Monitoring Migraine Cycle Dynamics with an Easy-to-Use Electrophysiological Marker—A Pilot Study
Abstract
:1. Introduction
2. Methods
2.1. Subjects
2.2. Experimental Procedure
2.3. Electrophysiological Signal Analysis: Brain Engagement Index
2.4. Data Analysis
3. Results
3.1. Sample Counts
3.2. Lack of Significant Evidence in the Behavioral Measures
3.3. Brain Engagement Index Dynamics between Inter-Ictal and Pre-Ictal Periods (as well as the Ictal Period) and Comparison with the Post-Ictal Period and with Control Data
3.4. Brain Engagement Index Dynamics in the Post-Ictal Period
3.5. Peri-Ictal Dynamics (before the Attack Prediction Section)
3.6. Attack Likelihood
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Stewart, W.F.; Lipton, R.B.; Celentano, D.D.; Reed, M.L. Prevalence of migraine headache in the United States: Relation to age, income, race, and other sociodemographic factors. Jama 1992, 267, 64–69. [Google Scholar] [CrossRef] [PubMed]
- Quintela, E.; Castillo, J.; Muñoz, P.; Pascual, J. Premonitory and resolution symptoms in migraine: A prospective study in 100 unselected patients. Cephalalgia 2006, 26, 1051–1060. [Google Scholar] [CrossRef] [PubMed]
- de Tommaso, M.; Ambrosini, A.; Brighina, F.; Coppola, G.; Perrotta, A.; Pierelli, F.; Sandrini, G.; Valeriani, M.; Marinazzo, D.; Stramaglia, S.; et al. Altered processing of sensory stimuli in patients with migraine. Nat. Rev. Neurol. 2014, 10, 144–155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coppola, G.; Pierelli, F.; Schoenen, J. Habituation and migraine. Neurobiol. Learn. Mem. 2009, 92, 249–259. [Google Scholar] [CrossRef] [PubMed]
- Ambrosini, A.; Schoenen, J. Electrophysiological response patterns of primary sensory cortices in migraine. J. Headache Pain 2006, 7, 377–388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siniatchkin, M.; Kropp, P.; Gerber, W.D. What kind of habituation is impaired in migraine patients? Cephalalgia 2003, 23, 511–518. [Google Scholar] [CrossRef] [PubMed]
- Evers, S.; Quibeldey, F.; Grotemeyer, K.H.; Suhr, B.; Husstedt, I.W. Dynamic changes of cognitive habituation and serotonin metabolism during the migraine interval. Cephalalgia 1999, 19, 485–491. [Google Scholar] [CrossRef] [PubMed]
- Key, A.P.; Dove, G.O.; Maguire, M.J. Linking brainwaves to the brain: An ERP primer. Dev. Neuropsychol. 2005, 27, 183–215. [Google Scholar] [CrossRef] [PubMed]
- Siniatchkin, M.; Averkina, N.; Andrasik, F.; Stephani, U.; Gerber, W.D. Neurophysiological reactivity before a migraine attack. Neurosci. Lett. 2006, 400, 121–124. [Google Scholar] [CrossRef] [PubMed]
- Kropp, P.; Gerber, W.D. Prediction of migraine attacks using a slow cortical potential, the contingent negative variation. Neurosci. Lett. 1998, 257, 73–76. [Google Scholar] [CrossRef]
- Kropp, P.; Gerber, W.D. Slow cortical potentials in migraine. Predictive value and possible novel therapeutic strategies to prevent an attack. Funct. Neurol. 2005, 20, 193–197. [Google Scholar] [PubMed]
- Afra, J.; Cecchini, A.P.; De Pasqua, V.; Albert, A.; Schoenen, J. Visual evoked potentials during long periods of pattern-reversal stimulation in migraine. Brain 1998, 121, 233–241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Afra, J.; Cecchini, A.P.; Sándor, P.S.; Schoenen, J. Comparison of visual and auditory evoked cortical potentials in migraine patients between attacks. Clin. Neurophysiol. 2000, 111, 1124–1129. [Google Scholar] [CrossRef]
- Coppola, G.; De Pasqua, V.; Pierelli, F.; Schoenen, J. Effects of repetitive transcranial magnetic stimulation on somatosensory evoked potentials and high frequency oscillations in migraine. Cephalalgia 2012, 32, 700–709. [Google Scholar] [CrossRef] [PubMed]
- Shahaf, G.; Pratt, H. Thorough specification of the neurophysiologic processes underlying behavior and of their manifestation in EEG—Demonstration with the go/no-go task. Front. Hum. Neurosci. 2013, 7, 305. [Google Scholar] [CrossRef] [PubMed]
- Shahaf, G.; Fisher, T.; Aharon-Peretz, J.; Pratt, H. Comprehensive analysis suggests simple processes underlying EEG/ERP—Demonstration with the go/no-go paradigm in ADHD. J. Neurosci. Methods 2015, 239, 183–193. [Google Scholar] [CrossRef] [PubMed]
- Koo, Y.S.; Ko, D.; Lee, G.T.; Oh, K.; Kim, M.S.; Kim, K.H.; Im, C.H.; Jung, K.Y. Reduced frontal P3a amplitude in migraine patients during the pain-free period. J. Clin. Neurol. 2013, 9, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Shahaf, G.; Nitzan, U.; Erez, G.; Mendelovic, S.; Bloch, Y. Monitoring Attention in ADHD with an Easy-to-Use Electrophysiological Index. Front. Hum. Neurosci. 2018, 12, 32. [Google Scholar] [CrossRef] [PubMed]
- Shahaf, G.; Yariv, S.; Bloch, B.; Nitzan, U.; Segev, A.; Reshef, A.; Bloch, Y. A pilot study of possible easy-to-use electrophysiological index for early detection of antidepressive treatment non-response. Front. Psychiatry 2017, 8, 128. [Google Scholar] [CrossRef] [PubMed]
- Delorme, A.; Sejnowski, T.; Makeig, S. Enhanced detection of artifacts in EEG data using higher-order statistics and independent component analysis. Neuroimage 2007, 34, 1443–1449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maffei, A.; Angrilli, A. Spontaneous eye blink rate: An index of dopaminergic component of sustained attention and fatigue. Int. J. Psychophysiol. 2018, 123, 58–63. [Google Scholar] [CrossRef] [PubMed]
- Bank, J.; Bense, E.; Király, C. The blink reflex in migraine. Cephalalgia 1992, 12, 289–292. [Google Scholar] [CrossRef] [PubMed]
- Pfurtscheller, G. Functional brain imaging based on ERD/ERS. Vis. Res. 2001, 41, 1257–1260. [Google Scholar] [CrossRef]
- Valeriani, M.; Rinalduzzi, S.; Vigevano, F. Multilevel somatosensory system disinhibition in children with migraine. Pain 2005, 118, 137–144. [Google Scholar] [CrossRef] [PubMed]
- Desmedt, J.E.; Huy, N.T.; Bourguet, M. The cognitive P40, N60 and P100 components of somatosensory evoked potentials and the earliest electrical signs of sensory processing in man. Electroencephalogr. Clin. Neurophysiol. 1983, 56, 272–282. [Google Scholar] [CrossRef]
- Chapman, C.E.; Meftah, E.M. Independent controls of attentional influences in primary and secondary somatosensory cortex. J. Neurophysiol. 2005, 94, 4094–4107. [Google Scholar] [CrossRef] [PubMed]
- Sprenger, C.; Eippert, F.; Finsterbusch, J.; Bingel, U.; Rose, M.; Büchel, C. Attention modulates spinal cord responses to pain. Curr. Biol. 2012, 22, 1019–1022. [Google Scholar] [CrossRef] [PubMed]
- Adachi, L.N.S.; Quevedo, A.S.; de Souza, A.; Scarabelot, V.L.; Rozisky, J.R.; de Oliveira, C.; Marques Filho, P.R.; Medeiros, L.F.; Fregni, F.; Caumo, W.; et al. Exogenously induced brain activation regulates neuronal activity by top-down modulation: Conceptualized model for electrical brain stimulation. Exp. Brain Res. 2015, 233, 1377–1389. [Google Scholar] [CrossRef] [PubMed]
- Leithner, C.; Ploner, C.J.; Hasper, D.; Storm, C. Does hypothermia influence the predictive value of bilateral absent N20 after cardiac arrest? Neurology 2010, 74, 965–969. [Google Scholar] [CrossRef] [PubMed]
- Calandre, E.P.; Bembibre, J.; Arnedo, M.L.; Becerra, D. Cognitive disturbances and regional cerebral blood flow abnormalities in migraine patients: Their relationship with the clinical manifestations of the illness. Cephalalgia 2002, 22, 291–302. [Google Scholar] [CrossRef] [PubMed]
- Shahaf, G. Migraine as dysfunctional drive reduction: Insight from electrophysiology. Med. Hypotheses 2016, 91, 62–66. [Google Scholar] [CrossRef] [PubMed]
- Andress-Rothrock, D.; King, W.; Rothrock, J. An analysis of migraine triggers in a clinic-based population. Headache 2010, 50, 1366–1370. [Google Scholar] [CrossRef] [PubMed]
- White, P.M.; Kanazawa, A.; Yee, C.M. Gender and suppression of mid-latency ERP components during stress. Psychophysiology 2005, 42, 720–725. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lipton, R.B.; Buse, D.C.; Hall, C.B.; Tennen, H.; DeFreitas, T.A.; Borkowski, T.M.; Grosberg, B.M.; Haut, S.R. Reduction in perceived stress as a migraine trigger: Testing the “let-down headache” hypothesis. Neurology 2014, 82, 1395–1401. [Google Scholar] [CrossRef] [PubMed]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shahaf, G.; Kuperman, P.; Bloch, Y.; Yariv, S.; Granovsky, Y. Monitoring Migraine Cycle Dynamics with an Easy-to-Use Electrophysiological Marker—A Pilot Study. Sensors 2018, 18, 3918. https://doi.org/10.3390/s18113918
Shahaf G, Kuperman P, Bloch Y, Yariv S, Granovsky Y. Monitoring Migraine Cycle Dynamics with an Easy-to-Use Electrophysiological Marker—A Pilot Study. Sensors. 2018; 18(11):3918. https://doi.org/10.3390/s18113918
Chicago/Turabian StyleShahaf, Goded, Pora Kuperman, Yuval Bloch, Shahak Yariv, and Yelena Granovsky. 2018. "Monitoring Migraine Cycle Dynamics with an Easy-to-Use Electrophysiological Marker—A Pilot Study" Sensors 18, no. 11: 3918. https://doi.org/10.3390/s18113918
APA StyleShahaf, G., Kuperman, P., Bloch, Y., Yariv, S., & Granovsky, Y. (2018). Monitoring Migraine Cycle Dynamics with an Easy-to-Use Electrophysiological Marker—A Pilot Study. Sensors, 18(11), 3918. https://doi.org/10.3390/s18113918