelkens, G. High-Efficiency SOI Fiber-to-Chip Grating Couplers and Low-Loss Waveguides for the Short-Wave Infrared. IEEE Photonics Technol. Lett. 2012, 24, 1536–1538. [Google Scholar] [CrossRef] [Green Version]
- Nedeljkovic, M.; Khokhar, A.Z.; Hu, Y.; Chen, X.; Penades, J.S.; Stankovic, S.; Chong, H.M.H.; Thomson, D.J.; Gardes, F.Y.; Reed, G.T.; et al. Silicon photonic devices and platforms for the mid-infrared. Opt. Mater. Express 2013, 3, 1205–1214. [Google Scholar] [CrossRef]
- Chen, S.; Li, W.; Wu, J.; Jiang, Q.; Tang, M.; Shutts, S.; Elliott, S.N.; Sobiesierski, A.; Seeds, A.J.; Ross, I.; et al. Electrically Pumped Continuous-Wave III–V Quantum Dot Lasers on Silicon. Nat. Photonics 2016, 10, 307–311. [Google Scholar] [CrossRef]
- Wang, Z.; Tian, B.; Pantouvaki, M.; Guo, W.; Absil, P.; Van Campenhout, J.; Merckling, C.; Van Thourhout, D. Room-Temperature InP Distributed Feedback Laser Array Directly Grown on Silicon. Nat. Photonics 2015, 9, 837–842. [Google Scholar] [CrossRef]
- Lischke, S.; Knoll, D.; Mai, C.; Zimmermann, L.; Peczek, A.; Kroh, M.; Trusch, A.; Krune, E.; Voigt, K.; Mai, A. High bandwidth, high responsivity waveguide-coupled germanium p-i-n photodiode. Opt. Express 2015, 23, 27213–27220. [Google Scholar] [CrossRef] [PubMed]
- Roelkens, G.; Abassi, A.; Cardile, P.; Dave, U.; De Groote, A.; De Koninck, Y.; Fu, X.; Gassenq, A.; Hattasan, N.; Huang, Q.; et al. III–V-on-Silicon Photonic Devices for Optical Communication and Sensing. Photonics 2015, 2, 969–1004. [Google Scholar] [CrossRef] [Green Version]
- Komljenovic, T.; Davenport, M.; Hulme, J.; Liu, A.Y.; Santis, C.T.; Spott, A.; Srinivasan, S.; Stanton, E.J.; Zhang, C.; Bowers, J.E. Heterogeneous Silicon Photonic Integrated Circuits. J. Lightwave Technol. 2016, 34, 20–35. [Google Scholar] [CrossRef]
- Ohashi, K.; Nishi, K.; Shimizu, T.; Nakada, M.; Fujikata, J.; Ushida, J.; Torii, S.; Nose, K.; Mizuno, M.; Yukawa, H.; et al. On-chip optical interconnect. Proc. IEEE 2009, 97, 1186–1198. [Google Scholar] [CrossRef]
- Yao, Y.; Hoffman, A.J.; Gmachl, C.F. Mid-Infrared Quantum Cascade Lasers. Nat. Photonics 2012, 6, 432–439. [Google Scholar] [CrossRef]
- Vurgaftman, I.; Weih, R.; Kamp, M.; Meyer, J.R.; Canedy, C.L.; Kim, C.S.; Kim, M.; Bewley, W.W.; Merritt, C.D.; Abell, J.; et al. Interband cascade lasers. J. Phys. D Appl. Phys. 2015, 48, 123001. [Google Scholar] [CrossRef]
- Ye, N.; Gleeson, M.R.; Sadiq, M.U.; Roycroft, B.; Robert, C.; Yang, H.; Zhang, H.; Morrissey, P.E.; Mac Suibhne, N.; Thomas, K.; et al. InP-based active and passive components for communication systems at 2 μm. J. Lightwave Technol. 2015, 33, 971–975. [Google Scholar] [CrossRef]
- Sprengel, S.; Grasse, C.; Wiecha, P.; Andrejew, A.; Gruendl, T.; Boehm, G.; Meyer, R.; Amann, M.-C. InP-Based Type-II Quantum-Well Lasers and LEDs. IEEE J. Sel. Top. Quantum Electron. 2013, 19. [Google Scholar] [CrossRef]
- Gaimard, Q.; Triki, M.; Nguyen-Ba, T.; Cerutti, L.; Boissier, G.; Teissier, R.; Baranov, A.; Rouillard, Y.; Vicet, A. Distributed feedback GaSb based laser diodes with buried grating: A new field of single-frequency sources from 2 to 3 μm for gas sensing applications. Opt. Express 2015, 23, 19118–19128. [Google Scholar] [CrossRef] [PubMed]
- Spott, A.; Peters, J.; Davenport, M.L.; Stanton, E.J.; Merritt, C.D.; Bewley, W.W.; Vurgaftman, I.; Kim, C.S.; Meyer, J.R.; Kirch, J.; et al. Quantum cascade laser on silicon. Optica 2016, 3, 545–551. [Google Scholar] [CrossRef]
- Spott, A.; Davenport, M.L.; Peters, J.; Bovington, J.; Heck, M.J.R.; Stanton, E.J.; Vurgaftman, I.; Meyer, J.R.; Bowers, J. Heterogeneously integrated 2.0 μm CW hybrid silicon lasers at room temperature. Opt. Lett. 2015, 40, 1480–1483. [Google Scholar] [CrossRef] [PubMed]
- Volet, N.; Spott, A.; Stanton, E.J.; Davenport, M.L.; Chang, L.; Peters, J.D.; Briles, T.C.; Vurgaftman, I.; Meyer, J.R.; Bowers, J. Semiconductor optical amplifiers at 2.0-μm wavelength on silicon. Laser Photonics Rev. 2017, 11. [Google Scholar] [CrossRef]
- Boehm, G.; Grau, M.; Dier, O.; Windhorn, K.; Roenneberg, E.; Rosskopf, J.; Shau, R.; Meyer, R.; Ortsiefer, M.; Amann, M.C. Growth of InAs-containing quantum wells for InP-based VCSELs emitting at 2.3 μm. J. Cryst. Growth 2007, 301, 941–944. [Google Scholar] [CrossRef]
- Sprengel, S.; Veerabathran, G.; Andrejew, A.; Köninger, A.; Boehm, G.; Grasse, C.; Amann, M.C. InP-based type-II heterostructure lasers for wavelengths up to 2.7 μm. Proceedings of SPIE Photonics West, Novel In-Plane Semiconductor Lasers XIV (SPIE, 2015), San Francisco, CA, USA, 7–12 February 2015; p. 93820U. [Google Scholar]
- Grasse, C.; Wiecha, P.; Gruendl, T.; Sprengel, S.; Meyer, R.; Amann, M.C. InP-based 2.8–3.5 μm resonant-cavity light emitting diodes based on type-II transitions in GaInAs/GaAsSb heterostructures. Appl. Phys. Lett. 2012, 101. [Google Scholar] [CrossRef]
- Wang, R.; Sprengel, S.; Muneeb, M.; Boehm, G.; Baets, R.; Amann, M.C.; Roelkens, G. 2 μm wavelength range InP-based type-II quantum well photodiodes heterogeneously integrated on silicon photonic integrated circuits. Opt. Express 2015, 23, 26834–26841. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, R.; Sprengel, S.; Boehm, G.; Muneeb, M.; Baets, R.; Amann, M.C.; Roelkens, G. 2.3 μm range InP-based type-II quantum well Fabry-Perot lasers heterogeneously integrated on a silicon photonic integrated circuit. Opt. Express 2016, 24, 21081–21089. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Sprengel, S.; Malik, A.; Vasiliev, A.; Boehm, G.; Baets, R.; Amann, M.C.; Roelkens, G. Heterogeneously integrated III–V-on-silicon 2.3× μm distributed feedback lasers based on a type-II active region. Appl. Phys. Lett. 2016, 109. [Google Scholar] [CrossRef]
- Zeller, W.; Naehle, L.; Fuchs, P.; Gerschuetz, F.; Hildebrandt, L.; Koeth, J. DFB Lasers between 760 nm and 16 μm for Sensing Applications. Sensors 2010, 10, 2492–2510. [Google Scholar] [CrossRef] [PubMed]
- Morthier, G.; Vankwikelberge, P. Handbook of Distributed Feedback Laser Diodes; Artech House: Norwood, MA, USA, 1997. [Google Scholar]
- Wang, R.; Sprengel, S.; Boehm, G.; Baets, R.; Amann, M.C.; Roelkens, G. Broad wavelength coverage 2.3 μm III–V-on-silicon DFB laser array. Optica 2017, in press. [Google Scholar]
- Wang, R.; Muneeb, M.; Sprengel, S.; Boehm, G.; Malik, A.; Baets, R.; Amann, M.C.; Roelkens, G. III–V-on-silicon 2-μm-wavelength-range wavelength demultiplexers with heterogeneously integrated InP-based type-II photodetectors. Opt. Express 2016, 24, 8480–8490. [Google Scholar] [CrossRef] [PubMed]
- Li, C.B.; Mao, R.W.; Zuo, Y.H.; Zhao, L.; Shi, W.H.; Luo, L.P.; Cheng, B.W.; Yu, J.Z.; Wang, Q.M. 1.55 μm Ge islands resonant-cavity-enhanced detector with high-reflectivity bottom mirror. Appl. Phys. Lett. 2005, 85, 2697–2699. [Google Scholar] [CrossRef]
- Wang, R.; Malik, A.; Šimonytė, I.; Vizbaras, A.; Vizbaras, K.; Roelkens, G. Compact GaSb/silicon-on-insulator 2.0× μm widely tunable external cavity lasers. Opt. Express 2016, 25, 28977–28986. [Google Scholar] [CrossRef] [PubMed]
- Mroziewicz, B. External cavity wavelength tunable semiconductor lasers—A review. Opto Electron. Rev. 2008, 16, 347–366. [Google Scholar] [CrossRef]
- Vizbaras, K.; Dvinelis, E.; Šimonytė, I.; Trinkūnas, A.; Greibus, M.; Songaila, R.; Žukauskas, T.; Kaušylas, M.; Vizbaras, A. High power continuous-wave GaSb-based superluminescent diodes as gain chips for widely tunable laser spectroscopy in the 1.95–2.45 μm wavelength range. Appl. Phys. Lett. 2015, 107. [Google Scholar] [CrossRef]
- Workman, J., Jr. (Ed.) The Handbook of Organic Compounds, Three-Volume Set: NIR, IR, R, and UV-Vis Spectra Featuring Polymers and Surfactants; Elsevier: Amsterdam, The Netherlands, 2000; Part II; p. 388, Part III, p. 24. [Google Scholar]
- Roelkens, G.; Dave, U.; Gassenq, A.; Hattasan, N.; Hu, C.; Kuyken, B.; Leo, F.; Malik, A.; Muneeb, M.; Ryckeboer, E.; et al. Silicon-based photonic integration beyond the telecommunication wavelength range. IEEE J. Sel. Top. Quantum Electron. 2014, 20, 394–404. [Google Scholar] [CrossRef]
- Nedeljkovic, M.; Velasco, A.V.; Khokhar, A.Z.; Delage, A.; Cheben, P.; Mashanovich, G.Z. Mid-Infrared Silicon-on-Insulator Fourier-Transform Spectrometer Chip. IEEE Photonics Technol. Lett. 2016, 28, 528–531. [Google Scholar] [CrossRef]
- Florjańczyk, M.; Cheben, P.; Janz, S.; Scott, A.; Solheim, B.; Xu, D. Planar waveguide spatial heterodyne spectrometer. Proceedings of SPIE Photonics North, Photonic Design and Simulation (SPIE, 2007), Ottawa, ON, Canada, 4–7 June 2007; p. 67963J. [Google Scholar]
- Ryckeboer, E.; Gassenq, A.; Muneeb, M.; Hattasan, N.; Pathak, S.; Cerutti, L.; Rodriguez, J.B.; Tournié, E.; Bogaerts, W.; Baets, R.; et al. Silicon-on-insulator spectrometers with integrated GaInAsSb photodiodes for wide-band spectroscopy from 1510 to 2300 nm. Opt. Express 2013, 5, 6101–6108. [Google Scholar] [CrossRef] [PubMed]
- Muneeb, M.; Chen, X.; Verheyen, P.; Lepage, G.; Pathak, S.; Ryckeboer, E.; Malik, A.; Kuyken, B.; Nedeljkovic, M.; van Campenhout, J.; et al. Demonstration of silicon on insulator mid-infrared spectrometers operating at 3.8 μm. Opt. Express 2013, 21, 11659–11669. [Google Scholar] [CrossRef] [PubMed]
- Subramanian, A.; Ryckeboer, E.M.P.; Dhakal, A.; Peyskens, F.; Malik, A.; Kuyken, B.; Zhao, H.; Pathak, S.; Ruocco, A.; Groote, A.D.; et al. Silicon and silicon nitride photonic circuits for spectroscopic sensing on-a-chip. Photonics Res. 2015, 5, 47–59. [Google Scholar] [CrossRef]
- Bizet, L.; Vallon, R.; Parvitte, B.; Brun, M.; Maisons, G.; Carras, M.; Zeninari, V. Multi-gas sensing with quantum cascade laser array in the mid-infrared region. Appl. Phys. B 2017, 123. [Google Scholar] [CrossRef]
- Smit, M.K.; Dam, C.K. PHASAR-based WDM devices: Principles, design, and application. IEEE J. Sel. Top. Quantum Elect. 1996, 2, 236–250. [Google Scholar] [CrossRef]
- Vasiliev, A.; Muneeb, M.; Baets, R.; Roelkens, G. High Resolution Silicon-on-Insulator Mid-Infrared Spectrometers operating at 3.3 μm. In Proceedings of the 2017 IEEE Photonics Society Summer Topical Meeting Series, San Juan, PR, USA, 10–12 July 2017. [Google Scholar]
- Muneeb, M.; Vasiliev, A.; Ruocco, A.; Malik, A.; Chen, H.; Nedeljkovic, M.; Penades, J.S.; Cerutti, L.; Rodriguez, J.B.; Mashanovich, G.Z.; et al. III–V-on-silicon integrated micro-spectrometer for the 3 μm wavelength range. Opt. Express 2016, 24, 9465–9472. [Google Scholar] [CrossRef] [PubMed]
- Spott, A.; Stanton, E.J.; Volet, N.; Peters, J.D.; Meyer, J.R.; Bowers, J.E. Heterogeneous Integration for Mid-Infrared Silicon Photonics. IEEE J. Sel. Top. Quantum Electron. 2017. [Google Scholar] [CrossRef]
- Vasiliev, A.; Malik, A.; Muneeb, M.; Kuyken, B.; Baets, R.; Roelkens, G. On-Chip Mid-Infrared Photothermal Spectroscopy Using Suspended Silicon-on-Insulator Microring Resonators. ACS Sens. 2016, 1, 1301–1307. [Google Scholar] [CrossRef]
- Lin, H.; Yi, Z.; Hu, J. Double Resonance 1-D Photonic Crystal Cavities for Single-Molecule Mid-Infrared Photothermal Spectroscopy: Theory and Design. Opt. Lett. 2012, 37, 1304–1306. [Google Scholar] [CrossRef] [PubMed]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, R.; Vasiliev, A.; Muneeb, M.; Malik, A.; Sprengel, S.; Boehm, G.; Amann, M.-C.; Šimonytė, I.; Vizbaras, A.; Vizbaras, K.; et al. III–V-on-Silicon Photonic Integrated Circuits for Spectroscopic Sensing in the 2–4 μm Wavelength Range. Sensors 2017, 17, 1788. https://doi.org/10.3390/s17081788
Wang R, Vasiliev A, Muneeb M, Malik A, Sprengel S, Boehm G, Amann M-C, Šimonytė I, Vizbaras A, Vizbaras K, et al. III–V-on-Silicon Photonic Integrated Circuits for Spectroscopic Sensing in the 2–4 μm Wavelength Range. Sensors. 2017; 17(8):1788. https://doi.org/10.3390/s17081788
Chicago/Turabian StyleWang, Ruijun, Anton Vasiliev, Muhammad Muneeb, Aditya Malik, Stephan Sprengel, Gerhard Boehm, Markus-Christian Amann, Ieva Šimonytė, Augustinas Vizbaras, Kristijonas Vizbaras, and et al. 2017. "III–V-on-Silicon Photonic Integrated Circuits for Spectroscopic Sensing in the 2–4 μm Wavelength Range" Sensors 17, no. 8: 1788. https://doi.org/10.3390/s17081788
APA StyleWang, R., Vasiliev, A., Muneeb, M., Malik, A., Sprengel, S., Boehm, G., Amann, M. -C., Šimonytė, I., Vizbaras, A., Vizbaras, K., Baets, R., & Roelkens, G. (2017). III–V-on-Silicon Photonic Integrated Circuits for Spectroscopic Sensing in the 2–4 μm Wavelength Range. Sensors, 17(8), 1788. https://doi.org/10.3390/s17081788