Development of a Sensitive Electrochemical Enzymatic Reaction-Based Cholesterol Biosensor Using Nano-Sized Carbon Interdigitated Electrodes Decorated with Gold Nanoparticles
Abstract
:1. Introduction
2. Experimental
2.1. Chemicals and Reagents
2.2. Fabrication of Nano-Sized AuNP/Carbon IDEs
2.3. Preparation of Enzyme-Functionalized IDEs
2.4. Instruments and Measurements
3. Results and Discussion
3.1. Optimization of AuNP Deposition on Carbon IDEs
3.2. Morphological and Electrochemical Characterization of AuNP/Carbon IDEs
3.3. Characterization of Selective Enzyme Immobilization
3.4. Optimization of Experimental Conditions for Sensing
3.5. Electrocatalytic Performance of AuNP/Carbon IDE-Based Biosensors
3.6. Effect of AuNP Deposition on Biosensing
3.7. Reproducibility of AuNP/Carbon IDE-Based Biosensor
3.8. Selectivity Test and Human Serum Sample Analysis
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Rahman, M.M.; Asiri, A.M. One-step electrochemical detection of cholesterol in the presence of suitable K3Fe(CN)6/phosphate buffer mediator by an electrochemical approach. Talanta 2015, 140, 96–101. [Google Scholar] [CrossRef] [PubMed]
- Batra, N.; Tomar, M.; Gupta, V. ZnO-CuO composite matrix based reagentless biosensor for detection of total cholesterol. Biosens. Bioelectron. 2015, 67, 263–271. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Tan, X.; Chen, S.; Yuan, R.; Hu, F.; Yuan, D.; Xiang, Y. Highly-sensitive cholesterol biosensor based on platinum-gold hybrid functionalized ZnO nanorods. Talanta 2012, 94, 263–270. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Xu, L.; Tan, L.; Tan, H.; Yang, S.; Yao, S. Direct electrochemistry of cholesterol oxidase immobilized on gold nanoparticles-decorated multiwalled carbon nanotubes and cholesterol sensing. Talanta 2013, 106, 192–199. [Google Scholar] [CrossRef] [PubMed]
- Soorya, V.C.; Berchmans, S. Flower like Bi structures on Pt surface facilitating effective cholesterol Biosensing. Mater. Sci. Eng. C 2016, 64, 183–189. [Google Scholar]
- Derks, H.J.G.M.; van Heiningen, A.; Koedam, H.C. Gas-chromatographic determination of cholesterol in serum: candidate reference method. Clin. Chem. 1985, 31, 691–694. [Google Scholar] [PubMed]
- Qureshi, R.N.; Kaal, E.; Janssen, H.-G.; Schoenmakers, P.J.; Kok, W.T. Determination of cholesterol and triglycerides in serum lipoproteins using flow field-flow fractionation coupled to gas chromatography-mass spectrometry. Anal. Chim. Acta 2011, 706, 361–366. [Google Scholar] [CrossRef] [PubMed]
- Razzazi-Fazeli, E.; Kleineisen, S.; Luf, W. Determination of cholesterol oxides in processed food using high performance liquid chromatography-mass spectrometry with atmospheric pressure chemical ionization. J. Chromatogr. 2000, 896, 321–334. [Google Scholar] [CrossRef]
- Nakajima, M.; Yamato, S.; Wakabayashi, H.; Shimada, K. High-performance liquid chromatographic determination of cholesterol and cholestanol in human serum by precolumn derivatization with 2-[2-(isocyanate)ethyl]-3-methyl-1,4-naphthoquinone combined with platinum catalyst reduction and electrochemical detection. Biol. Pharm. Bull. 1995, 18, 1762–1764. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Artiss, J.D.; Zak, B. A method for the sequential colorimetric determination of serum triglycerides and cholesterol. Clin. Biochem. 1987, 20, 167–172. [Google Scholar] [CrossRef]
- Giri, A.K.; Charan, C.; Saha, A.; Shahi, V.K.; Panda, A.B. An amperometric cholesterol biosensor with excellent sensitivity and limit of detection based on an enzyme-immobilized microtubular ZnO@ZnS heterostructure. J. Mater. Chem. A 2014, 2, 16997–17004. [Google Scholar] [CrossRef]
- Manjunatha, R.; Suresh, G.S.; Melo, J.S.; D’Souza, S.F.; Venkatesha, T.V. An amperometric bienzymatic cholesterol biosensor based on functionalized graphene modified electrode and its electrocatalytic activity towards total cholesterol determination. Talanta 2012, 99, 302–309. [Google Scholar] [CrossRef] [PubMed]
- Dey, R.S.; Raj, C.R. Development of an amperometric cholesterol biosensor based on graphene-Pt nanoparticle hybrid material. J. Phys. Chem. C 2010, 114, 21427–21433. [Google Scholar] [CrossRef]
- Komathi, S.; Muthuchamy, N.; Lee, K.-P.; Gopalan, A.-I. Fabrication of a novel dual mode cholesterol biosensor using titanium dioxide nanowire bridged 3D graphene nanostacks. Biosens. Bioelectron. 2016, 84, 64–71. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Liu, C.-C. Development of a screen-printed cholesterol biosensor: Comparing the performance of gold and platinum as the working electrode material and fabrication using a self-assembly approach. Sens. Actuators B 2007, 120, 417–425. [Google Scholar] [CrossRef]
- Gholivand, M.B.; Khodadadian, M. Amperometric cholesterol biosensor based on the direct electrochemistry of cholesterol oxidase and catalase on a graphene/ionicliquid-modified glassy carbon electrode. Biosens. Bioelectron. 2014, 53, 472–478. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Nan, Z.; Qiu, Y.; Zheng, L.; Lu, X. Hydrophobic ionic liquid immobilizing cholesterol oxidase on the electrodeposited Prussian blue on glassy carbon electrode for detection of cholesterol. Electrochim. Acta 2013, 90, 203–309. [Google Scholar] [CrossRef]
- Ahn, K.-W.; Sampson, N.S. Cholesterol oxidase senses subtle changes in lipid bilayer structure. Biochemistry 2004, 43, 827–836. [Google Scholar] [CrossRef] [PubMed]
- Iannlello, R.M.; Yacynych, A.M. Immobilized enzyme chemically modified electrode as an amperometric sensor. Anal. Chem. 1981, 53, 2090–2095. [Google Scholar] [CrossRef]
- Zhao, C.; Wan, L.; Jiang, L.; Wang, Q.; Jiao, K. Highly sensitive and selective cholesterol biosensor based on direct electron transfer of hemoglobin. Anal. Biochem. 2008, 383, 25–30. [Google Scholar] [CrossRef] [PubMed]
- Feng, B.; Liu, Y.-N. A disposable cholesterol enzyme biosensor based on ferrocene-capped gold nanoparticle modified screen-printed carbon electrode. Int. J. Electrochem. Sci. 2015, 10, 4770–4778. [Google Scholar]
- Malhotra, B.D.; Kaushik, A. Metal oxide-chitosan based nanocomposite for cholesterol biosensor. Thin Solid Films 2009, 518, 614–620. [Google Scholar] [CrossRef]
- Vidal, J.-C.; Espuelas, J.; Garcia-Ruiz, E.; Castillo, J.-R. Amperometric cholesterol biosensors based on the electropolymerization of pyrrole and the electrocatalytic effect of Prussian-Blue layers helped with self-assembled monolayers. Talanta 2004, 64, 655–664. [Google Scholar] [CrossRef] [PubMed]
- Manjunatha, R.; Nagaraju, D.H.; Suresh, G.S.; Melo, J.S.; D’Souza, S.F.; Venkatesha, T.V. Direct electrochemistry of cholesterol oxidase on MWCNTs. J. Electroanal. Chem. 2011, 651, 24–29. [Google Scholar] [CrossRef]
- Sharma, R.; Sinha, R.K.; Agrawal, V.V. Mediator-free total cholesterol estimation using a bi-enzyme functionalized nanostructured gold electrode. RSC Adv. 2015, 5, 41786–41794. [Google Scholar] [CrossRef]
- Guo, M.; Chen, J.; Li, J.; Nie, L.; Yao, S. Carbon nanotubes-based amperometric cholesterol biosensor fabricated through layer-by-layer technique. Electroanalysis 2004, 16, 1992–1998. [Google Scholar] [CrossRef]
- Li, J.; Peng, T.; Peng, Y. A cholesterol biosensor based on entrapment of cholesterol oxidase in a silicic sol-gel matrix at a prussian blue modified electrode. Electroanalysis 2003, 15, 1031–1037. [Google Scholar] [CrossRef]
- Solanki, P.R.; Arya, S.K.; Singh, S.P.; Pandey, M.K.; Malhotra, B.D. Application of electrochemically prepared poly-N-methylpyrrole-p-toluene sulphonate films to cholesterol biosensor. Sens. Actuators B 2007, 123, 829–839. [Google Scholar] [CrossRef]
- Singh, S.; Singhal, R.; Malhotra, B.D. Immobilization of cholesterol esterase and cholesterol oxidase onto sol–gel films for application to cholesterol biosensor. Anal. Chim. Acta 2007, 582, 335–343. [Google Scholar] [CrossRef] [PubMed]
- Arya, S.K.; Datta, M.; Malhotra, B.D. Recent advances in cholesterol biosensor. Biosens. Bioelectron. 2008, 23, 1083–1100. [Google Scholar] [CrossRef] [PubMed]
- Singh, J.; Srivastava, M.; Roychoudhury, A.; Lee, D.W.; Lee, S.H.; Malhotra, B.D. Bienzyme-functionalized monodispersed biocompatible cuprous oxide/chitosan nanocomposite platform for biomedical application. J. Phys. Chem. B 2013, 117, 141–152. [Google Scholar] [CrossRef] [PubMed]
- Segev-Bar, M.; Haick, H. Flexible sensors based on nanoparticles. ACS Nano 2013, 7, 8366–8378. [Google Scholar] [CrossRef] [PubMed]
- Hahn, Y.-B.; Ahmad, R.; Tripathy, N. Chemical and biological sensors based on metal oxide nanostructures. Chem. Commun. 2012, 48, 10369–10385. [Google Scholar] [CrossRef] [PubMed]
- Saxena, U.; Das, A.B. Nanomaterials towards fabrication of cholesterol biosensors: Key roles and design approaches. Biosens. Bioelectron. 2016, 75, 196–205. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Zhang, M.; Hou, Y.; Huang, W.; Yao, C.; Wu, Q. An Au nanocomposite based biosensor for determination of cholesterol. Anal. Methods 2015, 7, 3480–3485. [Google Scholar] [CrossRef]
- Safavi, A.; Farjami, F. Electrodeposition of gold-platinum alloy nanoparticles on ionic liquid-chitosan composite film and its application in fabricating an amperometric cholesterol biosensor. Biosens. Bioelectron. 2011, 26, 2547–2552. [Google Scholar] [CrossRef] [PubMed]
- Ji, J.; Zhou, Z.; Zhao, X.; Sun, J.; Sun, X. Electrochemical sensor based on molecularly imprinted film at Au nanoparticles-carbon nanotubes modified electrode for determination of cholesterol. Biosens. Bioelectron. 2015, 66, 590–595. [Google Scholar] [CrossRef] [PubMed]
- Nantaphol, S.; Chailapakul, O.; Siangproh, W. A novel paper-based device coupled with a silver nanoparticle modified boron-doped diamond electrode for cholesterol detection. Anal. Chim. Acta 2015, 891, 136–143. [Google Scholar] [CrossRef] [PubMed]
- Dey, R.S.; Raj, C.R. Enzyme-integrated cholesterol biosensing scaffold based on in situ synthesized reduced graphene oxide and dendritic Pd nanostructure. Biosens. Bioelectron. 2014, 62, 357–364. [Google Scholar] [CrossRef] [PubMed]
- Cao, S.; Zhang, L.; Chai, Y.; Yuan, R. An integrated sensing system for detection of cholesterol based on TiO2–graphene–Pt–Pd hybrid nanocomposites. Biosens. Bioelectron. 2013, 42, 532–538. [Google Scholar] [CrossRef] [PubMed]
- Bonomi, R.; Cazzolaro, A.; Sansone, A.; Scrimin, P.; Prins, L.J. Detection of enzyme activity through catalytic signal amplification with functionalized gold nanoparticles. Angew. Chem. Int. Ed. 2011, 50, 2307–2312. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Patolsky, F.; Katz, E.; Hainfeld, J.F.; Willner, I. “Plugging into Enzymes”: Nanowiring of redox enzymes by a gold nanoparticle. Science 2003, 299, 1877–1881. [Google Scholar] [CrossRef] [PubMed]
- Hutter, E.; Maysinger, D. Gold-nanoparticle-based biosensors for detection of enzyme activity. Trends Pharmacol. Sci. 2013, 34, 497–507. [Google Scholar] [CrossRef] [PubMed]
- Sharma, D.; Lim, Y.; Lee, Y.; Shin, H. Glucose sensor based on redox-cycling between selectively modified and unmodified combs of carbon interdigitated array nanoelectrodes. Anal. Chim. Acta 2015, 889, 194–202. [Google Scholar] [CrossRef] [PubMed]
- Heo, J.-I.; Shim, D.S.; Teixidor, G.T.; Oh, S.; Madou, M.J.; Shin, H. Carbon interdigitated array nanoelectrodes for electrochemical applications. J. Electrochem. Soc. 2011, 158, J76–J80. [Google Scholar] [CrossRef]
- Heo, J.-I.; Lim, Y.; Shin, H. The effect of channel height and electrode aspect ratio on redox cycling at carbon interdigitated array nanoelectrodes confined in a microchannel. Analyst 2013, 138, 6404–6411. [Google Scholar] [CrossRef] [PubMed]
- Baudler, A.; Schmidt, I.; Langner, M.; Greiner, A.; Schroder, U. Does it have to be carbon? Metal anodes in microbial fuel cells and related bioelectrochemical systems. Energy Environ. Sci. 2015, 8, 2048–2055. [Google Scholar] [CrossRef]
- Shahrokhian, S.; Rastgar, S. Electrochemical deposition of gold nanoparticles on carbon nanotube coated glassy carbon electrode for the improved sensing of tinidazole. Electrochim. Acta 2012, 78, 422–429. [Google Scholar] [CrossRef]
- Radi, A.-E.; Lates, V.; Marty, J.-L. Mediatorless hydrogen peroxide biosensor based on horseradish peroxidase immobilized on 4-carboxyphenyl film electrografted on gold electrode. Electroanalysis 2008, 20, 2557–2562. [Google Scholar] [CrossRef]
- Pagan, M.; Suazo, D.; del Toro, N.; Griebenow, K. A comparative study of different protein immobilization methods for the construction of an efficient nano-structured lactate oxidase-SWCNT-biosensor. Biosens. Bioelectron. 2015, 64, 138–146. [Google Scholar] [CrossRef] [PubMed]
- Goluch, E.D.; Wolfrum, B.; Singh, P.S.; Zevenbergen, M.A.G.; Lemay, S.G. Redox cycling in nanofluidic channels using interdigitated electrodes. Anal. Bioanal. Chem. 2009, 394, 447–456. [Google Scholar] [CrossRef] [PubMed]
- Corgier, B.P.; Marquette, C.A.; Blum, L.J. Diazonium-Protein Adducts for Graphite Electrode Microarrays Modification: Direct and Addressed Electrochemical Immobilization. J. Am. Chem. Soc. 2005, 127, 18328–18332. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Firestone, M.A.; Auciello, O.; Carlisle, J.A. Surface functionalization of ultrananocrystalline diamond films by electrochemical reduction of aryl diazonium salts. Langmuir 2004, 20, 11450–11456. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Ye, Y.; Zhu, H.; Song, Y.; He, S.; Xu, F.; Hou, H. Controllable growth of prussian blue nanostructures on carboxylic group functionalized carbon nanofibers and its application for glucose biosensing. Nanotechnology 2012, 23, 455502–455511. [Google Scholar] [CrossRef] [PubMed]
- Subramaniam, P.; Sharma, A.; Kaje, K. Association of salivary triglycerides and cholesterol with dental caries in children with type 1 diabetes mellitus. Spec. Care Dent. 2015, 35, 120–122. [Google Scholar] [CrossRef] [PubMed]
- Delvaux, M.; Demoustier-Champagne, S.; Walcarius, A. Flow injection amperometric detection at enzyme-modified gold nanoelectrodes. Electroanalysis 2004, 16, 190–198. [Google Scholar] [CrossRef]
- Rahman, M.M.; Li, X.; Kim, J.; Lim, B.O.; Ahammad, A.J.S.; Lee, J.-J. A cholesterol biosensor based on a bi-enzyme immobilized on conducting poly(thionine) film. Sens. Actuators B 2014, 202, 536–542. [Google Scholar] [CrossRef]
- Ruecha, N.; Rangkupan, R.; Rodthongkum, N.; Chailapakul, O. Novel paper-based cholesterol biosensor using graphene/polyvinylpyrrolidone/polyaniline nanocomposite. Biosens. Bioelectron. 2014, 52, 13–19. [Google Scholar] [CrossRef] [PubMed]
- Soylemez, S.; Hacioglu, S.O.; Kesik, M.; Unay, H.; Cirpan, A.; Toppare, L. A novel and effective surface design: Conducting polymer/β-cyclodextrin host-guest system for cholesterol biosensor. Appl. Mater. Interface 2014, 6, 18290–18300. [Google Scholar] [CrossRef] [PubMed]
Analyte | Electrode Material | Comb 1 | Comb 2 | ||||
---|---|---|---|---|---|---|---|
LOD (µM) | Sensitivity (µA/(mM.cm2)) | R2 | LOD (µM) | Sensitivity (µA/(mM.cm2)) | R2 | ||
Cholesterol (0.005–1 mM) | Bare carbon | 34.31 | 372.55 | 0.989 | 4.15 | 790.75 | 0.998 |
AuNP/carbon | 22.15 | 468.61 | 0.998 | 1.28 | 993.91 | 0.999 | |
Cholesterol (1–10 mM) | Bare carbon | 803 | 31.89 | 0.987 | 110 | 73.48 | 0.997 |
AuNP/carbon | 234 | 54.80 | 0.998 | 24.6 | 120.29 | 0.999 |
Sensor Material | Linear Range (mM) | LOD (µM) | Sensitivity | Immobilization Method for ChOx | Reference |
---|---|---|---|---|---|
ChOx/AgNP/BDD/PAD | 0.01–7 | 6.5 | 49.61 µA/(mM.cm2) | Physical adsorption | [38] |
ChOx/HRP/PTH/GCE | 0.025–0.125 | 6.3 | 0.18 mA/(mM.cm2) | Covalent binding | [57] |
ChOx/Nafion/Bi-Pt | 0.05–22 | 50 | 3.41 µA/(mM.cm2) | Physical adsorption | [5] |
ChOx/CS/Ti(G) 3DNS/G | 0.05–8.0 | 6 | 3.82 µA/(mM.cm2) | Physical adsorption | [14] |
ChOx-ChEt/nPd-rGO/SPEs | 0.005–0.14 | 0.05 | 5.12 mA/(mM.cm2) | Physical adsorption | [39] |
ChOx/PANI/PVP/G | 0.05–10 | 1 | 34.77 µA/(mM.cm2) | Physical adsorption | [58] |
ChOx/CS/ZnO@ZnS/GCE | 0.4–3 | 20 | 52.67 µA/(mM.cm2) | Physical adsorption | [11] |
ChOx/PSBTz/β-CD/Graphite | 0.00015–0.0225 | 0.005 | 5.77 mA/(mM.cm2) | Crosslink with CDI | [59] |
ChOx-CAT/G-IL/GCE | 0.00025–0.215 | 0.05 | 4.163 mA/(mM.cm2) | Physical adsorption | [16] |
ChOx/Pt-Au@ZnONRs/CS-MWCNTs/GCE | 0.0001–0.759 | 0.03 | 213.27 * µA/(mM.cm2) | Physical adsorption | [3] |
ChOx/AuNP/carbon IDE | 0.005–1 | 1.28 | 993.91 µA/(mM.cm2) | Covalent binding | This work |
1–10 | 24.6 | 120.29 µA/(mM.cm2) |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharma, D.; Lee, J.; Seo, J.; Shin, H. Development of a Sensitive Electrochemical Enzymatic Reaction-Based Cholesterol Biosensor Using Nano-Sized Carbon Interdigitated Electrodes Decorated with Gold Nanoparticles. Sensors 2017, 17, 2128. https://doi.org/10.3390/s17092128
Sharma D, Lee J, Seo J, Shin H. Development of a Sensitive Electrochemical Enzymatic Reaction-Based Cholesterol Biosensor Using Nano-Sized Carbon Interdigitated Electrodes Decorated with Gold Nanoparticles. Sensors. 2017; 17(9):2128. https://doi.org/10.3390/s17092128
Chicago/Turabian StyleSharma, Deepti, Jongmin Lee, Junyoung Seo, and Heungjoo Shin. 2017. "Development of a Sensitive Electrochemical Enzymatic Reaction-Based Cholesterol Biosensor Using Nano-Sized Carbon Interdigitated Electrodes Decorated with Gold Nanoparticles" Sensors 17, no. 9: 2128. https://doi.org/10.3390/s17092128
APA StyleSharma, D., Lee, J., Seo, J., & Shin, H. (2017). Development of a Sensitive Electrochemical Enzymatic Reaction-Based Cholesterol Biosensor Using Nano-Sized Carbon Interdigitated Electrodes Decorated with Gold Nanoparticles. Sensors, 17(9), 2128. https://doi.org/10.3390/s17092128