Spatial Scale Gap Filling Using an Unmanned Aerial System: A Statistical Downscaling Method for Applications in Precision Agriculture
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. AggieAir and Landsat
2.3. Landsat and AggieAir Reflectance Homogenization
2.4. Downscaling Individual Spectral Bands
2.5. Developing Agricultural Variables
3. Results and Discussion
3.1. Downscaled Spectral Bands
3.2. Remotely-Sensed Agricultural Variables Derived from Downscaled Bands
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Ge, Y.; Thomasson, J.A.; Sui, R. Remote sensing of soil properties in precision agriculture: A review. Front. Earth Sci. 2011, 5, 229–238. [Google Scholar] [CrossRef]
- Srbinovska, M.; Gavrovski, C.; Dimcev, V.; Krkoleva, A.; Borozan, V. Environmental parameters monitoring in precision agriculture using wireless sensor networks. J. Clean. Prod. 2015, 88, 297–307. [Google Scholar] [CrossRef]
- Zaman, B.; McKee, M.; Neale, C.M.U. Fusion of remotely sensed data for soil moisture estimation using relevance vector and support vector machines. Int. J. Remote Sens. 2012, 33, 6516–6552. [Google Scholar] [CrossRef]
- Hassan-Esfahani, L.; Torres-Rua, A.; Jensen, A.; MacKee, M. Topsoil moisture estimation for precision agriculture using unmmaned aerial vehicle multispectral imagery. In Proceedings of the IEEE International Geoscience and Remote Sensing Symp (IGARSS), Quebec, QC, Canada, 13–18 July 2014. [Google Scholar]
- El-Arab, M.; Ticlavilca, A.M.; Torres-Rua, A.; Maslova, I.; McKee, M. Estimating chlorophyll with thermal and broadband multispectral high resolution imagery from an unmanned aerial system using relevance vector machines for precision agriculture. Int. J. Appl. Earth Obs. Geoinf. 2015, 43, 32–42. [Google Scholar] [CrossRef]
- Mathur, A.; Foody, G.M. Crop classification by support vector machine with intelligently selected training data for an operational application. Int. J. Remote Sens. 2008, 29, 2227–2240. [Google Scholar] [CrossRef]
- Franke, J.; Menz, G. Multi-temporal wheat disease detection by multi-spectral remote sensing. Precis. Agric. 2007, 8, 161–172. [Google Scholar] [CrossRef]
- Shanahan, J.F.; Schepers, J.S.; Francis, D.D.; Varvel, G.E.; Wilhelm, W.; Tringe, J.M.; Schlemmer, M.R.; Major, D.J. Major Use of remote-sensing imagery to estimate corn grain yield. Agron. J. 2001, 93, 583–589. [Google Scholar] [CrossRef]
- Ines, A.V.M.; Honda, K.; Gupta, A.D.; Droogers, P.; Clemente, R.S. Combining remote sensing-simulation modeling and genetic algorithm optimization to explore water management options in irrigated agriculture. Agric. Water Manag. 2006, 83, 221–232. [Google Scholar] [CrossRef]
- Merlin, O.; Al Bitar, A.; Walker, J.P.; Kerr, Y. An improved algorithm for disaggregating microwave-derived soil moisture based on red, near-infrared and thermal infrared data. Remote Sens. Environ. 2010, 113, 2275–2284. [Google Scholar] [CrossRef] [Green Version]
- Reichle, R.H.; Entekhabi, D.; McLaughlin, D.B. Downscaling of radiobrightness measurements for soil moisture estimation: A four-dimensional variational data assimilation approach. Water Resour. Res. 2001, 37, 2353–2364. [Google Scholar] [CrossRef]
- Peng, J.; Loew, A.; Zhang, S.; Wang, J.; Niesel, J. Spatial downscaling of satellite soil moisture data using a vegetation temperature condition index. IEEE Trans. Geosci. Remote Sens. 2016, 54, 558–566. [Google Scholar] [CrossRef]
- Ochsner, T.E.; Cosh, M.H.; Cuenca, R.H.; Dorigo, W.A.; Draper, C.S.; Hagimoto, Y.; Kerr, Y.H.; Njoku, E.G.; Small, E.E.; Zreda, M.; et al. State of the art in large-scale soil moisture monitoring. Soil Sci. Soc. Am. J. 2013, 77, 1888–1919. [Google Scholar] [CrossRef] [Green Version]
- Hassan, Q.K.; Bourque, C.P.A.; Meng, F.R.; Cox, R.M. A wetness index using terrain-corrected surface temperature and normalized difference vegetation index derived from standard modis products: An evaluation of its use in a humid forest-dominated region of eastern Canada. Sensors 2007, 7, 2028–2048. [Google Scholar] [CrossRef]
- Mallick, K.; Bhattacharya, B.K.; Patel, N.K. Estimating volumetric surface moisture content for cropped soils using a soil wetness index based on surface temperature and NDVI. Agric. For. Meteorol. 2009, 149, 1327–1342. [Google Scholar] [CrossRef]
- Merlin, O.; Chehbouni, G.; Kerr, Y.; Goodrich, D. A downscaling method for distributing surface soil moisture within a microwave pixel: Application to the Monsoon’90 data. Remote Sens. Environ. 2006, 101, 379–389. [Google Scholar] [CrossRef]
- Choi, M.; Hur, Y. A microwave-optical/infrared disaggregation for improving spatial representation of soil moisture using AMSR-E and MODIS products. Remote Sens. Environ. 2012, 124, 259–269. [Google Scholar] [CrossRef]
- Chauhan, N.S.; Miller, S.; Ardanuy, P. Spaceborne soil moisture estimation at high resolution: A microwave-optical/IR synergistic approach. Int. J. Remote Sens. 2003, 24, 4599–4622. [Google Scholar] [CrossRef]
- Ebtehaj, A.M.; Foufoula-Georgiou, E.; Lerman, G. Sparse regularization for precipitation downscaling. J. Geophys. Res. 2012, 117. [Google Scholar] [CrossRef]
- AggieAir. 2015. Available online: http://aggieair.usu.edu/ (accessed on 6 September 2017).
- Jensen, A.M. A Geospatial Real-Time Aerial Image Display for a Low-Cost Autonomous Multispectral Remote Sensing. Master’s Thesis, Utah State University, Logan, UT, USA, 2009. [Google Scholar]
- Jiang, J.; Liu, D.; Gu, J.; Susstrunk, S. What is the space of spectral sensitivity functions for digital color cameras? In Proceedings of the 2013 IEEE Workshop on Applications of Computer Vision (WACV), Tampa, FL, USA, 15–17 January 2013; pp. 168–179. [Google Scholar]
- Infrared Cameras Incorporated. Available online: http://www.infraredcamerasinc.com (accessed on 6 September 2017).
- Gonzalez, R.C.; Woods, R.E. Digital Image Processing, 3rd ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2008; p. 128. [Google Scholar]
- Mallat, S.; Zhang, Z. Matching pursuits with time-frequency dictionaries. IEEE Trans. Signal Process. 1993, 41, 3397–3415. [Google Scholar] [CrossRef]
- Hassan-Esfahani, L.; Torres-Rua, A.; MacKee, M. Assessment of optimal irrigation water allocation for pressurized irrigation system using water balance approach, learning machines, and remotely sensed data. Agric. Water Manag. 2015, 153, 42–50. [Google Scholar] [CrossRef]
- Hassan-Esfahani, L.; Torres-Rua, A.; Jensen, A.; MacKee, M. Assessment of surface soil moisture using high-resolution multi-spectral imagery and artificial neural networks. Remote Sens. 2015, 7, 2627–2646. [Google Scholar] [CrossRef]
Spectral Band | Downscaling Level | Including in the Training Set | RMSE | ||
---|---|---|---|---|---|
1 June 2013 | 9 June 2013 | 17 June 2013 | |||
Improvement Ratio | Improvement Ratio | Improvement Ratio | |||
Red | 2 | YES | 14% | 16% | 15% |
NO | 8% | 11% | 10% | ||
4 | YES | 25% | 27% | 24% | |
NO | 17% | 20% | 13% | ||
Green | 2 | YES | 14% | 13% | 15% |
NO | 7% | 8% | 15% | ||
4 | YES | 25% | 26% | 23% | |
NO | 13% | 15% | 10% | ||
Blue | 2 | YES | 13% | 15% | 12% |
NO | 5% | 8% | 5% | ||
4 | YES | 23% | 29% | 20% | |
NO | 9% | 14% | 9% | ||
NIR | 2 | YES | 13% | 20% | 16% |
NO | 5% | 10% | 6% | ||
4 | YES | 14% | 23% | 5% | |
NO | 6% | 14% | 2% | ||
Thermal | 2 | YES | 9% | 7% | 6% |
NO | 1% | 1% | 2% | ||
4 | YES | 0.12% | 0.16% | 0.16% | |
NO | 0.07% | 0.09% | 0.06% |
Agricultural Product | Downscaling Level | Including in the Training Set | RMSE | ||
---|---|---|---|---|---|
1 June 2013 | 9 June 2013 | 17 June 2013 | |||
Improvement Ratio | Improvement Ratio | Improvement Ratio | |||
NDVI | 2 | YES | 10% | 15% | 12% |
NO | 5% | 11% | 12% | ||
4 | YES | 10% | 11% | 8% | |
NO | 7% | 7% | 6% | ||
SSM | 2 | YES | 1.81% | 1.67% | 1.54% |
NO | 1.32% | 1.42% | 1.43% | ||
4 | YES | 1.49% | 1.14% | 1.78% | |
NO | 1.23% | 1.12% | 1.08% |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hassan-Esfahani, L.; Ebtehaj, A.M.; Torres-Rua, A.; McKee, M. Spatial Scale Gap Filling Using an Unmanned Aerial System: A Statistical Downscaling Method for Applications in Precision Agriculture. Sensors 2017, 17, 2106. https://doi.org/10.3390/s17092106
Hassan-Esfahani L, Ebtehaj AM, Torres-Rua A, McKee M. Spatial Scale Gap Filling Using an Unmanned Aerial System: A Statistical Downscaling Method for Applications in Precision Agriculture. Sensors. 2017; 17(9):2106. https://doi.org/10.3390/s17092106
Chicago/Turabian StyleHassan-Esfahani, Leila, Ardeshir M. Ebtehaj, Alfonso Torres-Rua, and Mac McKee. 2017. "Spatial Scale Gap Filling Using an Unmanned Aerial System: A Statistical Downscaling Method for Applications in Precision Agriculture" Sensors 17, no. 9: 2106. https://doi.org/10.3390/s17092106
APA StyleHassan-Esfahani, L., Ebtehaj, A. M., Torres-Rua, A., & McKee, M. (2017). Spatial Scale Gap Filling Using an Unmanned Aerial System: A Statistical Downscaling Method for Applications in Precision Agriculture. Sensors, 17(9), 2106. https://doi.org/10.3390/s17092106