A Portable Impedance Immunosensing System for Rapid Detection of Salmonella Typhimurium
Abstract
:1. Introduction
2. Materials and Methods
2.1. Biological and Chemical Materials
2.2. Bacteria Culture and Surface Plating Method
2.3. Preparation of Poultry Samples
2.4. Interdigitated Array Microelectrodes and Surface Modification
2.5. SEM Images
2.6. Principle of the Immunosensor
2.7. Design of Impedimetric Measurement Circuits
2.8. Setup of the Portable Impedance Immunosensing System
2.9. Immunosensing Detection
2.10. Statistical Analysis
3. Results and Discussion
3.1. Equivalent Circuit Simulation of the Immunosensor
3.2. Impedance Analysis of S. Typhimurium Captured on the Surface of Electrodes
3.3. Performance of the Portable Impedance Immunosensing System
3.4. Detection of S. Typhimurium
3.5. Specificity of the Immunosensor for Detection of Chicken Rinse Water
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Lakshmanan, R.S.; Guntupalli, R.; Hu, J.; Petrenko, V.A.; Barbaree, J.M.; Bryan, A.C. Detection of Salmonella Typhimurium in fat free milk using a phase immobilized magenetoelastic sensor. Sens. Actuators B Chem. 2007, 126, 544–550. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. Multistate Outbreak of Human Salmonella Typhimurium Infections Linked to Live Poultry in Backyard Flocks. Available online: https://www.cdc.gov/salmonella/typhimurium-live-poultry-04-13 (accessed on 18 May 2017).
- Velusamy, V.; Arshak, K.; Korostynska, O.; Oliwa, K.; Adley, C. An overview of foodborne pathogen detection: In the perspective of biosensors. Biotechnol. Adv. 2010, 28, 232–254. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Bashir, R. Electrical/electrochemical impedance for rapid detection of foodborne pathogenic bacteria. Biotechnol. Adv. 2008, 26, 135–150. [Google Scholar] [CrossRef] [PubMed]
- López, M.M.; Bertolini, E.; Olmos, A.; Caruso, P.; Gorris, M.T.; Llop, P.; Penyalver, R. Innovative tools for detection of plant pathogenic viruses and bacteria. Int. Microbiol. 2003, 6, 233–243. [Google Scholar] [CrossRef] [PubMed]
- Straub, T.M.; Dockendorff, B.P.; Quiñonez-Díaz, M.D.; Valdez, C.O.; Shutthanandan, J.I.; Tarasevich, B.J.; Grate, J.W. Automated methods for multiplexed pathogen detection. J. Microbiol. Methods 2005, 62, 303–316. [Google Scholar] [CrossRef] [PubMed]
- Alakomi, H.L.; Saarela, M. Salmonella importance and current status of detection and surveillance methods. Qual. Assur. Saf. Crop. Foods 2009, 1, 142–152. [Google Scholar] [CrossRef]
- Roda, A.; Mirasoli, M.; Roda, B.; Bonvicini, F.; Colliva, C.; Reschiglian, P. Recent developments in rapid multiplexed bioanalytical methods for foodborne pathogenic bacteria detection. Microchim. Acta 2012, 178, 7–28. [Google Scholar] [CrossRef]
- Lee, K.M.; Runyon, M.; Herrman, T.J.; Phillips, R.; Hsieh, J. Review of Salmonella detection and identification methods: Aspects of rapid emergency response and food safety. Food Control 2015, 47, 264–276. [Google Scholar] [CrossRef]
- Ruan, C.; Yang, L.; Li, Y. Immunobiosensor chips for detection of Escherichia coil O157:H7 using electrochemical impedance spectroscopy. Anal. Chem. 2002, 74, 4814–4820. [Google Scholar] [CrossRef]
- Varshney, M.; Li, Y. Interdigitated array microelectrode based impedance biosensor coupled with magnetic nanoparticle–antibody conjugates for detection of Escherichia coli O157: H7 in food samples. Biosens. Bioelectron. 2007, 22, 2408–2414. [Google Scholar] [CrossRef] [PubMed]
- Labib, M.; Zamay, A.S.; Kolovskaya, O.S.; Reshetneva, I.T.; Zamay, G.S.; Kibbee, R.J.; Sattar, S.A. Aptamer-based viability impedimetric sensor for bacteria. Anal. Chem. 2012, 84, 8966–8969. [Google Scholar] [CrossRef] [PubMed]
- Babacan, S.; Pivarnik, P.; Letcher, S.; Rand, A. Piezoelectric flow injection analysis biosensor for the detection of Salmonella Typhimurium. J. Food Sci. 2002, 67, 314–320. [Google Scholar] [CrossRef]
- Jiang, X.; Wang, R.; Wang, Y.; Su, X.; Ying, Y.; Wang, J.; Li, Y. Evaluation of different micro/nanobeads used as amplifiers in QCM immunosensor for more sensitive detection of E. coli O157: H7. Biosens. Bioelectron. 2011, 29, 23–28. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wang, R.; Chen, F.; Jiang, T.; Wang, H.; Slavik, M.; Wei, H. QCM-based aptamer selection and detection of Salmonella Typhimurium. Food Chem. 2017, 221, 776–782. [Google Scholar] [CrossRef]
- Duplan, V.; Frost, E.; Dubowski, J.J. A photoluminescence-based quantum semiconductor biosensor for rapid in situ detection of Escherichia coli. Sens. Actuators B Chem. 2011, 160, 46–51. [Google Scholar] [CrossRef]
- Xu, L.; Callaway, Z.T.; Wang, R.; Wang, H.; Slavik, M.F.; Wang, A.; Li, Y. A fluorescent aptasensor coupled with nanobead-based immunomagnetic separation for simultaneous detection of four foodborne pathogenic bacteria. Trans. ASABE 2015, 58, 891–906. [Google Scholar]
- Kim, G.; Moon, J.H.; Moh, C.Y.; Lim, J.G. A microfluidic nano-biosensor for the detection of pathogenic Salmonella. Biosens. Bioelectron. 2015, 67, 243–247. [Google Scholar] [CrossRef] [PubMed]
- Palchetti, I.; Mascini, M. Electroanalytical biosensors and their potential for food pathogen and toxin detection. Anal. Bioanal. Chem. 2008, 391, 455–471. [Google Scholar] [CrossRef] [PubMed]
- Varshney, M.; Li, Y. Interdigitated array microelectrodes based impedance biosensors for detection of bacterial cells. Biosens. Bioelectron. 2009, 24, 2951–2960. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Wang, R.; Li, Y. Rapid detection of Escherichia coli O157: H7 and Salmonella Typhimurium in foods using an electrochemical immunosensor based on screen-printed interdigitated microelectrode and immunomagnetic separation. Talanta 2016, 148, 200–208. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Lum, J.; Callaway, Z.; Lin, J.; Bottje, W.; Li, Y. A label-free impedance immunosensor using screen-printed interdigitated electrodes and magnetic nanobeads for the detection of E. coli O157: H7. Biosensors 2015, 5, 791–803. [Google Scholar] [CrossRef] [PubMed]
- Callaway, Z.; Wang, Y.; Zhang, B.; Zhang, T.; Costello, T.A.; Slavik, M.F.; Li, Y. A portable impedance biosensing system for rapid detection of avian influenza virus. Trans. ASABE 2016, 59, 421–428. [Google Scholar]
- Yang, L.; Ruan, C.; Li, Y. Detection of viable Salmonella Typhimurium by impedance measurement of electrode capacitance and medium resistance. Biosens. Bioelectron. 2003, 5, 495–502. [Google Scholar] [CrossRef]
- Rose, B.E.; Hill, W.E.; Umholtz, R.; Ransom, G.M.; James, W.O. Testing for Salmonella in raw meat and poultry products collected at federally inspected establishments in the United States, 1998 through 2000. J. Food Prot. 2002, 65, 937–947. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Li, Y.; Griffis, C.L.; Johnson, M.G. Interdigitated microelectrode (IME) impedance sensor for the detection of viable Salmonella Typhimurium. Biosens. Bioelectron. 2004, 19, 1139–1147. [Google Scholar] [CrossRef] [PubMed]
- Pethig, R. Dielectric properties of biological materials: Biophysical and medical applications. IEEE Trans. Dielectr. Electr. Insul. 1984, EI-19, 453–474. [Google Scholar] [CrossRef]
- Barsoukov, E.; Macdonald, J.R. Impedance Spectroscopy: Theory, Experiment, and Applications, 2nd ed.; John Wiley & Sons: Hobaken, NJ, USA, 2005; 595p. [Google Scholar]
- Zhang, B.; Wang, R.; Wang, Y.; Li, Y. LabVIEW-based impedance biosensing system for detection of avian influenza virus. Int. J. Agric. Biol. Eng. 2016, 9, 116–122. [Google Scholar]
- Patolsky, F.; Filanovsky, B.; Katz, E.; Willner, I. Photoswitchable antigen—Antibody interactions studied by impedance spectroscopy. J. Phys. Chem. B 1998, 102, 10359–10367. [Google Scholar] [CrossRef]
- Dos Santos, M.B.; Agusil, J.P.; Prieto-Simón, B.; Sporer, C.; Teixeira, V.; Samitier, J. Highly sensitive detection of pathogen Escherichia coli O157: H7 by electrochemical impedance spectroscopy. Biosens. Bioelectron. 2013, 45, 174–180. [Google Scholar] [CrossRef]
- Dos Santos, M.B.; Azevedo, S.; Agusil, J.P.; Prieto-Simón, B.; Sporer, C.; Torrents, E.; Juárez, A. Label-free ITO-based immunosensor for the detection of very low concentrations of pathogenic bacteria. Bioelectrochemistry 2015, 101, 146–152. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.; Zhao, H.; Xu, M.; Ma, Q.; Ai, S. A label-free electrochemical impedance immunosensor based on AuNPs/PAMAM-MWCNT-Chi nanocomposite modified glassy carbon electrode for detection of Salmonella Typhimurium in milk. Food Chem. 2013, 141, 1980–1986. [Google Scholar] [CrossRef] [PubMed]
Paired Samples | Mean Difference (%) | Standard Deviations (%) | p-Values |
---|---|---|---|
NC-101 | −0.21 | 0.41 | 0.053 |
101–102 | −10.21 | 0.26 | <0.01 |
102–103 | −2.80 | 0.24 | <0.01 |
103–104 | −10.10 | 1.01 | <0.01 |
104–105 | −13.09 | 0.47 | <0.01 |
105–106 | −6.12 | 0.66 | <0.01 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wen, T.; Wang, R.; Sotero, A.; Li, Y. A Portable Impedance Immunosensing System for Rapid Detection of Salmonella Typhimurium. Sensors 2017, 17, 1973. https://doi.org/10.3390/s17091973
Wen T, Wang R, Sotero A, Li Y. A Portable Impedance Immunosensing System for Rapid Detection of Salmonella Typhimurium. Sensors. 2017; 17(9):1973. https://doi.org/10.3390/s17091973
Chicago/Turabian StyleWen, Tao, Ronghui Wang, America Sotero, and Yanbin Li. 2017. "A Portable Impedance Immunosensing System for Rapid Detection of Salmonella Typhimurium" Sensors 17, no. 9: 1973. https://doi.org/10.3390/s17091973
APA StyleWen, T., Wang, R., Sotero, A., & Li, Y. (2017). A Portable Impedance Immunosensing System for Rapid Detection of Salmonella Typhimurium. Sensors, 17(9), 1973. https://doi.org/10.3390/s17091973