Effects of an Integrated Neurofeedback System with Dry Electrodes: EEG Acquisition and Cognition Assessment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Neurofeedback System
2.3. Experimental Protocol
2.3.1. Experimental Design
2.3.2. Neurofeedback Protocol
2.3.3. Behavioral Tests
2.4. EEG Acquisition and EEG Data Analysis
2.5. Statistical Analysis
3. Results
3.1. Subject Information
3.2. Neurofeedback Performance
3.3. Cognitive Performance
3.3.1. Memory Ability
3.3.2. Attention Network
4. Discussion and Conclusions
4.1. Integrated Neurofeedback System: Varying Interface, High Efficiency, Complete Functions and Wide Suitablity
4.2. Effects of System: Improve Working Memory by Intensifying Alpha Activity
4.3. Limitations and Further Research Direction
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Enriquezgeppert, S.; Huster, R.J.; Herrmann, C.S. EEG-Neurofeedback as a tool to modulate cognition and behavior: A review tutorial. Front. Hum. Neurosci. 2017, 11, 51. [Google Scholar]
- Abdulkader, S.N.; Atia, A.; Mostafa, M.S.M. Brain computer interfacing: Applications and challenges. Egypt. Informat. J. 2015, 16, 213–230. [Google Scholar] [CrossRef]
- Popescu, F.; Fazli, S.; Badower, Y.; Blankertz, B.; Muller, K.R. Single trial classification of motor imagination using 6 dry EEG electrodes. PLoS ONE 2007, 2, e637. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.T.; Liao, L.D.; Liu, Y.H.; Wang, I.J.; Lin, B.S.; Chang, J.Y. Novel dry polymer foam electrodes for long-term EEG measurement. IEEE Trans. Biomed. Eng. 2011, 58, 1200–1207. [Google Scholar] [CrossRef] [PubMed]
- Ferree, T.C.; Luu, P.; Russell, G.S.; Tucker, D.M. Scalp electrode impedance, infection risk, and EEG data quality. Clin. Neurophysiol. 2001, 112, 536–544. [Google Scholar] [CrossRef]
- Gargiulo, G.; Calvo, R.A.; Bifulco, P.; Cesarelli, M.; Jin, C.; Mohamed, A.; van Schaik, A. A new EEG recording system for passive dry electrodes. Clin. Neurophysiol. 2010, 121, 686–693. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.H.; Chen, S.H.; Chang, C.L.; Lin, C.T.; Hairston, W.D.; Mrozek, R.A. New flexible silicone-based EEG dry sensor material compositions exhibiting improvements in lifespan, conductivity, and reliability. Sensors 2016, 16. [Google Scholar] [CrossRef] [PubMed]
- Ha, S.; Kim, C.; Chi, Y.M.; Akinin, A.; Maier, C.; Ueno, A.; Cauwenberghs, G. Integrated circuits and electrode interfaces for noninvasive physiological monitoring. IEEE Trans. Biomed. Eng. 2014, 61, 1522–1537. [Google Scholar] [CrossRef] [PubMed]
- Mullen, T.R.; Kothe, C.A.; Chi, Y.M.; Ojeda, A.; Kerth, T.; Makeig, S.; Jung, T.P.; Cauwenberghs, G. Real-time neuroimaging and cognitive monitoring using wearable dry EEG. IEEE Trans. Biomed. Eng. 2015, 62, 2553–2567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grierson, M.; Kiefer, C. Better brain interfacing for the masses: Progress in event-related potential detection using commercial brain computer interfaces. In Proceedings of the CHI 11 Extended Abstracts on Human Factors in Computing Systems, Vancouver, BC, Canada, 7–12 May 2011; pp. 1681–1686. [Google Scholar]
- Phneah, S.W.; Nisar, H. EEG-based alpha neurofeedback training for mood enhancement. Australas. Phys. Eng. Sci. Med. 2017, 40, 325–336. [Google Scholar] [CrossRef] [PubMed]
- Woodford, H.J.; George, J. Cognitive assessment in the elderly: A review of clinical methods. QJM 2007, 100, 469–484. [Google Scholar] [CrossRef] [PubMed]
- Hohenfeld, C.; Nellessen, N.; Dogan, I.; Kuhn, H.; Muller, C.; Papa, F.; Ketteler, S.; Goebel, R.; Heinecke, A.; Shah, N.J.; et al. Cognitive improvement and brain changes after real-time functional MRI neurofeedback training in healthy elderly and prodromal alzheimer’s disease. Front. Neurol. 2017, 8, 384. [Google Scholar] [CrossRef] [PubMed]
- Hsueh, J.J.; Chen, T.S.; Chen, J.J.; Shaw, F.Z. Neurofeedback training of EEG alpha rhythm enhances episodic and working memory. Hum. Brain Mapp. 2016, 37, 2662–2675. [Google Scholar] [CrossRef] [PubMed]
- Bryan, C.; Hernandez, A.M. Magnitudes of decline on Automated Neuropsychological Assessment Metrics subtest scores relative to predeployment baseline performance among service members evaluated for traumatic brain injury in Iraq. J. Head Trauma Rehabil. 2012, 27, 45–54. [Google Scholar] [CrossRef] [PubMed]
- Becker, J.T.; Dew, M.A.; Aizenstein, H.J.; Lopez, O.L.; Morrow, L.; Saxton, J. Concurrent validity of a computer-based cognitive screening tool for use in adults with HIV disease. AIDS Patient Care STDS 2011, 25, 351–357. [Google Scholar] [CrossRef] [PubMed]
- Schneider, W.; Eschman, A.; Zuccolotto, A. E-Prime Reference Guide; Psychology Software Tools Inc.: Pittsburgh, PA, USA, 2002. [Google Scholar]
- Hosseini, S.M.H.; Pritchard-Berman, M.; Sosa, N.; Ceja, A.; Kesler, S.R. Task-based neurofeedback training: A novel approach toward training executive functions. Neuroimage 2016, 134, 153–159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roohi-Azizi, M.; Azimi, L.; Heysieattalab, S.; Aamidfar, M. Changes of the brain’s bioelectrical activity in cognition, consciousness, and some mental disorders. Med. J. Islam. Repub. Iran 2017, 31, 53. [Google Scholar] [CrossRef] [PubMed]
- Bazanova, O. Comments for current interpretation EEG alpha activity: A review and analysis. J. Behav. Brain Sci. 2012, 2, 239–248. [Google Scholar] [CrossRef]
- Hanslmayr, S.; Sauseng, P.; Doppelmayr, M.; Schabus, M.; Klimesch, W. Increasing individual upper alpha power by neurofeedback improves cognitive performance in human subjects. Appl. Psychophysiol. Biofeedback 2005, 30, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Anokhin, A.; Vogel, F. EEG alpha rhythm frequency and intelligence in normal adults. Intelligence 1996, 23, 1–14. [Google Scholar] [CrossRef]
- Nan, W.; Rodrigues, J.P.; Ma, J.; Qu, X.; Wan, F.; Mak, P.I.; Mak, P.U.; Vai, M.I.; Rosa, A. Individual alpha neurofeedback training effect on short term memory. Int. J. Psychophysiol. 2012, 86, 83–87. [Google Scholar] [CrossRef] [PubMed]
- Klimesch, W.; Sauseng, P.; Hanslmayr, S. EEG alpha oscillations: The inhibition-timing hypothesis. Brain Res. Rev. 2007, 53, 63–88. [Google Scholar] [CrossRef] [PubMed]
- Escolano, C.; Navarro-Gil, M.; Garcia-Campayo, J.; Congedo, M.; Minguez, J. The effects of individual upper alpha neurofeedback in ADHD: An open-label pilot study. Appl. Psychophysiol. Biofeedback 2014, 39, 193–202. [Google Scholar] [CrossRef] [PubMed]
- Lisi, G.; Hamaya, M.; Noda, T.; Morimoto, J. Dry-wireless EEG and asynchronous adaptive feature extraction towards a plug-and-play co-adaptive brain robot interface. In Proceedings of the IEEE International Conference on Robotics and Automation, Stockholm, Sweden, 16–21 May 2016; pp. 959–966. [Google Scholar]
- Aznan, N.K.N.; Bonner, S.; Connolly, J.D.; Moubayed, N.A.; Breckon, T.P. On the classification of SSVEP-based dry-EEG signals via convolutional neural networks. arXiv, 2018; arXiv:1805.04157. [Google Scholar]
- Lisi, G.; Rivela, D.; Takai, A.; Morimoto, J. Markov switching model for quick detection of event related desynchronization in EEG. Front. Neurosci. 2018, 12, 24. [Google Scholar] [CrossRef] [PubMed]
- Chi, Y.M.; Wang, Y.; Wang, Y.T.; Jung, T.P.; Kerth, T.; Cao, Y. A Practical Mobile Dry EEG System for Human Computer Interfaces; Springer: Berlin/Heidelberg, Germany, 2013; pp. 649–655. [Google Scholar]
- Gargiulo, G.; Bifulco, P.; Cesarelli, M.; Fratini, A.; Romano, M. Problems in assessment of novel biopotential front-end with dry electrode: A brief review. Machines 2014, 2, 87–98. [Google Scholar] [CrossRef]
- Hinterberger, T.; Neumann, N.; Pham, M.; Kubler, A.; Grether, A.; Hofmayer, N.; Wilhelm, B.; Flor, H.; Birbaumer, N. A multimodal brain-based feedback and communication system. Exp. Brain Res. 2004, 154, 521–526. [Google Scholar] [CrossRef] [PubMed]
- Dempster, T.; Vernon, D. Identifying indices of learning for alpha neurofeedback training. Appl. Psychophysiol. Biofeedback 2009, 34, 309–328. [Google Scholar] [CrossRef] [PubMed]
- Wolpaw, J.R.; Flotzinger, D.; Pfurtscheller, G.; McFarland, D.J. Timing of EEG-based cursor control. J. Clin. Neurophysiol. 1997, 14, 529–538. [Google Scholar] [CrossRef] [PubMed]
- Wei, T.Y.; Chang, D.W.; Liu, Y.D.; Liu, C.W.; Young, C.P.; Liang, S.F.; Shaw, F.Z. Portable wireless neurofeedback system of EEG alpha rhythm enhances memory. Biomed. Eng. Online 2017, 16, 128. [Google Scholar] [CrossRef] [PubMed]
- Togo, F.; Lange, G.; Natelson, B.H.; Quigley, K.S. Attention network test: Assessment of cognitive function in chronic fatigue syndrome. J. Neuropsychol. 2015, 9, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Estepp, J.R.; Christensen, J.C.; Monnin, J.W.; Davis, I.M.; Wilson, G.F. Validation of a dry electrode system for EEG. Hum. Factors Ergon. Soc. Annu. Meet. Proc. 2009, 53, 1171–1175. [Google Scholar] [CrossRef]
- Epstein. Guideline 1: Minimum technical requirements for performing clinical electroencephalography. Am. J. Electroneurodiagn. Technol. 2006, 46, 198–204. [Google Scholar] [CrossRef]
- Chapman, R.M.; Shelburne, S.A., Jr.; Bragdon, H.R. EEG alpha activity influenced by visual input and not by eye position. Electroencephalogr. Clin. Neurophysiol. 1970, 28, 183–189. [Google Scholar] [CrossRef]
- Mullen, T.; Kothe, C.; Chi, Y.M.; Ojeda, A.; Kerth, T.; Makeig, S.; Cauwenberghs, G.; Jung, T.P. Real-time modeling and 3D visualization of source dynamics and connectivity using wearable EEG. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2013, 2013, 2184. [Google Scholar] [PubMed]
- Covell, M.; Richardson, J. A new, efficient structure for the short-time Fourier transform, with an application in code-division sonar imaging. In Proceedings of the Acoustics, Speech, and Signal Processing, Toronto, ON, Canada, 14–17 April 1991; pp. 2041–2044. [Google Scholar]
- Delorme, A.; Makeig, S. EEG changes accompanying learned regulation of 12-Hz EEG activity. IEEE Trans. Neural Syst. Rehabil. Eng. 2003, 11, 133–137. [Google Scholar] [CrossRef] [PubMed]
- Sinkkonen, J.; Tiitinen, H.; Naatanen, R. Gabor Filters—An informative way for analyzing event-related brain activity. J. Neurosci. Methods 1995, 56, 99–104. [Google Scholar] [CrossRef]
- Liu, M.; Pei, G.; Peng, Y.; Wang, C.; Yan, T.; Wu, J. Disordered high-frequency oscillation in face processing in schizophrenia patients. Medicine 2018, 97, e9753. [Google Scholar] [CrossRef] [PubMed]
- David, O.; Kilner, J.M.; Friston, K.J. Mechanisms of evoked and induced responses in MEG/EEG. Neuroimage 2006, 31, 1580–1591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.R.; Hsieh, S. Neurofeedback training improves attention and working memory performance. Clin. Neurophysiol. 2013, 124, 2406–2420. [Google Scholar] [CrossRef] [PubMed]
- Chiew, K.S.; Braver, T.S. Positive affect versus reward: Emotional and motivational influences on cognitive control. Front. Psychol. 2011, 2, 279. [Google Scholar] [CrossRef] [PubMed]
- Ryff, C.D.; Keyes, C.L. The structure of psychological well-being revisited. J. Pers. Soc. Psychol. 1995, 69, 719–727. [Google Scholar] [CrossRef] [PubMed]
- Salisbury, D.B.; Dahdah, M.; Driver, S.; Parsons, T.D.; Richter, K.M. Virtual reality and brain computer interface in neurorehabilitation. Proc. (Bayl. Univ. Med. Cent.) 2016, 29, 124–127. [Google Scholar] [CrossRef] [PubMed]
- DeBettencourt, M.T.; Cohen, J.D.; Lee, R.F.; Norman, K.A.; Turk-Browne, N.B. Closed-loop training of attention with real-time brain imaging. Nat. Neurosci. 2015, 18, 470–475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reis, J.; Portugal, A.M.; Fernandes, L.; Afonso, N.; Pereira, M.; Sousa, N.; Dias, N.S. An alpha and theta intensive and short neurofeedback protocol for healthy aging working-memory training. Front. Aging Neurosci. 2016, 8, 157. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Bloch, I.; Chevallier, S.; Wiart, J. Subject-specific channel selection using time information for motor imagery brain–computer interfaces. Cogn. Comput. 2016, 8, 505–518. [Google Scholar] [CrossRef]
- Ghaemi, A.; Rashedi, E.; Pourrahimi, A.M.; Kamandar, M.; Rahdari, F. Automatic channel selection in EEG signals for classification of left or right hand movement in brain computer interfaces using improved binary gravitation search algorithm. Biomed. Signal Process. Control 2017, 33, 109–118. [Google Scholar] [CrossRef]
- Ge, S.; Yang, Q.; Wang, R.M.; Lin, P.; Gao, J.F.; Leng, Y.; Yang, Y.K.; Wang, H.X. A brain-computer interface based on a few-channel eeg-fnirs bimodal system. IEEE Access 2017, 5, 208–218. [Google Scholar] [CrossRef]
- Yang, Y.; Chevallier, S.; Wiart, J.; Bloch, I. Subject-specific time-frequency selection for multi-class motor imagery-based BCIs using few Laplacian EEG channels. Biomed. Signal Process. Control 2017, 38, 302–311. [Google Scholar] [CrossRef] [Green Version]
- Ozmen, N.G.; Gumusel, L.; Yang, Y. A Biologically inspired approach to frequency domain feature extraction for EEG Classification. Comput. Math. Methods Med. 2018. [Google Scholar] [CrossRef]
- Funahashi, S. Working memory in the prefrontal cortex. Brain Sci. 2017, 7, 49. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Nan, W.; Qu, X.; Wan, F.; Mak, P.I.; Mak, P.U.; Vai, M.I.; Hu, Y.; Rosa, A. Beta/theta ratio neurofeedback training effects on the spectral topography of EEG. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2015, 2015, 4741–4744. [Google Scholar] [CrossRef] [PubMed]
- Lecomte, G.L.; Juhel, J. The Effects of neurofeedback training on memory performance in elderly subjects. Psychology 2011, 2, 846–852. [Google Scholar] [CrossRef]
- Itthipuripat, S.; Wessel, J.R.; Aron, A.R. Frontal theta is a signature of successful working memory manipulation. Exp. Brain Res. 2013, 224, 255–262. [Google Scholar] [CrossRef] [PubMed]
- Corbetta, M. Frontoparietal cortical networks for directing attention and the eye to visual locations: Identical, independent, or overlapping neural systems? Proc. Natl. Acad. Sci. USA 1998, 95, 831–838. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fabien, L.; Florian, L.; Christian, M. Flaws in current human training protocols for spontaneous brain-computer interfaces: Lessons learned from instructional design. Front. Hum. Neurosci. 2013, 7, 568. [Google Scholar]
- Gargiulo, G.D.; Mohamed, A.; McEwan, A.L.; Bifulco, P.; Cesarelli, M.; Jin, C.T.; Ruffo, M.; Tapson, J.; van Schaik, A. Investigating the role of combined acoustic-visual feedback in one-dimensional synchronous brain computer interfaces, a preliminary study. Med. Devices 2012, 5, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Kelly, S.P.; Lalor, E.C.; Reilly, R.B.; Foxe, J.J. Visual spatial attention tracking using high-density SSVEP data for independent brain-computer communication. IEEE Trans. Neural Syst. Rehabil. Eng. 2005, 13, 172–178. [Google Scholar] [CrossRef] [PubMed]
- Kauhanen, L.; Palomäki, T.; Jylänki, P.; Aloise, F.; Nuttin, M.; Millán, J.D.R. Haptic Feedback Compared with Visual Feedback for BCI; Verlag Der Tu Graz: Graz, Austria, 2006. [Google Scholar]
- Khanna, P.; Swann, N.; De, H.C.; Miocinovic, S.; Miller, A.; Starr, P.A.; Carmena, J.M. Neurofeedback control in parkinsonian patients using electrocortigraphy signals accessed wirelessly with a chronic, fully implanted device. IEEE Trans. Neural Syst. Rehabil. Eng. 2017, 25, 1715–1724. [Google Scholar] [CrossRef] [PubMed]
- Bundy, D.T.; Souders, L.; Baranyai, K.; Leonard, L.; Schalk, G.; Coker, R.; Moran, D.W.; Huskey, T.; Leuthardt, E.C. Contralesional brain-computer interface control of a powered exoskeleton for motor recovery in chronic stroke survivors. Stroke 2017, 48, 1908–1915. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Zhao, S.; Duan, J.; Su, C.-Y.; Yang, C.; Zhao, X. Human cooperative wheelchair with brain-machine interaction based on shared control strategy. IEEE-ASME Trans. Mechatron. 2017, 22, 185–195. [Google Scholar] [CrossRef]
- Yang, Y.; Wiart, J.; Bloch, I. Towards next generation human-computer interaction—Brain-computer interfaces: Applications and challenges. In Proceedings of the First International Symposium of Chinese CHI, Paris, France, 27 March 2013; p. 1. [Google Scholar]
- Hu, X.L.; Zhao, T.; Yao, J.; Kuang, Y.; Yang, Y. Advances in neural engineering for rehabilitation. Behav. Neurol. 2017. [Google Scholar] [CrossRef] [PubMed]
Characteristics | NF Group (n = 10) | Sham-NF Group (n = 10) | p Value |
---|---|---|---|
Age (Mean ± SD 1), years | 22.7 ± 1.952 | 21.2 ± 1.720 | 0.124 |
Gender (Female:Male) | (3:7) | (3:7) | - |
Educational Level | BD 2:10 | BD 2:10 | - |
Rhythm | Theta | Alpha | Beta | Gamma |
---|---|---|---|---|
Session 1 | t(18) = −0.394, p = 0.698 | t(18) = −0.626, p = 0.539 | t(18) = −0.636, p = 0.533 | t(18) = −0.580, p = 0.569 |
Session 2 | t(18) = −0.244, p = 0.810 | t(18) = −0.267, p = 0.793 | t(18) = −0.257, p = 0.800 | t(18) = −0.430, p = 0.672 |
Session 3 | t(18) = −0.968, p = 0.346 | t(18) = −0.920, p = 0.370 | t(18) = −0.913, p = 0.373 | t(18) = −0.969, p = 0.346 |
Session 4 | t(18) = −1.384, p = 0.183 | t(18) = −1.508, p = 0.149 | t(18) = −1.436, p = 0.168 | t(18) = −1.315, p = 0.205 |
Session 5 | t(12.668) = −2.355, p = 0.035 | t(12.270) = −2.254, p = 0.043 | t(11.671) = −2.129, p = 0.055 | t(11.998) = −2.136, p = 0.054 |
Group | NF (Accuracy %) | Sham-NF (Accuracy %) | ||
---|---|---|---|---|
Task name | pretest | posttest | pretest | posttest |
BDST 1 | 68.45 ± 14.74 | 82.83 ± 10.87 | 61.5 ± 16.46 | 73.28 ± 8.39 |
WPT 2 | 47.5024.07 | 53.13 ± 27.05 | 46.25 ± 16.83 | 54.00 ± 20.73 |
Group | Sham | NF | |||||
---|---|---|---|---|---|---|---|
Cue Type | Phase | Neutral | Congruent | Incongruent | Neutral | Congruent | Incongruent |
No | Pre | 549.5610 | 550.0533 | 647.6490 | 577.3071 | 597.9826 | 667.8678 |
(70.8546) | (70.5773) | (72.3438) | (65.2450) | (97.4248) | (65.6699) | ||
Post | 521.6632 | 531.1997 | 613.8091 | 566.6616 | 566.5036 | 649.5054 | |
(55.9449) | (57.9034) | (60.4480) | (91.2824) | (69.0719) | (87.6201) | ||
Center | Pre | 511.7615 | 546.6616 | 613.1631 | 566.7919 | 575.8866 | 631.1587 |
(54.5679) | (72.1105) | (67.2868) | (77.0855) | (79.7234) | (79.3718) | ||
Post | 507.9310 | 503.0821 | 558.6546 | 551.2491 | 536.5269 | 601.8069 | |
(41.4997) | (50.9089) | (58.4397) | (105.4994) | (83.6195) | (93.6850) | ||
Double | Pre | 512.0490 | 520.3047 | 595.0804 | 545.6622 | 557.6873 | 622.1264 |
(47.4418) | (57.6369) | (54.8506) | (86.3291) | (75.0534) | (87.2844) | ||
Post | 496.5916 | 493.1745 | 553.2295 | 520.5884 | 538.9169 | 590.0346 | |
(56.5859) | (58.8005) | (44.1290) | (85.6889) | (89.7205) | (98.3674) | ||
Spatial | Pre | 519.3953 | 511.8689 | 580.6556 | 534.2236 | 564.5059 | 618.8624 |
(59.6872) | (54.3823) | (59.9480) | (57.9978) | (75.8159) | (101.8659) | ||
Post | 479.0783 | 480.0095 | 545.9844 | 530.6068 | 530.2467 | 575.0067 | |
(48.3839) | (49.2976) | (61.1225) | (89.4958) | (78.6126) | (103.1026) |
Group | Sham | NF | |||||
---|---|---|---|---|---|---|---|
Cue Type | Phase | Neutral | Congruent | Incongruent | Neutral | Congruent | Incongruent |
No | Pre | 0.9997 | 1.0000 | 0.9984 | 0.9994 | 0.9997 | 0.9984 |
(0.0010) | (0.0000) | (0.0026) | (0.0013) | (0.0010) | (0.0022) | ||
Post | 0.9987 | 1.0000 | 0.9994 | 1.0000 | 0.9994 | 0.9984 | |
(0.0016) | (0.0000) | (0.0013) | (0.0000) | (0.0013) | (0.0026) | ||
Center | Pre | 0.9997 | 1.0000 | 0.9984 | 0.9997 | 1.0000 | 0.9994 |
(0.0010) | (0.0000) | (0.0026) | (0.0010) | (0.0000) | (0.0019) | ||
Post | 0.9987 | 1.0000 | 0.9994 | 1.0000 | 1.0000 | 0.9990 | |
(0.0016) | (0.0000) | (0.0013) | (0.0000) | (0.0000) | (0.0021) | ||
Double | Pre | 0.9984 | 0.9997 | 0.9984 | 0.9997 | 1.0000 | 0.9981 |
(0.0016) | (0.0010) | (0.0022) | (0.0010) | (0.0000) | (0.0026) | ||
Post | 0.9981 | 1.0000 | 0.9981 | 0.9994 | 0.9997 | 0.9984 | |
(0.0026) | (0.0000) | (0.0021) | (0.0013) | (0.0010) | (0.0026) | ||
Spatial | Pre | 0.9984 | 0.9987 | 0.9974 | 0.9994 | 0.9990 | 0.9994 |
(0.0030) | (0.0021) | (0.0024) | (0.0019) | (0.0021) | (0.0019) | ||
Post | 0.9994 | 0.9997 | 0.9981 | 0.9984 | 0.9994 | 0.9981 | |
(0.0013) | (0.0010) | (0.0021) | (0.0030) | (0.0013) | (0.0026) |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pei, G.; Wu, J.; Chen, D.; Guo, G.; Liu, S.; Hong, M.; Yan, T. Effects of an Integrated Neurofeedback System with Dry Electrodes: EEG Acquisition and Cognition Assessment. Sensors 2018, 18, 3396. https://doi.org/10.3390/s18103396
Pei G, Wu J, Chen D, Guo G, Liu S, Hong M, Yan T. Effects of an Integrated Neurofeedback System with Dry Electrodes: EEG Acquisition and Cognition Assessment. Sensors. 2018; 18(10):3396. https://doi.org/10.3390/s18103396
Chicago/Turabian StylePei, Guangying, Jinglong Wu, Duanduan Chen, Guoxin Guo, Shuozhen Liu, Mingxuan Hong, and Tianyi Yan. 2018. "Effects of an Integrated Neurofeedback System with Dry Electrodes: EEG Acquisition and Cognition Assessment" Sensors 18, no. 10: 3396. https://doi.org/10.3390/s18103396
APA StylePei, G., Wu, J., Chen, D., Guo, G., Liu, S., Hong, M., & Yan, T. (2018). Effects of an Integrated Neurofeedback System with Dry Electrodes: EEG Acquisition and Cognition Assessment. Sensors, 18(10), 3396. https://doi.org/10.3390/s18103396