Membership Function-Weighted Non-Linear Fitting Method for Optical-Sensing Modeling and Reconstruction
Abstract
:1. Introduction
2. Method
2.1. Optical-Sensing Membership Function
2.2. Membership Function-Weighted Levenberg–Marquardt (MFW-LM) Algorithm
3. Verification of MFW-LM Algorithm
4. Applications
4.1. Optical Absorption Spectroscopy Analysis
4.2. Reconstruction of Laser-Beam Profile
- After reconstructing the heavily distorted laser-beam profiles, the detected laser intensity at the edge of the spot was closer to 0, while the detected laser intensity in other areas was significantly increased, resulting in a significant improvement of the data’s quality.
- The number of high-quality points used to study the laser-beam profile increased from 5 (larger points on the black fitted curve) to 23 (larger points on the red fitted curve), making the detail resolution of the laser-beam profile study significantly improved by 360% and the fitting results more accurate, which can provide more extracted information for the study of the spatial characteristics of the laser beam.
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Barajas, L.G.; Xiao, G. Curve Fitting for Signal Estimation, Prediction, and Parametrization. U.S. Patent 7,324,924, 29 January 2008. [Google Scholar]
- Ma, X.K.; Zou, B. Application of piece-wise curve fitting to post-processing of synchronous distances. Tech. Acoust. 2004, 3, 159–162. [Google Scholar]
- Donald, S.; Maddala, G.S. 24 Identifying Outliers and influential Observations in Econometric Models. In Handbook of Statistics; Elsevier: Amsterdam, The Netherlands, 1993; Volume 11, pp. 663–701. [Google Scholar]
- Ord, K. Outliers in Statistical Data. Int. J. Forecast. 1996, 12, 175–176. [Google Scholar] [CrossRef]
- Little, J.A. Comparison of Curve Fitting Models for Ligand Binding Assays. Chromatographia 2004, 59, S177–S181. [Google Scholar] [CrossRef]
- Motulsky, H.; Christopoulos, A. Fitting Models to biological Data Using Linear and Nonlinear Regression: A Practical Guide to Curve Fitting; Oxford University Press: Oxford, UK, 2004. [Google Scholar]
- Salkind, N.J. Encyclopedia of Research Design; Sage Publications Ltd.: Thousand Oaks, CA, USA, 2010; Volume 135, pp. 105–106. [Google Scholar]
- Arlinghaus, S. Practical Handbook of Curve Fitting; CRC Press: Boca Raton, FL, USA, 1994; pp. 13–60. [Google Scholar]
- Brakhage, K.-H. Analytical investigations for the design of fast approximation methods for fitting curves and surfaces to scattered data. Math. Comput. Simul. 2018, 147, 27–39. [Google Scholar] [CrossRef]
- Gray, R.A.L.; Docherty, P.D.; Fisk, L.M.; Murray, R. A modified approach to objective surface generation within the Gauss-Newton parameter identification to ignore outlier data points. Biomed. Signal Process. Control 2016, 30, 162–169. [Google Scholar] [CrossRef]
- Glynn, J.E. Numerical Recipes: The Art of Scientific Computing; Cambridge University Press: New York, NY, USA, 1989; Volume 15, pp. 1199–1200. [Google Scholar]
- Levenberg, K. A Method for the Solution of Certain Problems in Least Squares. Q. Appl. Math. 1944, 2, 164–168. [Google Scholar] [CrossRef]
- Marquardt, D.W. An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Ind. Appl. Math. 1963, 11, 431–441. [Google Scholar] [CrossRef]
- Asadi, S.; Hadavandi, E.; Mehmanpazir, F.; Nakhostin, M.M. Hybridization of evolutionary Levenberg–Marquardt neural networks and data pre-processing for stock market prediction. Knowl.-Based Syst. 2012, 35, 245–258. [Google Scholar] [CrossRef]
- Nawi, N.M.; Khan, A.; Rehman, M.Z. A New Levenberg Marquardt based Back Propagation Algorithm Trained with Cuckoo Search. Procedia Technol. 2013, 11, 18–23. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, D.; Fu, X.; Bi, W. An improved Levenberg–Marquardt algorithm for extracting the features of Brillouin scattering spectrum. Meas. Sci. Technol. 2013, 24, 015204. [Google Scholar] [CrossRef]
- Shadrokh, A.; Pazira, H. A new statistic for detecting outliers in exponential case. Aust. J. Basic Appl. Sci. 2010, 32, 573–583. [Google Scholar]
- Stefansky, W. Rejecting Outliers in Factorial Designs. Technometrics 1972, 14, 469–479. [Google Scholar] [CrossRef]
- Mcbane, G.C. Programs to Compute Distribution Functions and Critical Values for Extreme Value Ratios for Outlier Detection. J. Stat. Softw. 2006, 16, 459–473. [Google Scholar] [CrossRef]
- Ross, S.M. Peirce’s criterion for the elimination of suspect experimental data. J. Eng. Technol. 2003, 20, 38–41. [Google Scholar]
- Joseph, D.; Collins, S. Modeling, calibration, and correction of nonlinear illumination-dependent fixed pattern noise in logarithmic CMOS image sensors. IEEE Trans. Instrum. Meas. 2002, 51, 996–1001. [Google Scholar] [CrossRef]
- Shafie, S.; Kawahito, S.; Halin, I.A.; Wan, Z.W.H. Non-Linearity in Wide Dynamic Range CMOS Image Sensors Utilizing a Partial Charge Transfer Technique. Sensors 2009, 9, 9452–9467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soman, M.; Stefanov, K.; Weatherill, D.; Holland, A.; Gow, J.; Leese, M. Non-linear responsivity characterisation of a CMOS Active Pixel Sensor for high resolution imaging of the Jovian system. J. Instrum. 2015, 10, C02012. [Google Scholar] [CrossRef]
- Xiong, B.; Du, Z.; Li, J. Modulation index optimization for optical fringe suppression in wavelength modulation spectroscopy. Rev. Sci. Instrum. 2015, 86, 300. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Luo, G.; Du, Z.; Ma, Y. Hollow Waveguide Enhanced Dimethyl Sulfide Sensor Based on a 3.3 μm Interband Cascade Laser. Sens. Actuators B Chem. 2017, 3550–3557. [Google Scholar] [CrossRef]
- Levkov, C.; Mihov, G.; Ivanov, R.; Daskalov, I.; Christov, I.; Dotsinsky, I. Removal of power-line interference from the ECG: A review of the subtraction procedure. Biomed. Eng. Online 2005, 4, 50. [Google Scholar] [CrossRef] [PubMed]
- Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [Google Scholar] [CrossRef] [Green Version]
- Ren, H.J. About the Accuracy of the Electric Instrument Reading. J. Mianyang Normal Univ. 2009, 39–42. [Google Scholar]
- Li, S.; Lu, R.; Zhang, L.; Peng, Y. Image Processing Algorithms For Deep-Space Autonomous Optical Navigation. J. Navig. 2013, 66, 605–623. [Google Scholar] [CrossRef] [Green Version]
- Feng, T.; Edström, P.; Gulliksson, M. Levenberg–Marquardt methods for parameter estimation problems in the radiative transfer equation. Inverse Probl. 2007, 23, 879. [Google Scholar] [CrossRef]
- Aigner, M. Distance regression by Gauss–Newton-type methods and iteratively re-weighted least-squares. Computing 2009, 86, 73–87. [Google Scholar] [CrossRef]
- Patimisco, P.; Spagnolo, V.; Vitiello, M.S.; Tredicucci, A.; Scamarcio, G.; Bledt, C.M.; Harrington, J.A. Coupling external cavity mid-IR quantum cascade lasers with low loss hollow metallic/dielectric waveguides. Appl. Phys. B Lasers Opt. 2012, 108, 255–260. [Google Scholar] [CrossRef]
- Patimisco, P.; Spagnolo, V.; Vitiello, M.S.; Scamarcio, G.; Bledt, C.M.; Harrington, J.A. Low-Loss Hollow Waveguide Fibers for Mid-Infrared Quantum Cascade Laser Sensing Applications. Sensors 2013, 13, 1329–1340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bledt, C.M.; Harrington, J.A.; Kriesel, J.M. Loss and modal properties of Ag/AgI hollow glass waveguides. Appl. Opt. 2012, 51, 3114–3119. [Google Scholar] [CrossRef] [PubMed]
- Patimisco, P.; Sampaolo, A.; Mihai, L.; Giglio, M.; Kriesel, J.; Sporea, D.; Scamarcio, G.; Tittel, F.K.; Spagnolo, V. Low-Loss Coupling of Quantum Cascade Lasers into Hollow-Core Waveguides with Single-Mode Output in the 3.7–7.6 m Spectral Range. Sensors 2016, 16, 533. [Google Scholar] [CrossRef] [PubMed]
- Du, Z.; Luo, G.; An, Y.; Li, J. Dynamic spectral characteristics measurement of DFB interband cascade laser under injection current tuning. Appl. Phys. Lett. 2016, 109, 19140. [Google Scholar] [CrossRef]
- Du, Z.; Li, J.; Gao, H.; Luo, G.; Cao, X.; Ma, Y. Ultrahigh-resolution spectroscopy for methyl mercaptan at the ν 2-band by a distributed feedback interband cascade laser. J. Quant. Spectrosc. Radiat. Transf. 2017, 196, 123–129. [Google Scholar] [CrossRef]
- Li, J.; Du, Z.; Ma, Y.; Liu, J. Indoor carbon dioxide monitoring with diode laser absorption at 2 μm. In Proceedings of the International Society for Optics and Photonics, Shanghai, China, 28 June–2 July 2015. [Google Scholar]
- Du, Z.; Yan, Y.; Li, J.; Zhang, S.; Yang, X.; Xiao, Y. In situ, multiparameter optical sensor for monitoring the selective catalytic reduction process of diesel engines. Sens. Actuators B Chem. 2018, 267, 255–264. [Google Scholar] [CrossRef]
- Kluczynski, P.; Lindberg, Å.M.; Axner, O. Wavelength modulation diode laser absorption signals from Doppler broadened absorption profiles. J. Quant. Spectrosc. Radiat. Transf. 2004, 83, 345–360. [Google Scholar] [CrossRef]
- Li, J.; Yang, S.; Du, Z.; Gao, H.; Wei, Y. Resolving multiple combustion parameters from a single transition using degraded deconvolution of Voigt lineshape. Infrared Phys. Technol. 2018, 92, 6–12. [Google Scholar] [CrossRef]
- Rothman, L.S.; Gamache, R.R.; Goldman, A.; Brown, L.R.; Toth, R.A.; Pickett, H.M.; Poynter, R.L.; Flaud, J.M.; Camypeyret, C.; Barbe, A. The HITRAN database: 1986 edition. Appl. Opt. 1987, 26, 4058–4097. [Google Scholar] [CrossRef] [PubMed]
I0 | η | w | xc |
---|---|---|---|
−2.70 × 10−5 | 2307.40 | 4.45 | −5.26 × 10−18 |
ymin (a.u.) | y1 (a.u.) | y2 (a.u.) | ymax (a.u.) | |
---|---|---|---|---|
I | 16 | 150 | 150 | 225 |
II | 3 | 216 | 216 | 324 |
III | 45 | 163 | 163 | 245 |
IV | 1 | 203 | 203 | 305 |
Polynomial Coefficient | 0.227 < R < 0.507 | 0.507 < R < 2.237 | 2.237 < R < 7.335 | 7.335 < R < 62.224 |
---|---|---|---|---|
k1 | 2285.77372 | 1078.16869 | 632.97533 | 417.64245 |
k2 | −10,756.59361 | −1126.15794 | −129.37278 | −12.094 |
k3 | 31,321.80162 | 908.97286 | 27.12434 | 0.4159 |
k4 | −44,842.03108 | −357.95439 | −2.90883 | −0.00689 |
k5 | 25,134.01199 | 53.92365 | 0.1225 | 4.23798 × 10−5 |
ymin (a.u.) | y1 (a.u.) | y2 (a.u.) | ymax (a.u.) |
---|---|---|---|
0.0 | 1.4 | 1.4 | 2.1 |
Algorithm | NRMSD (%) | Temperature | Pressure | ||||
---|---|---|---|---|---|---|---|
Value 1 (K) | Value 2 (K) | Relative Error | Value 1 (atm) | Value 2 (atm) | Relative Error | ||
MFW-LM | 1.0 | 350.00 | 347.21 | 0.8% | 1.18 | 1.16 | 1.4% |
LM | 0.9 | 350.00 | 341.02 | 2.6% | 1.18 | 1.10 | 6.8% |
ymin (a.u.) | y1 (a.u.) | y2 (a.u.) | ymax (a.u.) |
---|---|---|---|
0 | 2 | 200 | 255 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meng, S.; Du, Z.; Yuan, L.; Wang, S.; Han, R.; Wang, X. Membership Function-Weighted Non-Linear Fitting Method for Optical-Sensing Modeling and Reconstruction. Sensors 2018, 18, 3762. https://doi.org/10.3390/s18113762
Meng S, Du Z, Yuan L, Wang S, Han R, Wang X. Membership Function-Weighted Non-Linear Fitting Method for Optical-Sensing Modeling and Reconstruction. Sensors. 2018; 18(11):3762. https://doi.org/10.3390/s18113762
Chicago/Turabian StyleMeng, Shuo, Zhenhui Du, Liming Yuan, Shuanke Wang, Ruiyan Han, and Xiaoyu Wang. 2018. "Membership Function-Weighted Non-Linear Fitting Method for Optical-Sensing Modeling and Reconstruction" Sensors 18, no. 11: 3762. https://doi.org/10.3390/s18113762
APA StyleMeng, S., Du, Z., Yuan, L., Wang, S., Han, R., & Wang, X. (2018). Membership Function-Weighted Non-Linear Fitting Method for Optical-Sensing Modeling and Reconstruction. Sensors, 18(11), 3762. https://doi.org/10.3390/s18113762