RuO2 pH Sensor with Super-Glue-Inspired Reference Electrode
Abstract
:1. Background
2. Preliminary Work
3. Method
3.1. Working Electrode Fabrication
3.2. Reference Electrode Fabrication
3.3. Potentiometric Measurements
4. Results and Discussion
4.1. Reference Electrode Performance
4.2. pH Sensor Performance
4.3. Sample Solution Analysis
5. Conclusions
Author Contributions
Conflicts of Interest
References
- Zhuiykov, S.; O’Brien, D.; Best, M. Water quality assessment by an integrated multi-sensor based on semiconductor RuO2 nanostructures. Meas. Sci. Technol. 2009, 20, 095201. [Google Scholar] [CrossRef]
- Xu, B.; Zhang, W. Modification of vertically aligned carbon nanotubes with RuO2 for a solid-state pH sensor. Electrochim. Acta 2010, 55, 2859–2864. [Google Scholar] [CrossRef]
- Manjakkal, L.; Synkiewicz, B.; Zaraska, K.; Cvejin, K.; Kulawik, J.; Szwagierczak, D. Development and characterization of miniaturized LTCC pH sensors with RuO2 based sensing electrodes. Sens. Actuators B Chem. 2016, 223, 641–649. [Google Scholar] [CrossRef]
- Kreider, K.G.; Tarlov, M.J.; Cline, J.P. Sputtered thin-film pH electrodes of platinum, palladium, ruthenium, and iridium oxides. Sens. Actuators B Chem. 1995, 28, 167–172. [Google Scholar] [CrossRef]
- Kurzweil, P. Precious metal oxides for electrochemical energy converters: Pseudocapacitance and pH dependence of redox processes. J. Power Sources 2009, 190, 189–200. [Google Scholar] [CrossRef]
- Manjakkal, L.; Cvejin, K.; Kulawik, J.; Zaraska, K.; Szwagierczak, D.; Stojanovic, G. Sensing mechanism of RuO2–SnO2 thick film pH sensors studied by potentiometric method and electrochemical impedance spectroscopy. J. Electroanal. Chem. 2015, 759, 82–90. [Google Scholar] [CrossRef]
- Lonsdale, W.; Wajrak, M.; Alameh, K. Effect of conditioning protocol, redox species and material thickness on the pH sensitivity and hysteresis of sputtered RuO2 electrodes. Sens. Actuators B Chem. 2017, 252, 251–256. [Google Scholar] [CrossRef]
- Maurya, D.; Sardarinejad, A.; Alameh, K. Recent Developments in R.F. Magnetron Sputtered Thin Films for pH Sensing Applications—An Overview. Coatings 2014, 4, 756–771. [Google Scholar] [CrossRef]
- Atkinson, J.K.; Glanc, M.; Prakorbjanya, M.; Sophocleous, M.; Sion, R.; Breijo, E.G. Thick film screen printed environmental and chemical sensor array reference electrodes suitable for subterranean and subaqueous deployments. Microelectron. Int. 2013, 30, 92–98. [Google Scholar] [CrossRef]
- Huang, W.-D.; Cao, H.; Deb, S.; Chiao, M.; Chiao, J.C. A flexible pH sensor based on the iridium oxide sensing film. Sens. Actuators A Phys. 2011, 169, 1–11. [Google Scholar] [CrossRef]
- Kim, T.; Hong, S.; Yang, S. A Solid-State Thin-Film Ag/AgCl Reference Electrode Coated with Graphene Oxide and Its Use in a pH Sensor. Sensors 2015, 15, 6469–6482. [Google Scholar] [CrossRef] [PubMed]
- Kisiel, A.; Marcisz, H.; Michalska, A.; Maksymiuk, K. All-solid-state reference electrodes based on conducting polymers. Analyst 2005, 130, 1655–1662. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Stein, A.; Bühlmann, P. Rational design of all-solid-state ion-selective electrodes and reference electrodes. TrAC Trends Anal. Chem. 2016, 76, 102–114. [Google Scholar] [CrossRef]
- Zhang, T.; Lai, C.Z.; Fierke, M.A.; Stein, A.; Bühlmann, P. Advantages and limitations of reference electrodes with an ionic liquid junction and three-dimensionally ordered macroporous carbon as solid contact. Anal. Chem. 2012, 84, 7771–7778. [Google Scholar] [CrossRef] [PubMed]
- Shitanda, I.; Komoda, M.; Hoshi, Y.; Itagaki, M. An instantly usable paper-based screen-printed solid-state KCl/Ag/AgCl reference electrode with long-term stability. Analyst 2015, 140, 6481–6484. [Google Scholar] [CrossRef] [PubMed]
- Liao, W.; Chou, T. Fabrication of a Planar-Form Screen-Printed Solid Electrolyte Modified Ag/AgCl Reference Electrode for Application in a Potentiometric Biosensor Fabrication of a Planar-Form Screen-Printed Solid Electrolyte Modified Ag/AgCl Reference Electrode for App. Anal. Chem. 2006, 78, 4219–4223. [Google Scholar] [CrossRef] [PubMed]
- Manjakkal, L.; Zaraska, K.; Cvejin, K.; Kulawik, J.; Szwagierczak, D. Potentiometric RuO2–Ta2O5 pH sensors fabricated using thick film and LTCC technologies. Talanta 2016, 147, 233–240. [Google Scholar] [CrossRef] [PubMed]
- Atkinson, J.K.; Glanc, M.; Boltryk, P.; Sophocleous, M.; Garcia-Breijo, E. An investigation into the effect of fabrication parameter variation on the characteristics of screen printed thick film silver/silver chloride reference electrodes. Microelectron. Int. 2011, 28, 49–53. [Google Scholar] [CrossRef]
- Pedrotti, J.J.; Angnes, L.; Gutz, I.G.R. Miniaturized Reference Electrodes with Microporous Polymer Junctions. Electroanalysis 1996, 8, 673–675. [Google Scholar] [CrossRef]
- Kinlen, P.J.; Heider, J.E.; Hubbard, D.E. A solid-state pH sensor based on a Nafion-coated iridium oxide indicator electrode and a polymer-based silver chloride reference electrode. Sens. Actuators B Chem. 1994, 22, 13–25. [Google Scholar] [CrossRef]
- Shitanda, I.; Kiryu, H.; Itagaki, M. Improvement in the long-term stability of screen-printed planar type solid-state Ag/AgCl reference electrode by introducing poly(dimethylsiloxane) liquid junction. Electrochim. Acta 2011, 58, 528–531. [Google Scholar] [CrossRef]
- Guth, U.; Gerlach, F.; Decker, M.; Oelßner, W.; Vonau, W. Solid-state reference electrodes for potentiometric sensors. J. Solid State Electrochem. 2009, 13, 27–39. [Google Scholar] [CrossRef]
- Kurzweil, P. Metal Oxides and Ion-Exchanging Surfaces as pH Sensors in Liquids: State-of-the-Art and Outlook. Sensors 2009, 9, 4955–4985. [Google Scholar] [CrossRef] [PubMed]
- Blaz, T.; Migdalski, J.A. Lewenstam, Junction-less reference electrode for potentiometric measurements obtained by buffering pH in a conducting polymer matrix. Analyst 2005, 130, 637–643. [Google Scholar] [CrossRef] [PubMed]
- Noh, J.; Park, S.; Boo, H.; Kim, H.C.; Chung, T.D. Nanoporous platinum solid-state reference electrode with layer-by-layer polyelectrolyte junction for pH sensing chip. Lab Chip 2011, 11, 664–671. [Google Scholar] [CrossRef] [PubMed]
- Tombcz, E. pH-dependent surface charging of metal oxides. Period. Polytech. Chem. Eng. 2009, 53, 77–86. [Google Scholar] [CrossRef]
- Guinovart, T.; Crespo, G.A.; Rius, F.X.; Andrade, F.J. A reference electrode based on polyvinyl butyral (PVB) polymer for decentralized chemical measurements. Anal. Chim. Acta 2014, 821, 72–80. [Google Scholar] [CrossRef] [PubMed]
- Guinovart, T.; Bandodkar, A.J.; Windmiller, J.R.; Andrade, F.J.; Wang, J. A potentiometric tattoo sensor for monitoring ammonium in sweat. Analyst 2013, 138, 7031–7038. [Google Scholar] [CrossRef] [PubMed]
- Guinovart, T.; Valdés-Ramírez, G.; Windmiller, J.R.; Andrade, F.J.; Wang, J. Bandage-Based Wearable Potentiometric Sensor for Monitoring Wound pH. Electroanalysis 2014, 26, 1345–1353. [Google Scholar] [CrossRef]
- Lonsdale, W.; Maurya, D.K.; Wajrak, M.; Alameh, K. Effect of ordered mesoporous carbon contact layer on the sensing performance of sputtered RuO2 thin film pH sensor. Talanta 2017, 164, 52–56. [Google Scholar] [CrossRef] [PubMed]
Solution | Methanol (mL) | PVB (mg) | NaCl (mg) | KCl (mg) | SiO2 (mg) |
---|---|---|---|---|---|
PVBNaCl | 2.0 | 234 | 150 | - | - |
PVBSio2 | 2.0 | 234 | - | - | 150 |
PVBSio2+KCl | 2.0 | 234 | - | 150 | 150 |
Electrode | pH Sensitivity | KCl Sensitivity | ||
---|---|---|---|---|
mV/pH | R2 | mV/pKCl | R2 | |
RuO2 | −57 | 0.999 | −6.7 | 0.629 |
RuO2-SiO2 | −1.5 | 0.304 | 0.9 | 0.020 |
RuO2-SiO2-KCl | −4.5 | 0.967 | 2.4 | 0.118 |
Glued-RuO2 | −1.7 | 0.523 | −2.3 | 0.178 |
Quasi-Ag|AgCl | 14 | 0.557 | 43 | 0.964 |
AgCl-KCl | 0.5 | 0.823 | 5.2 | 0.984 |
Reference Electrode | Sensitivity (mV/pH) | E0 (mV) | R2 | Hysteresis (mV) | Drift (mV/h) | |||
---|---|---|---|---|---|---|---|---|
Glued-RuO2 | −56.2 | ±0.5 | 483 | ±7.3 | 0.9988 | 2.1 | ±0.7 | 28 |
RuO2-SiO2 | −55.7 | ±0.6 | 160 | ±1.4 | 0.9980 | 2.7 | ±1.0 | 2.2 |
RuO2-SiO2-KCl | −52.8 | ±0.2 | 143 | ±0.5 | 0.9980 | 1.4 | ±0.7 | 7.6 |
AgCl-KCl | −58.1 | ±1.6 | 620 | ±19 | 0.9996 | 6.7 | ±2.4 | 31 |
Reference Electrode | Sensitivity (mV/pKCl) | E0 | R2 | ||
---|---|---|---|---|---|
Glued-RuO2 | −16.2 | ±4.9 | 92.4 | ±21 | 0.93 |
RuO2-SiO2 | −25.8 | ±0.8 | −156 | ±6.2 | 0.99 |
RuO2-SiO2-KCl | −20.2 | ±2.1 | −242 | ±14 | 0.93 |
AgCl-KCl | −31.8 | ±0.3 | 323 | ±2.7 | 0.98 |
Sensor | Borax | Lake | Sea | Cola | Vinegar | Gastric | OJ | Beer | Average Error |
---|---|---|---|---|---|---|---|---|---|
Glass pH Senor | 9.1 | 8.2 | 7.9 | 2.6 | 2.6 | 1.5 | 3.2 | 3.9 | ±0.04 |
Glued-RuO2 | 5.8 | 6.5 | 8.3 | 2.8 | 3.5 | 3.7 | 2.5 | 3.5 | ±1.2 |
RuO2-SiO2 | 9.2 | 7.7 | 7.9 | 2.8 | 2.8 | 1.9 | 3.0 | 4.0 | ±0.23 |
RuO2-SiO2-KCl | 9.4 | 9.0 | 9.0 | 2.9 | 3.1 | 1.9 | 3.0 | 4.0 | ±0.44 |
AgCl-KCl | 9.3 | 8.6 | 8.4 | 2.9 | 2.7 | 1.6 | 3.3 | 4.2 | ±0.25 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lonsdale, W.; Wajrak, M.; Alameh, K. RuO2 pH Sensor with Super-Glue-Inspired Reference Electrode. Sensors 2017, 17, 2036. https://doi.org/10.3390/s17092036
Lonsdale W, Wajrak M, Alameh K. RuO2 pH Sensor with Super-Glue-Inspired Reference Electrode. Sensors. 2017; 17(9):2036. https://doi.org/10.3390/s17092036
Chicago/Turabian StyleLonsdale, Wade, Magdalena Wajrak, and Kamal Alameh. 2017. "RuO2 pH Sensor with Super-Glue-Inspired Reference Electrode" Sensors 17, no. 9: 2036. https://doi.org/10.3390/s17092036
APA StyleLonsdale, W., Wajrak, M., & Alameh, K. (2017). RuO2 pH Sensor with Super-Glue-Inspired Reference Electrode. Sensors, 17(9), 2036. https://doi.org/10.3390/s17092036