Low-Cost Graphite on Paper Pressure Sensor for a Robot Gripper with a Trivial Fabrication Process
Abstract
:1. Introduction
2. Sensor Principle and Design
3. Fabrication of the Sensor
4. Results and Discussion
4.1. Material Properties
4.2. Switching
4.3. Pressure Calibration
4.4. Response and Relaxation
4.5. Use in Robotic Touch Feedback Sensing
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chun, S.; Kim, Y.; Oh, H.S.; Bae, G.; Park, W. A Highly Sensitive Pressure Sensor Using a Double-Layered Graphene Structure for Tactile Sensing. Nanoscale 2015, 7, 11652–11659. [Google Scholar] [CrossRef] [PubMed]
- Lv, L.; Zhang, P.; Xu, T.; Qu, L. Ultrasensitive Pressure Sensor Based on Ultralight Sparkling Graphene Block. ACS Appl. Mater. Interfaces 2017, 9, 22885–22892. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.-H.; Hong, S.K.; Jang, N.-S.; Ha, S.-H.; Lee, H.-W.; Kim, J.-M. Wearable Resistive Pressure Sensor Based on Highly Flexible Carbon Composite Conductors with Irregular Surface Morphology. ACS Appl. Mater. Interfaces 2017, 9, 17499–17507. [Google Scholar] [CrossRef] [PubMed]
- Anderson, B.E. Comparison of Acceleration Sensors for American Football Helmet Impacts. Int. J. Instrum. Technol. 2015, 1, 282–293. [Google Scholar] [CrossRef]
- Weiß, K.; Worn, H. The Working Principle of Resistive Tactile Sensor Cells. In Proceedings of the IEEE International Conference on Mechatronics and Automation, Niagara Falls, ON, Canada, 29 July–1 August 2005. [Google Scholar]
- Lee, J.; Kwon, H.; Seo, J.; Shin, S.; Koo, J.H.; Pang, C.; Son, S.; Kim, J.H.; Jang, Y.H.; Kim, D.E. Conductive Fiber-Based Ultrasensitive Textile Pressure Sensor for Wearable Electronics. Adv. Mater. 2015, 27, 2433–2439. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.Y.; Park, S.; Park, H.W.; Park, D.H.; Jeong, Y.; Kim, D.H. Highly Sensitive and Multimodal All-Carbon Skin Sensors Capable of Simultaneously Detecting Tactile and Biological Stimuli. Adv. Mater. 2015, 27, 4178–4185. [Google Scholar] [CrossRef] [PubMed]
- Dempsey, S.J.; Szablewski, M.; Atkinson, D. Tactile sensing in human-computer interfaces: The inclusion of pressure sensitivity as a third dimension of user input. Sens. Actuators A Phys. 2015, 232, 229–250. [Google Scholar] [CrossRef] [Green Version]
- Stassi, S.; Cauda, V.; Canavese, G.; Pirri, C.F. Flexible tactile sensing based on piezoresistive composites: A review. Sensors 2014, 14, 5296–5332. [Google Scholar] [CrossRef] [PubMed]
- Tiwana, M.I.; Redmond, S.J.; Lovell, N.H. A review of tactile sensing technologies with applications in biomedical engineering. Sens. Actuators A Phys. 2012, 179, 17–31. [Google Scholar] [CrossRef]
- Yousef, H.; Boukallel, M.; Althoefer, K. Tactile sensing for dexterous in-hand manipulation in robotics—A review. Sens. Actuators A Phys. 2011, 167, 171–187. [Google Scholar] [CrossRef]
- Akar, O.; Akin, T.; Najafi, K. A Wireless Batch Sealed Absolute Capacitive Pressure Sensor. Sens. Actuators A Phys. 2001, 95, 29–38. [Google Scholar] [CrossRef]
- He, Y.; Li, W.; Yang, G.; Liu, H.; Lu, J.; Zheng, T.; Li, X. A Novel Method for Fabricating Wearable, Piezoresistive, and Pressure Sensors Based on Modified-Graphite/Polyurethane Composite Films. Materials 2017, 10, 684. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.; Lee, J.; Kim, G.; Kim, Y.; Kang, S.; Cho, S.; Kim, S.; Kim, J.; Lee, W.; Kim, D. Rough-Surface-Enabled Capacitive Pressure Sensors with 3d Touch Capability. Small 2017, 13, 1700368. [Google Scholar] [CrossRef] [PubMed]
- Woo, S.-J.; Kong, J.-H.; Kim, D.-G.; Kim, J.-M. A Thin All-Elastomeric Capacitive Pressure Sensor Array Based on Micro-Contact Printed Elastic Conductors. J. Mater. Chem. C 2014, 2, 4415–4422. [Google Scholar] [CrossRef]
- Gong, S.; Schwalb, W.; Wang, Y.; Chen, Y.; Tang, Y.; Si, J.; Shirinzadeh, B.; Cheng, W. A Wearable and Highly Sensitive Pressure Sensor with Ultrathin Gold Nanowires. Nat. Commun. 2014, 5, 3132. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.-H.; Liu, H.-Z.; Chen, S.; Dong, X.; Wang, P.-P.; Liu, S.; Lin, Y.; Wei, Y.; Liu, L. Channel Crack-Designed Gold@ Pu Sponge for Highly Elastic Piezoresistive Sensor with Excellent Detectability. ACS Appl. Mater. Interfaces 2017, 9, 20098–20105. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Liu, N.; Shi, Y.; Liu, W.; Yue, Y.; Wang, S.; Ma, Y.; Wen, L.; Li, L.; Long, F. Piezoresistive Sensor with High Elasticity Based on 3d Hybrid Network of Sponge@ Cnts@ Ag Nps. ACS Appl. Mater. Interfaces 2016, 8, 22374–22381. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Han, Y.; Zhang, X.; Zhou, Z.; Lu, C. Large-Area Compliant, Low-Cost, and Versatile Pressure-Sensing Platform Based on Microcrack-Designed Carbon Black@ Polyurethane Sponge for Human–Machine Interfacing. Adv. Funct. Mater. 2016, 26, 6246–6256. [Google Scholar] [CrossRef]
- Liu, X.; Zhu, Y.; Nomani, M.W.; Wen, X.; Hsia, T.Y.; Koley, G. A Highly Sensitive Pressure Sensor Using a Au-Patterned Polydimethylsiloxane Membrane for Biosensing Applications. J. Micromech. Microeng. 2013, 23, 025022. [Google Scholar] [CrossRef]
- Pang, Y.; Tian, H.; Tao, L.; Li, Y.; Wang, X.; Deng, N.; Yang, Y.; Ren, T. Flexible, Highly Sensitive, and Wearable Pressure and Strain Sensors with Graphene Porous Network Structure. ACS Appl. Mater. Interfaces 2016, 8, 26458–26462. [Google Scholar] [CrossRef] [PubMed]
- Samad, Y.A.; Li, Y.; Alhassan, S.M.; Liao, K. Novel Graphene Foam Composite with Adjustable Sensitivity for Sensor Applications. ACS Appl. Mater. Interfaces 2015, 7, 9195–9202. [Google Scholar] [CrossRef] [PubMed]
- Yao, H.-B.; Ge, J.; Wang, C.-F.; Wang, X.; Hu, W.; Zheng, Z.-J.; Ni, Y.; Yu, S.-H. A Flexible and Highly Pressure-Sensitive Graphene–Polyurethane Sponge Based on Fractured Microstructure Design. Adv. Mater. 2013, 25, 6692–6698. [Google Scholar] [CrossRef] [PubMed]
- Pan, L.; Chortos, A.; Yu, G.; Wang, Y.; Isaacson, S.; Allen, R.; Shi, Y.; Dauskardt, R.; Bao, Z. An Ultra-Sensitive Resistive Pressure Sensor Based on Hollow-Sphere Microstructure Induced Elasticity in Conducting Polymer Film. Nat. Commun. 2014, 5, 3002. [Google Scholar] [CrossRef] [PubMed]
- Dinh, T.; Nguyen, T.K.; Phan, H.P.; Fastier-Wooller, J.; Tran, C.D.; Nguyen, N.T.; Dao, D.V. Electrical resistance of carbon nanotube yarns under compressive transverse pressure. IEEE Electron Device Lett. 2018, 39, 584–587. [Google Scholar] [CrossRef]
- Russo, A.; Ahn, B.Y.; Adams, J.J.; Duoss, E.B.; Bernhard, J.T.; Lewis, J.A. Pen-on-Paper Flexible Electronics. Adv. Mater. 2011, 23, 3426–3430. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; He, C.; Yang, R.; Shi, Z.; Cheng, M.; Yang, W.; Xie, G.; Wang, D.; Shi, D.; Zhang, G. Ultra-Sensitive Strain Sensors Based on Piezoresistive Nanographene Films. Appl. Phys. Lett. 2012, 101, 063112. [Google Scholar] [CrossRef]
- Kurra, N.; Dutta, D.; Kulkarni, G.U. Field Effect Transistors and Rc Filters from Pencil-Trace on Paper. Phys. Chem. Chem. Phys. 2013, 15, 8367–8372. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.-W.; ZZhao, h.; Kim, J.; Huang, J. Pencil Drawn Strain Gauges and Chemiresistors on Paper. Sci. Rep. 2014, 4, 3812. [Google Scholar] [CrossRef] [PubMed]
- Yun, T.; Eom, S.; Lim, S. Paper-Based Capacitive Touchpad Using Home Inkjet Printer. J. Disp. Technol. 2016, 12, 1411–1416. [Google Scholar] [CrossRef]
- Mazzeo, A.D.; Kalb, W.B.; Chan, L.; Killian, M.G.; Bloch, J.; Mazzeo, B.A.; Whitesides, G.M. Paper-Based, Capacitive Touch Pads. Adv. Mater. 2012, 24, 2850–2856. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Canavese, G.; Lombardi, M.; Stassi, S.; Pirri, C.F. Comprehensive characterization of large piezoresistive variation of Ni-PDMS composites. In Applied Mechanics and Materials; Trans Tech Publications: Zürich, Switzerland, 2012; Volume 110, pp. 1336–1344. [Google Scholar]
- Lebosse, C.; Renaud, P.; Bayle, B.; de Mathelin, M. Modeling and evaluation of low-cost force sensors. IEEE Trans. Robot. 2011, 27, 815–822. [Google Scholar] [CrossRef]
- Ding, S.; Han, B.; Dong, X.; Yu, X.; Ni, Y.; Zheng, Q.; Ou, J. Pressure-sensitive behaviors, mechanisms and model of field assisted quantum tunneling composites. Polymer 2017, 113, 105–118. [Google Scholar] [CrossRef]
- Dinh, T.; Phan, H.P.; Dao, D.V.; Woodfield, P.; Qamar, A.; Nguyen, N.T. Graphite on paper as material for sensitive thermoresistive sensors. J. Mater. Chem. C 2015, 3, 8776–8779. [Google Scholar] [CrossRef]
- Zhu, Y.; Li, J.; Cai, H.; Wu, Y.; Ding, H.; Pan, N.; Wang, X. Highly sensitive and skin-like pressure sensor based on asymmetric double-layered structures of reduced graphite oxide. Sens. Actuators B Chem. 2018, 255, 1262–1267. [Google Scholar] [CrossRef]
- Simmons, J.G. Electric tunnel effect between dissimilar electrodes separated by a thin insulating film. J. Appl. Phys. 1963, 34, 2581–2590. [Google Scholar] [CrossRef]
- Darlinski, G.; Böttger, U.; Waser, R.; Klauk, H.; Halik, M.; Zschieschang, U.; Schmid, G.; Dehm, C. Mechanical force sensors using organic thin-film transistors. J. Appl. Phys. 2005, 97, 093708. [Google Scholar] [CrossRef] [Green Version]
- Metzger, C.; Fleisch, E.; Meyer, J.; Dansachmüller, M.; Graz, I.; Kaltenbrunner, M.; Keplinger, C.; Schwödiauer, R.; Bauer, S. Flexible-foam-based capacitive sensor arrays for object detection at low cost. Appl. Phys. Lett. 2008, 92, 013506. [Google Scholar] [CrossRef]
- Lipomi, D.J.; Vosgueritchian, M.; Tee, B.C.; Hellstrom, S.L.; Lee, J.A.; Fox, C.H.; Bao, Z. Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nat. Nanotechnol. 2011, 6, 788. [Google Scholar] [CrossRef] [PubMed]
Pressure Sensor | Materials | Design and Implementation Cost | Sensitivity | Range | Response/Relaxation | Solvent | Ref. |
---|---|---|---|---|---|---|---|
Capacitive | sparkling graphene block | automatic egg beater, freeze dry, annealing | 229.8 kPa−1 26.86 kPa−1 | 0–0.12 kPa 0.4–1.0 kPa | ≈1085 mm s−1 “recovery speed” | Yes | [2] |
Capacitive | SBS AgNP Composite-coated Kevlar Fibre | SBS coating, Ag precursor absorption, precursor reduction | 0.210 kPa−1 0.064 kPa−1 | <2 kPa >2 kPa | ≈40 ms ≈10 ms | Yes | [6] |
Capacitive | Au-electroplated planar coil. Si/glass substrates | dissolved-wafer process | 1580 ppm/mmHg | 0–50 mmHg | 120 kHz/mmHg | Yes | [12] |
Capacitive | MG/PU composite film | solution compounding method | 0.274 kPa−1 | 0–0.2 kPa | --- | Yes | [13] |
Capacitive | PDMS coated graphite on paper | paper, pencil, PDMS | 0.62 kPa−1 | <2 kPa | 200 ms rise 400 ms fall | Yes | [14] |
Capacitive | PDMS, CPDMS, Ecoflex | photolithography, micro-contact printing, spin-coating, thermal curing | 0.42 Pa−1 | 0–1.2 mPa | --- | Yes | [15] |
Capacitive | Au nanowire coated tissue paper, PDMS | dip coating/drying, PDMS, PDMS patterned with integrated electrodes | 1.14 kPa−1 | 5 kPa | <17 ms | Yes | [16] |
Piezo-resistive | graphene | CVD sputtering system | −0.24kPa−1 0.039kPa−1 | 0.3–200 Pa 700+ Pa | >40 ms | Yes | [1] |
Piezo-resistive | Au@PU | ion sputtering | 0.059 kPa−1 | 0–5 kPa | 9 ms | No | [17] |
Piezo-resistive | sponge@CNTs@Ag NPs | “dip and dry” technique | 2.12 kPa−1 9.08 kPa−1 | 2.24–11 kPa 11–61.81 kPa | --- | Yes | [18] |
Piezo-resistive | CB@PU sponges | water-based LBL assembly | 0.068 kPa−1 0.023 kPa−1 0.036 kPa−1 | ≈0–2.3 kPa 2.3− ≈ 10 kPa ≈10− ≈ 16 kPa | <20ms | Yes | [19] |
Resistive | VACNT/PDMS composite | CNT (T-CVD) sandblasting, etc. | ~0.3 kPa−1 ~0.05 kPa−1 | 0–0.7 kPa 0.7–2 kPa | ≈162 ms ≈108 ms | Yes | [3] |
Resistive | Au-patterned polydimethylsiloxane membrane | MEMs process (PR, deposition, etc.) | 0.23 kPa−1 | 0–6.7 kPa | ≈200ms | Yes | [20] |
Resistive | graphene Porous Network Structure and PDMS | PDMS infiltration Ni etching | 0.09 kPa−1 | <1000 kPa | ≈100 ms rise ≈80 ms fall | Yes | [21] |
Resistive | graphene foam and PDMS | vacuum-assisted dip-coating reduction etching | ≈0.6 kPa−1 ≈0.8 kPa−1 60 kPa−1 | 0–200 kPa 200–500 kPa 500+ kPa | >10s | Yes | [22] |
Resistive | graphene-wrapped PU sponges | RGO-PUS-HT-P sponge | --- | 9+ Pa | --- | Yes | [23] |
Resistive | elastic microstructured conducting polymer | --- | ≈7.7–41.9 kPa−1 <0.4 kPa−1 | <100 Pa >1 kPa | ≈50 ms | Yes | [24] |
Resistive | CNT/polymer | Chemical vapour deposition, polymer tape | 0.15–0.67 Pa−1 | 0–60 kPa | 100 ms | Yes | [25] |
Resistive | graphite on paper | Paper, Pencil, office tape | ≈−0.35 Pa−1 ≈−0.05 Pa−1 | 100–250 kPa 300–800 kPa | ≈0.4 ms | No | This |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fastier-Wooller, J.; Dinh, T.; Dau, V.T.; Phan, H.-P.; Yang, F.; Dao, D.V. Low-Cost Graphite on Paper Pressure Sensor for a Robot Gripper with a Trivial Fabrication Process. Sensors 2018, 18, 3300. https://doi.org/10.3390/s18103300
Fastier-Wooller J, Dinh T, Dau VT, Phan H-P, Yang F, Dao DV. Low-Cost Graphite on Paper Pressure Sensor for a Robot Gripper with a Trivial Fabrication Process. Sensors. 2018; 18(10):3300. https://doi.org/10.3390/s18103300
Chicago/Turabian StyleFastier-Wooller, Jarred, Toan Dinh, Van Thanh Dau, Hoang-Phuong Phan, Fuwen Yang, and Dzung Viet Dao. 2018. "Low-Cost Graphite on Paper Pressure Sensor for a Robot Gripper with a Trivial Fabrication Process" Sensors 18, no. 10: 3300. https://doi.org/10.3390/s18103300
APA StyleFastier-Wooller, J., Dinh, T., Dau, V. T., Phan, H.-P., Yang, F., & Dao, D. V. (2018). Low-Cost Graphite on Paper Pressure Sensor for a Robot Gripper with a Trivial Fabrication Process. Sensors, 18(10), 3300. https://doi.org/10.3390/s18103300